diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Kconfig | 30 | ||||
-rw-r--r-- | mm/Makefile | 2 | ||||
-rw-r--r-- | mm/backing-dev.c | 2 | ||||
-rw-r--r-- | mm/filemap.c | 6 | ||||
-rw-r--r-- | mm/internal.h | 5 | ||||
-rw-r--r-- | mm/memblock.c | 2 | ||||
-rw-r--r-- | mm/memcontrol.c | 268 | ||||
-rw-r--r-- | mm/memory.c | 2 | ||||
-rw-r--r-- | mm/memory_hotplug.c | 10 | ||||
-rw-r--r-- | mm/mmap.c | 38 | ||||
-rw-r--r-- | mm/mremap.c | 18 | ||||
-rw-r--r-- | mm/nommu.c | 4 | ||||
-rw-r--r-- | mm/page-writeback.c | 4 | ||||
-rw-r--r-- | mm/page_alloc.c | 90 | ||||
-rw-r--r-- | mm/rmap.c | 2 | ||||
-rw-r--r-- | mm/slab.c | 61 | ||||
-rw-r--r-- | mm/slab.h | 3 | ||||
-rw-r--r-- | mm/slab_common.c | 18 | ||||
-rw-r--r-- | mm/slob.c | 4 | ||||
-rw-r--r-- | mm/slub.c | 42 | ||||
-rw-r--r-- | mm/sparse.c | 2 | ||||
-rw-r--r-- | mm/util.c | 1 | ||||
-rw-r--r-- | mm/vmalloc.c | 63 | ||||
-rw-r--r-- | mm/vmscan.c | 24 | ||||
-rw-r--r-- | mm/vmstat.c | 6 | ||||
-rw-r--r-- | mm/zbud.c | 527 | ||||
-rw-r--r-- | mm/zswap.c | 943 |
27 files changed, 1815 insertions, 362 deletions
diff --git a/mm/Kconfig b/mm/Kconfig index 7e28ecfa8aa4..8028dcc6615c 100644 --- a/mm/Kconfig +++ b/mm/Kconfig @@ -478,6 +478,36 @@ config FRONTSWAP If unsure, say Y to enable frontswap. +config ZBUD + tristate + default n + help + A special purpose allocator for storing compressed pages. + It is designed to store up to two compressed pages per physical + page. While this design limits storage density, it has simple and + deterministic reclaim properties that make it preferable to a higher + density approach when reclaim will be used. + +config ZSWAP + bool "Compressed cache for swap pages (EXPERIMENTAL)" + depends on FRONTSWAP && CRYPTO=y + select CRYPTO_LZO + select ZBUD + default n + help + A lightweight compressed cache for swap pages. It takes + pages that are in the process of being swapped out and attempts to + compress them into a dynamically allocated RAM-based memory pool. + This can result in a significant I/O reduction on swap device and, + in the case where decompressing from RAM is faster that swap device + reads, can also improve workload performance. + + This is marked experimental because it is a new feature (as of + v3.11) that interacts heavily with memory reclaim. While these + interactions don't cause any known issues on simple memory setups, + they have not be fully explored on the large set of potential + configurations and workloads that exist. + config MEM_SOFT_DIRTY bool "Track memory changes" depends on CHECKPOINT_RESTORE && HAVE_ARCH_SOFT_DIRTY diff --git a/mm/Makefile b/mm/Makefile index 72c5acb9345f..f00803386a67 100644 --- a/mm/Makefile +++ b/mm/Makefile @@ -32,6 +32,7 @@ obj-$(CONFIG_HAVE_MEMBLOCK) += memblock.o obj-$(CONFIG_BOUNCE) += bounce.o obj-$(CONFIG_SWAP) += page_io.o swap_state.o swapfile.o obj-$(CONFIG_FRONTSWAP) += frontswap.o +obj-$(CONFIG_ZSWAP) += zswap.o obj-$(CONFIG_HAS_DMA) += dmapool.o obj-$(CONFIG_HUGETLBFS) += hugetlb.o obj-$(CONFIG_NUMA) += mempolicy.o @@ -58,3 +59,4 @@ obj-$(CONFIG_DEBUG_KMEMLEAK) += kmemleak.o obj-$(CONFIG_DEBUG_KMEMLEAK_TEST) += kmemleak-test.o obj-$(CONFIG_CLEANCACHE) += cleancache.o obj-$(CONFIG_MEMORY_ISOLATION) += page_isolation.o +obj-$(CONFIG_ZBUD) += zbud.o diff --git a/mm/backing-dev.c b/mm/backing-dev.c index d014ee5fcbbd..e04454cdb33f 100644 --- a/mm/backing-dev.c +++ b/mm/backing-dev.c @@ -232,8 +232,6 @@ static ssize_t stable_pages_required_show(struct device *dev, bdi_cap_stable_pages_required(bdi) ? 1 : 0); } -#define __ATTR_RW(attr) __ATTR(attr, 0644, attr##_show, attr##_store) - static struct device_attribute bdi_dev_attrs[] = { __ATTR_RW(read_ahead_kb), __ATTR_RW(min_ratio), diff --git a/mm/filemap.c b/mm/filemap.c index 7905fe721aa8..4b51ac1acae7 100644 --- a/mm/filemap.c +++ b/mm/filemap.c @@ -1539,12 +1539,12 @@ static void do_sync_mmap_readahead(struct vm_area_struct *vma, struct address_space *mapping = file->f_mapping; /* If we don't want any read-ahead, don't bother */ - if (VM_RandomReadHint(vma)) + if (vma->vm_flags & VM_RAND_READ) return; if (!ra->ra_pages) return; - if (VM_SequentialReadHint(vma)) { + if (vma->vm_flags & VM_SEQ_READ) { page_cache_sync_readahead(mapping, ra, file, offset, ra->ra_pages); return; @@ -1584,7 +1584,7 @@ static void do_async_mmap_readahead(struct vm_area_struct *vma, struct address_space *mapping = file->f_mapping; /* If we don't want any read-ahead, don't bother */ - if (VM_RandomReadHint(vma)) + if (vma->vm_flags & VM_RAND_READ) return; if (ra->mmap_miss > 0) ra->mmap_miss--; diff --git a/mm/internal.h b/mm/internal.h index 8562de0a5197..4390ac6c106e 100644 --- a/mm/internal.h +++ b/mm/internal.h @@ -32,11 +32,6 @@ static inline void set_page_refcounted(struct page *page) set_page_count(page, 1); } -static inline void __put_page(struct page *page) -{ - atomic_dec(&page->_count); -} - static inline void __get_page_tail_foll(struct page *page, bool get_page_head) { diff --git a/mm/memblock.c b/mm/memblock.c index c5fad932fa51..a847bfe6f3ba 100644 --- a/mm/memblock.c +++ b/mm/memblock.c @@ -566,7 +566,7 @@ int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) /** * __next_free_mem_range - next function for for_each_free_mem_range() * @idx: pointer to u64 loop variable - * @nid: nid: node selector, %MAX_NUMNODES for all nodes + * @nid: node selector, %MAX_NUMNODES for all nodes * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL * @out_nid: ptr to int for nid of the range, can be %NULL diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 2e851f453814..00a7a664b9c1 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -187,10 +187,6 @@ struct mem_cgroup_per_node { struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; }; -struct mem_cgroup_lru_info { - struct mem_cgroup_per_node *nodeinfo[0]; -}; - /* * Cgroups above their limits are maintained in a RB-Tree, independent of * their hierarchy representation @@ -267,28 +263,10 @@ struct mem_cgroup { /* vmpressure notifications */ struct vmpressure vmpressure; - union { - /* - * the counter to account for mem+swap usage. - */ - struct res_counter memsw; - - /* - * rcu_freeing is used only when freeing struct mem_cgroup, - * so put it into a union to avoid wasting more memory. - * It must be disjoint from the css field. It could be - * in a union with the res field, but res plays a much - * larger part in mem_cgroup life than memsw, and might - * be of interest, even at time of free, when debugging. - * So share rcu_head with the less interesting memsw. - */ - struct rcu_head rcu_freeing; - /* - * We also need some space for a worker in deferred freeing. - * By the time we call it, rcu_freeing is no longer in use. - */ - struct work_struct work_freeing; - }; + /* + * the counter to account for mem+swap usage. + */ + struct res_counter memsw; /* * the counter to account for kernel memory usage. @@ -303,8 +281,6 @@ struct mem_cgroup { bool oom_lock; atomic_t under_oom; - atomic_t refcnt; - int swappiness; /* OOM-Killer disable */ int oom_kill_disable; @@ -366,14 +342,8 @@ struct mem_cgroup { atomic_t numainfo_updating; #endif - /* - * Per cgroup active and inactive list, similar to the - * per zone LRU lists. - * - * WARNING: This has to be the last element of the struct. Don't - * add new fields after this point. - */ - struct mem_cgroup_lru_info info; + struct mem_cgroup_per_node *nodeinfo[0]; + /* WARNING: nodeinfo must be the last member here */ }; static size_t memcg_size(void) @@ -416,6 +386,11 @@ static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) { + /* + * Our caller must use css_get() first, because memcg_uncharge_kmem() + * will call css_put() if it sees the memcg is dead. + */ + smp_wmb(); if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); } @@ -508,9 +483,6 @@ enum res_type { */ static DEFINE_MUTEX(memcg_create_mutex); -static void mem_cgroup_get(struct mem_cgroup *memcg); -static void mem_cgroup_put(struct mem_cgroup *memcg); - static inline struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) { @@ -561,15 +533,15 @@ void sock_update_memcg(struct sock *sk) */ if (sk->sk_cgrp) { BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); - mem_cgroup_get(sk->sk_cgrp->memcg); + css_get(&sk->sk_cgrp->memcg->css); return; } rcu_read_lock(); memcg = mem_cgroup_from_task(current); cg_proto = sk->sk_prot->proto_cgroup(memcg); - if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { - mem_cgroup_get(memcg); + if (!mem_cgroup_is_root(memcg) && + memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) { sk->sk_cgrp = cg_proto; } rcu_read_unlock(); @@ -583,7 +555,7 @@ void sock_release_memcg(struct sock *sk) struct mem_cgroup *memcg; WARN_ON(!sk->sk_cgrp->memcg); memcg = sk->sk_cgrp->memcg; - mem_cgroup_put(memcg); + css_put(&sk->sk_cgrp->memcg->css); } } @@ -683,7 +655,7 @@ static struct mem_cgroup_per_zone * mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) { VM_BUG_ON((unsigned)nid >= nr_node_ids); - return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; + return &memcg->nodeinfo[nid]->zoneinfo[zid]; } struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) @@ -2550,7 +2522,7 @@ static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) spin_unlock(&memcg->pcp_counter_lock); } -static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, +static int memcg_cpu_hotplug_callback(struct notifier_block *nb, unsigned long action, void *hcpu) { @@ -3060,8 +3032,16 @@ static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) if (res_counter_uncharge(&memcg->kmem, size)) return; + /* + * Releases a reference taken in kmem_cgroup_css_offline in case + * this last uncharge is racing with the offlining code or it is + * outliving the memcg existence. + * + * The memory barrier imposed by test&clear is paired with the + * explicit one in memcg_kmem_mark_dead(). + */ if (memcg_kmem_test_and_clear_dead(memcg)) - mem_cgroup_put(memcg); + css_put(&memcg->css); } void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) @@ -3252,7 +3232,7 @@ void memcg_release_cache(struct kmem_cache *s) list_del(&s->memcg_params->list); mutex_unlock(&memcg->slab_caches_mutex); - mem_cgroup_put(memcg); + css_put(&memcg->css); out: kfree(s->memcg_params); } @@ -3412,16 +3392,18 @@ static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, mutex_lock(&memcg_cache_mutex); new_cachep = cachep->memcg_params->memcg_caches[idx]; - if (new_cachep) + if (new_cachep) { + css_put(&memcg->css); goto out; + } new_cachep = kmem_cache_dup(memcg, cachep); if (new_cachep == NULL) { new_cachep = cachep; + css_put(&memcg->css); goto out; } - mem_cgroup_get(memcg); atomic_set(&new_cachep->memcg_params->nr_pages , 0); cachep->memcg_params->memcg_caches[idx] = new_cachep; @@ -3509,8 +3491,6 @@ static void memcg_create_cache_work_func(struct work_struct *w) cw = container_of(w, struct create_work, work); memcg_create_kmem_cache(cw->memcg, cw->cachep); - /* Drop the reference gotten when we enqueued. */ - css_put(&cw->memcg->css); kfree(cw); } @@ -3647,6 +3627,34 @@ __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) int ret; *_memcg = NULL; + + /* + * Disabling accounting is only relevant for some specific memcg + * internal allocations. Therefore we would initially not have such + * check here, since direct calls to the page allocator that are marked + * with GFP_KMEMCG only happen outside memcg core. We are mostly + * concerned with cache allocations, and by having this test at + * memcg_kmem_get_cache, we are already able to relay the allocation to + * the root cache and bypass the memcg cache altogether. + * + * There is one exception, though: the SLUB allocator does not create + * large order caches, but rather service large kmallocs directly from + * the page allocator. Therefore, the following sequence when backed by + * the SLUB allocator: + * + * memcg_stop_kmem_account(); + * kmalloc(<large_number>) + * memcg_resume_kmem_account(); + * + * would effectively ignore the fact that we should skip accounting, + * since it will drive us directly to this function without passing + * through the cache selector memcg_kmem_get_cache. Such large + * allocations are extremely rare but can happen, for instance, for the + * cache arrays. We bring this test here. + */ + if (!current->mm || current->memcg_kmem_skip_account) + return true; + memcg = try_get_mem_cgroup_from_mm(current->mm); /* @@ -4200,12 +4208,12 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, unlock_page_cgroup(pc); /* * even after unlock, we have memcg->res.usage here and this memcg - * will never be freed. + * will never be freed, so it's safe to call css_get(). */ memcg_check_events(memcg, page); if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { mem_cgroup_swap_statistics(memcg, true); - mem_cgroup_get(memcg); + css_get(&memcg->css); } /* * Migration does not charge the res_counter for the @@ -4317,7 +4325,7 @@ mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) /* * record memcg information, if swapout && memcg != NULL, - * mem_cgroup_get() was called in uncharge(). + * css_get() was called in uncharge(). */ if (do_swap_account && swapout && memcg) swap_cgroup_record(ent, css_id(&memcg->css)); @@ -4348,7 +4356,7 @@ void mem_cgroup_uncharge_swap(swp_entry_t ent) if (!mem_cgroup_is_root(memcg)) res_counter_uncharge(&memcg->memsw, PAGE_SIZE); mem_cgroup_swap_statistics(memcg, false); - mem_cgroup_put(memcg); + css_put(&memcg->css); } rcu_read_unlock(); } @@ -4382,11 +4390,14 @@ static int mem_cgroup_move_swap_account(swp_entry_t entry, * This function is only called from task migration context now. * It postpones res_counter and refcount handling till the end * of task migration(mem_cgroup_clear_mc()) for performance - * improvement. But we cannot postpone mem_cgroup_get(to) - * because if the process that has been moved to @to does - * swap-in, the refcount of @to might be decreased to 0. + * improvement. But we cannot postpone css_get(to) because if + * the process that has been moved to @to does swap-in, the + * refcount of @to might be decreased to 0. + * + * We are in attach() phase, so the cgroup is guaranteed to be + * alive, so we can just call css_get(). */ - mem_cgroup_get(to); + css_get(&to->css); return 0; } return -EINVAL; @@ -5165,14 +5176,6 @@ static int memcg_update_kmem_limit(struct cgroup *cont, u64 val) * starts accounting before all call sites are patched */ memcg_kmem_set_active(memcg); - - /* - * kmem charges can outlive the cgroup. In the case of slab - * pages, for instance, a page contain objects from various - * processes, so it is unfeasible to migrate them away. We - * need to reference count the memcg because of that. - */ - mem_cgroup_get(memcg); } else ret = res_counter_set_limit(&memcg->kmem, val); out: @@ -5205,16 +5208,16 @@ static int memcg_propagate_kmem(struct mem_cgroup *memcg) goto out; /* - * destroy(), called if we fail, will issue static_key_slow_inc() and - * mem_cgroup_put() if kmem is enabled. We have to either call them - * unconditionally, or clear the KMEM_ACTIVE flag. I personally find - * this more consistent, since it always leads to the same destroy path + * __mem_cgroup_free() will issue static_key_slow_dec() because this + * memcg is active already. If the later initialization fails then the + * cgroup core triggers the cleanup so we do not have to do it here. */ - mem_cgroup_get(memcg); static_key_slow_inc(&memcg_kmem_enabled_key); mutex_lock(&set_limit_mutex); + memcg_stop_kmem_account(); ret = memcg_update_cache_sizes(memcg); + memcg_resume_kmem_account(); mutex_unlock(&set_limit_mutex); out: return ret; @@ -5893,23 +5896,43 @@ static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) return mem_cgroup_sockets_init(memcg, ss); } -static void kmem_cgroup_destroy(struct mem_cgroup *memcg) +static void memcg_destroy_kmem(struct mem_cgroup *memcg) { mem_cgroup_sockets_destroy(memcg); +} + +static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) +{ + if (!memcg_kmem_is_active(memcg)) + return; + + /* + * kmem charges can outlive the cgroup. In the case of slab + * pages, for instance, a page contain objects from various + * processes. As we prevent from taking a reference for every + * such allocation we have to be careful when doing uncharge + * (see memcg_uncharge_kmem) and here during offlining. + * + * The idea is that that only the _last_ uncharge which sees + * the dead memcg will drop the last reference. An additional + * reference is taken here before the group is marked dead + * which is then paired with css_put during uncharge resp. here. + * + * Although this might sound strange as this path is called from + * css_offline() when the referencemight have dropped down to 0 + * and shouldn't be incremented anymore (css_tryget would fail) + * we do not have other options because of the kmem allocations + * lifetime. + */ + css_get(&memcg->css); memcg_kmem_mark_dead(memcg); if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) return; - /* - * Charges already down to 0, undo mem_cgroup_get() done in the charge - * path here, being careful not to race with memcg_uncharge_kmem: it is - * possible that the charges went down to 0 between mark_dead and the - * res_counter read, so in that case, we don't need the put - */ if (memcg_kmem_test_and_clear_dead(memcg)) - mem_cgroup_put(memcg); + css_put(&memcg->css); } #else static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) @@ -5917,7 +5940,11 @@ static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) return 0; } -static void kmem_cgroup_destroy(struct mem_cgroup *memcg) +static void memcg_destroy_kmem(struct mem_cgroup *memcg) +{ +} + +static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) { } #endif @@ -6087,13 +6114,13 @@ static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) mz->on_tree = false; mz->memcg = memcg; } - memcg->info.nodeinfo[node] = pn; + memcg->nodeinfo[node] = pn; return 0; } static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) { - kfree(memcg->info.nodeinfo[node]); + kfree(memcg->nodeinfo[node]); } static struct mem_cgroup *mem_cgroup_alloc(void) @@ -6166,49 +6193,6 @@ static void __mem_cgroup_free(struct mem_cgroup *memcg) vfree(memcg); } - -/* - * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, - * but in process context. The work_freeing structure is overlaid - * on the rcu_freeing structure, which itself is overlaid on memsw. - */ -static void free_work(struct work_struct *work) -{ - struct mem_cgroup *memcg; - - memcg = container_of(work, struct mem_cgroup, work_freeing); - __mem_cgroup_free(memcg); -} - -static void free_rcu(struct rcu_head *rcu_head) -{ - struct mem_cgroup *memcg; - - memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); - INIT_WORK(&memcg->work_freeing, free_work); - schedule_work(&memcg->work_freeing); -} - -static void mem_cgroup_get(struct mem_cgroup *memcg) -{ - atomic_inc(&memcg->refcnt); -} - -static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) -{ - if (atomic_sub_and_test(count, &memcg->refcnt)) { - struct mem_cgroup *parent = parent_mem_cgroup(memcg); - call_rcu(&memcg->rcu_freeing, free_rcu); - if (parent) - mem_cgroup_put(parent); - } -} - -static void mem_cgroup_put(struct mem_cgroup *memcg) -{ - __mem_cgroup_put(memcg, 1); -} - /* * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. */ @@ -6268,7 +6252,6 @@ mem_cgroup_css_alloc(struct cgroup *cont) memcg->last_scanned_node = MAX_NUMNODES; INIT_LIST_HEAD(&memcg->oom_notify); - atomic_set(&memcg->refcnt, 1); memcg->move_charge_at_immigrate = 0; mutex_init(&memcg->thresholds_lock); spin_lock_init(&memcg->move_lock); @@ -6304,12 +6287,9 @@ mem_cgroup_css_online(struct cgroup *cont) res_counter_init(&memcg->kmem, &parent->kmem); /* - * We increment refcnt of the parent to ensure that we can - * safely access it on res_counter_charge/uncharge. - * This refcnt will be decremented when freeing this - * mem_cgroup(see mem_cgroup_put). + * No need to take a reference to the parent because cgroup + * core guarantees its existence. */ - mem_cgroup_get(parent); } else { res_counter_init(&memcg->res, NULL); res_counter_init(&memcg->memsw, NULL); @@ -6325,16 +6305,6 @@ mem_cgroup_css_online(struct cgroup *cont) error = memcg_init_kmem(memcg, &mem_cgroup_subsys); mutex_unlock(&memcg_create_mutex); - if (error) { - /* - * We call put now because our (and parent's) refcnts - * are already in place. mem_cgroup_put() will internally - * call __mem_cgroup_free, so return directly - */ - mem_cgroup_put(memcg); - if (parent->use_hierarchy) - mem_cgroup_put(parent); - } return error; } @@ -6360,6 +6330,8 @@ static void mem_cgroup_css_offline(struct cgroup *cont) { struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); + kmem_cgroup_css_offline(memcg); + mem_cgroup_invalidate_reclaim_iterators(memcg); mem_cgroup_reparent_charges(memcg); mem_cgroup_destroy_all_caches(memcg); @@ -6369,9 +6341,8 @@ static void mem_cgroup_css_free(struct cgroup *cont) { struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); - kmem_cgroup_destroy(memcg); - - mem_cgroup_put(memcg); + memcg_destroy_kmem(memcg); + __mem_cgroup_free(memcg); } #ifdef CONFIG_MMU @@ -6680,6 +6651,7 @@ static void __mem_cgroup_clear_mc(void) { struct mem_cgroup *from = mc.from; struct mem_cgroup *to = mc.to; + int i; /* we must uncharge all the leftover precharges from mc.to */ if (mc.precharge) { @@ -6700,7 +6672,9 @@ static void __mem_cgroup_clear_mc(void) if (!mem_cgroup_is_root(mc.from)) res_counter_uncharge(&mc.from->memsw, PAGE_SIZE * mc.moved_swap); - __mem_cgroup_put(mc.from, mc.moved_swap); + + for (i = 0; i < mc.moved_swap; i++) + css_put(&mc.from->css); if (!mem_cgroup_is_root(mc.to)) { /* @@ -6710,7 +6684,7 @@ static void __mem_cgroup_clear_mc(void) res_counter_uncharge(&mc.to->res, PAGE_SIZE * mc.moved_swap); } - /* we've already done mem_cgroup_get(mc.to) */ + /* we've already done css_get(mc.to) */ mc.moved_swap = 0; } memcg_oom_recover(from); diff --git a/mm/memory.c b/mm/memory.c index b68812d682b6..1ce2e2a734fc 100644 --- a/mm/memory.c +++ b/mm/memory.c @@ -1150,7 +1150,7 @@ again: if (pte_dirty(ptent)) set_page_dirty(page); if (pte_young(ptent) && - likely(!VM_SequentialReadHint(vma))) + likely(!(vma->vm_flags & VM_SEQ_READ))) mark_page_accessed(page); rss[MM_FILEPAGES]--; } diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c index f5ba127b2051..ca1dd3aa5eee 100644 --- a/mm/memory_hotplug.c +++ b/mm/memory_hotplug.c @@ -208,13 +208,13 @@ void register_page_bootmem_info_node(struct pglist_data *pgdat) pfn = pgdat->node_start_pfn; end_pfn = pgdat_end_pfn(pgdat); - /* register_section info */ + /* register section info */ for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { /* * Some platforms can assign the same pfn to multiple nodes - on * node0 as well as nodeN. To avoid registering a pfn against * multiple nodes we check that this pfn does not already - * reside in some other node. + * reside in some other nodes. */ if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node)) register_page_bootmem_info_section(pfn); @@ -914,19 +914,19 @@ int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_typ if ((zone_idx(zone) > ZONE_NORMAL || online_type == ONLINE_MOVABLE) && !can_online_high_movable(zone)) { unlock_memory_hotplug(); - return -1; + return -EINVAL; } if (online_type == ONLINE_KERNEL && zone_idx(zone) == ZONE_MOVABLE) { if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages)) { unlock_memory_hotplug(); - return -1; + return -EINVAL; } } if (online_type == ONLINE_MOVABLE && zone_idx(zone) == ZONE_MOVABLE - 1) { if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages)) { unlock_memory_hotplug(); - return -1; + return -EINVAL; } } diff --git a/mm/mmap.c b/mm/mmap.c index 8468ffd05bae..fbad7b091090 100644 --- a/mm/mmap.c +++ b/mm/mmap.c @@ -1358,18 +1358,19 @@ SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, if (!(flags & MAP_ANONYMOUS)) { audit_mmap_fd(fd, flags); - if (unlikely(flags & MAP_HUGETLB)) - return -EINVAL; file = fget(fd); if (!file) goto out; if (is_file_hugepages(file)) len = ALIGN(len, huge_page_size(hstate_file(file))); + retval = -EINVAL; + if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file))) + goto out_fput; } else if (flags & MAP_HUGETLB) { struct user_struct *user = NULL; - struct hstate *hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & - SHM_HUGE_MASK); + struct hstate *hs; + hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK); if (!hs) return -EINVAL; @@ -1391,6 +1392,7 @@ SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); +out_fput: if (file) fput(file); out: @@ -1876,15 +1878,6 @@ arch_get_unmapped_area(struct file *filp, unsigned long addr, } #endif -void arch_unmap_area(struct mm_struct *mm, unsigned long addr) -{ - /* - * Is this a new hole at the lowest possible address? - */ - if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) - mm->free_area_cache = addr; -} - /* * This mmap-allocator allocates new areas top-down from below the * stack's low limit (the base): @@ -1941,19 +1934,6 @@ arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0, } #endif -void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr) -{ - /* - * Is this a new hole at the highest possible address? - */ - if (addr > mm->free_area_cache) - mm->free_area_cache = addr; - - /* dont allow allocations above current base */ - if (mm->free_area_cache > mm->mmap_base) - mm->free_area_cache = mm->mmap_base; -} - unsigned long get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) @@ -2374,7 +2354,6 @@ detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, { struct vm_area_struct **insertion_point; struct vm_area_struct *tail_vma = NULL; - unsigned long addr; insertion_point = (prev ? &prev->vm_next : &mm->mmap); vma->vm_prev = NULL; @@ -2391,11 +2370,6 @@ detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, } else mm->highest_vm_end = prev ? prev->vm_end : 0; tail_vma->vm_next = NULL; - if (mm->unmap_area == arch_unmap_area) - addr = prev ? prev->vm_end : mm->mmap_base; - else - addr = vma ? vma->vm_start : mm->mmap_base; - mm->unmap_area(mm, addr); mm->mmap_cache = NULL; /* Kill the cache. */ } diff --git a/mm/mremap.c b/mm/mremap.c index 3708655378e9..457d34ef3bf2 100644 --- a/mm/mremap.c +++ b/mm/mremap.c @@ -456,13 +456,14 @@ SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, unsigned long charged = 0; bool locked = false; - down_write(¤t->mm->mmap_sem); - if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE)) - goto out; + return ret; + + if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE)) + return ret; if (addr & ~PAGE_MASK) - goto out; + return ret; old_len = PAGE_ALIGN(old_len); new_len = PAGE_ALIGN(new_len); @@ -473,12 +474,13 @@ SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, * a zero new-len is nonsensical. */ if (!new_len) - goto out; + return ret; + + down_write(¤t->mm->mmap_sem); if (flags & MREMAP_FIXED) { - if (flags & MREMAP_MAYMOVE) - ret = mremap_to(addr, old_len, new_addr, new_len, - &locked); + ret = mremap_to(addr, old_len, new_addr, new_len, + &locked); goto out; } diff --git a/mm/nommu.c b/mm/nommu.c index e44e6e0a125c..ecd1f158548e 100644 --- a/mm/nommu.c +++ b/mm/nommu.c @@ -1871,10 +1871,6 @@ unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, return -ENOMEM; } -void arch_unmap_area(struct mm_struct *mm, unsigned long addr) -{ -} - void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows) diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 4514ad7415c3..3f0c895c71fe 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c @@ -1619,7 +1619,7 @@ void writeback_set_ratelimit(void) ratelimit_pages = 16; } -static int __cpuinit +static int ratelimit_handler(struct notifier_block *self, unsigned long action, void *hcpu) { @@ -1634,7 +1634,7 @@ ratelimit_handler(struct notifier_block *self, unsigned long action, } } -static struct notifier_block __cpuinitdata ratelimit_nb = { +static struct notifier_block ratelimit_nb = { .notifier_call = ratelimit_handler, .next = NULL, }; diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 327516b7aee9..b100255dedda 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -204,6 +204,7 @@ static char * const zone_names[MAX_NR_ZONES] = { }; int min_free_kbytes = 1024; +int user_min_free_kbytes; static unsigned long __meminitdata nr_kernel_pages; static unsigned long __meminitdata nr_all_pages; @@ -1046,7 +1047,7 @@ __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) * MIGRATE_CMA areas. */ if (!is_migrate_cma(migratetype) && - (unlikely(current_order >= pageblock_order / 2) || + (current_order >= pageblock_order / 2 || start_migratetype == MIGRATE_RECLAIMABLE || page_group_by_mobility_disabled)) { int pages; @@ -3153,12 +3154,10 @@ static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) * Add all populated zones of a node to the zonelist. */ static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, - int nr_zones, enum zone_type zone_type) + int nr_zones) { struct zone *zone; - - BUG_ON(zone_type >= MAX_NR_ZONES); - zone_type++; + enum zone_type zone_type = MAX_NR_ZONES; do { zone_type--; @@ -3168,8 +3167,8 @@ static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, &zonelist->_zonerefs[nr_zones++]); check_highest_zone(zone_type); } - } while (zone_type); + return nr_zones; } @@ -3363,8 +3362,7 @@ static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) zonelist = &pgdat->node_zonelists[0]; for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) ; - j = build_zonelists_node(NODE_DATA(node), zonelist, j, - MAX_NR_ZONES - 1); + j = build_zonelists_node(NODE_DATA(node), zonelist, j); zonelist->_zonerefs[j].zone = NULL; zonelist->_zonerefs[j].zone_idx = 0; } @@ -3378,7 +3376,7 @@ static void build_thisnode_zonelists(pg_data_t *pgdat) struct zonelist *zonelist; zonelist = &pgdat->node_zonelists[1]; - j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); + j = build_zonelists_node(pgdat, zonelist, 0); zonelist->_zonerefs[j].zone = NULL; zonelist->_zonerefs[j].zone_idx = 0; } @@ -3586,7 +3584,7 @@ static void build_zonelists(pg_data_t *pgdat) local_node = pgdat->node_id; zonelist = &pgdat->node_zonelists[0]; - j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); + j = build_zonelists_node(pgdat, zonelist, 0); /* * Now we build the zonelist so that it contains the zones @@ -3599,14 +3597,12 @@ static void build_zonelists(pg_data_t *pgdat) for (node = local_node + 1; node < MAX_NUMNODES; node++) { if (!node_online(node)) continue; - j = build_zonelists_node(NODE_DATA(node), zonelist, j, - MAX_NR_ZONES - 1); + j = build_zonelists_node(NODE_DATA(node), zonelist, j); } for (node = 0; node < local_node; node++) { if (!node_online(node)) continue; - j = build_zonelists_node(NODE_DATA(node), zonelist, j, - MAX_NR_ZONES - 1); + j = build_zonelists_node(NODE_DATA(node), zonelist, j); } zonelist->_zonerefs[j].zone = NULL; @@ -4421,13 +4417,13 @@ static void __meminit adjust_zone_range_for_zone_movable(int nid, */ static unsigned long __meminit zone_spanned_pages_in_node(int nid, unsigned long zone_type, + unsigned long node_start_pfn, + unsigned long node_end_pfn, unsigned long *ignored) { - unsigned long node_start_pfn, node_end_pfn; unsigned long zone_start_pfn, zone_end_pfn; - /* Get the start and end of the node and zone */ - get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); + /* Get the start and end of the zone */ zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; adjust_zone_range_for_zone_movable(nid, zone_type, @@ -4482,14 +4478,14 @@ unsigned long __init absent_pages_in_range(unsigned long start_pfn, /* Return the number of page frames in holes in a zone on a node */ static unsigned long __meminit zone_absent_pages_in_node(int nid, unsigned long zone_type, + unsigned long node_start_pfn, + unsigned long node_end_pfn, unsigned long *ignored) { unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; - unsigned long node_start_pfn, node_end_pfn; unsigned long zone_start_pfn, zone_end_pfn; - get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); @@ -4502,6 +4498,8 @@ static unsigned long __meminit zone_absent_pages_in_node(int nid, #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, unsigned long zone_type, + unsigned long node_start_pfn, + unsigned long node_end_pfn, unsigned long *zones_size) { return zones_size[zone_type]; @@ -4509,6 +4507,8 @@ static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, static inline unsigned long __meminit zone_absent_pages_in_node(int nid, unsigned long zone_type, + unsigned long node_start_pfn, + unsigned long node_end_pfn, unsigned long *zholes_size) { if (!zholes_size) @@ -4520,21 +4520,27 @@ static inline unsigned long __meminit zone_absent_pages_in_node(int nid, #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, - unsigned long *zones_size, unsigned long *zholes_size) + unsigned long node_start_pfn, + unsigned long node_end_pfn, + unsigned long *zones_size, + unsigned long *zholes_size) { unsigned long realtotalpages, totalpages = 0; enum zone_type i; for (i = 0; i < MAX_NR_ZONES; i++) totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, - zones_size); + node_start_pfn, + node_end_pfn, + zones_size); pgdat->node_spanned_pages = totalpages; realtotalpages = totalpages; for (i = 0; i < MAX_NR_ZONES; i++) realtotalpages -= zone_absent_pages_in_node(pgdat->node_id, i, - zholes_size); + node_start_pfn, node_end_pfn, + zholes_size); pgdat->node_present_pages = realtotalpages; printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); @@ -4643,6 +4649,7 @@ static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, * NOTE: pgdat should get zeroed by caller. */ static void __paginginit free_area_init_core(struct pglist_data *pgdat, + unsigned long node_start_pfn, unsigned long node_end_pfn, unsigned long *zones_size, unsigned long *zholes_size) { enum zone_type j; @@ -4664,8 +4671,11 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat, struct zone *zone = pgdat->node_zones + j; unsigned long size, realsize, freesize, memmap_pages; - size = zone_spanned_pages_in_node(nid, j, zones_size); + size = zone_spanned_pages_in_node(nid, j, node_start_pfn, + node_end_pfn, zones_size); realsize = freesize = size - zone_absent_pages_in_node(nid, j, + node_start_pfn, + node_end_pfn, zholes_size); /* @@ -4779,6 +4789,8 @@ void __paginginit free_area_init_node(int nid, unsigned long *zones_size, unsigned long node_start_pfn, unsigned long *zholes_size) { pg_data_t *pgdat = NODE_DATA(nid); + unsigned long start_pfn = 0; + unsigned long end_pfn = 0; /* pg_data_t should be reset to zero when it's allocated */ WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); @@ -4786,7 +4798,11 @@ void __paginginit free_area_init_node(int nid, unsigned long *zones_size, pgdat->node_id = nid; pgdat->node_start_pfn = node_start_pfn; init_zone_allows_reclaim(nid); - calculate_node_totalpages(pgdat, zones_size, zholes_size); +#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP + get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); +#endif + calculate_node_totalpages(pgdat, start_pfn, end_pfn, + zones_size, zholes_size); alloc_node_mem_map(pgdat); #ifdef CONFIG_FLAT_NODE_MEM_MAP @@ -4795,7 +4811,8 @@ void __paginginit free_area_init_node(int nid, unsigned long *zones_size, (unsigned long)pgdat->node_mem_map); #endif - free_area_init_core(pgdat, zones_size, zholes_size); + free_area_init_core(pgdat, start_pfn, end_pfn, + zones_size, zholes_size); } #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP @@ -5573,14 +5590,21 @@ static void __meminit setup_per_zone_inactive_ratio(void) int __meminit init_per_zone_wmark_min(void) { unsigned long lowmem_kbytes; + int new_min_free_kbytes; lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); - - min_free_kbytes = int_sqrt(lowmem_kbytes * 16); - if (min_free_kbytes < 128) - min_free_kbytes = 128; - if (min_free_kbytes > 65536) - min_free_kbytes = 65536; + new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); + + if (new_min_free_kbytes > user_min_free_kbytes) { + min_free_kbytes = new_min_free_kbytes; + if (min_free_kbytes < 128) + min_free_kbytes = 128; + if (min_free_kbytes > 65536) + min_free_kbytes = 65536; + } else { + pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", + new_min_free_kbytes, user_min_free_kbytes); + } setup_per_zone_wmarks(); refresh_zone_stat_thresholds(); setup_per_zone_lowmem_reserve(); @@ -5598,8 +5622,10 @@ int min_free_kbytes_sysctl_handler(ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) { proc_dointvec(table, write, buffer, length, ppos); - if (write) + if (write) { + user_min_free_kbytes = min_free_kbytes; setup_per_zone_wmarks(); + } return 0; } diff --git a/mm/rmap.c b/mm/rmap.c index e22ceeb6e5ec..cd356df4f71a 100644 --- a/mm/rmap.c +++ b/mm/rmap.c @@ -720,7 +720,7 @@ int page_referenced_one(struct page *page, struct vm_area_struct *vma, * mapping is already gone, the unmap path will have * set PG_referenced or activated the page. */ - if (likely(!VM_SequentialReadHint(vma))) + if (likely(!(vma->vm_flags & VM_SEQ_READ))) referenced++; } pte_unmap_unlock(pte, ptl); diff --git a/mm/slab.c b/mm/slab.c index 8ccd296c6d9c..2580db062df9 100644 --- a/mm/slab.c +++ b/mm/slab.c @@ -565,7 +565,7 @@ static void init_node_lock_keys(int q) if (slab_state < UP) return; - for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) { + for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) { struct kmem_cache_node *n; struct kmem_cache *cache = kmalloc_caches[i]; @@ -787,7 +787,7 @@ static void next_reap_node(void) * the CPUs getting into lockstep and contending for the global cache chain * lock. */ -static void __cpuinit start_cpu_timer(int cpu) +static void start_cpu_timer(int cpu) { struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); @@ -1180,7 +1180,13 @@ static int init_cache_node_node(int node) return 0; } -static void __cpuinit cpuup_canceled(long cpu) +static inline int slabs_tofree(struct kmem_cache *cachep, + struct kmem_cache_node *n) +{ + return (n->free_objects + cachep->num - 1) / cachep->num; +} + +static void cpuup_canceled(long cpu) { struct kmem_cache *cachep; struct kmem_cache_node *n = NULL; @@ -1241,11 +1247,11 @@ free_array_cache: n = cachep->node[node]; if (!n) continue; - drain_freelist(cachep, n, n->free_objects); + drain_freelist(cachep, n, slabs_tofree(cachep, n)); } } -static int __cpuinit cpuup_prepare(long cpu) +static int cpuup_prepare(long cpu) { struct kmem_cache *cachep; struct kmem_cache_node *n = NULL; @@ -1328,7 +1334,7 @@ bad: return -ENOMEM; } -static int __cpuinit cpuup_callback(struct notifier_block *nfb, +static int cpuup_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { long cpu = (long)hcpu; @@ -1384,7 +1390,7 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb, return notifier_from_errno(err); } -static struct notifier_block __cpuinitdata cpucache_notifier = { +static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 }; @@ -1408,7 +1414,7 @@ static int __meminit drain_cache_node_node(int node) if (!n) continue; - drain_freelist(cachep, n, n->free_objects); + drain_freelist(cachep, n, slabs_tofree(cachep, n)); if (!list_empty(&n->slabs_full) || !list_empty(&n->slabs_partial)) { @@ -2532,7 +2538,7 @@ static int __cache_shrink(struct kmem_cache *cachep) if (!n) continue; - drain_freelist(cachep, n, n->free_objects); + drain_freelist(cachep, n, slabs_tofree(cachep, n)); ret += !list_empty(&n->slabs_full) || !list_empty(&n->slabs_partial); @@ -3338,18 +3344,6 @@ done: return obj; } -/** - * kmem_cache_alloc_node - Allocate an object on the specified node - * @cachep: The cache to allocate from. - * @flags: See kmalloc(). - * @nodeid: node number of the target node. - * @caller: return address of caller, used for debug information - * - * Identical to kmem_cache_alloc but it will allocate memory on the given - * node, which can improve the performance for cpu bound structures. - * - * Fallback to other node is possible if __GFP_THISNODE is not set. - */ static __always_inline void * slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, unsigned long caller) @@ -3643,6 +3637,17 @@ EXPORT_SYMBOL(kmem_cache_alloc_trace); #endif #ifdef CONFIG_NUMA +/** + * kmem_cache_alloc_node - Allocate an object on the specified node + * @cachep: The cache to allocate from. + * @flags: See kmalloc(). + * @nodeid: node number of the target node. + * + * Identical to kmem_cache_alloc but it will allocate memory on the given + * node, which can improve the performance for cpu bound structures. + * + * Fallback to other node is possible if __GFP_THISNODE is not set. + */ void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) { void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); @@ -4431,20 +4436,10 @@ static int leaks_show(struct seq_file *m, void *p) return 0; } -static void *s_next(struct seq_file *m, void *p, loff_t *pos) -{ - return seq_list_next(p, &slab_caches, pos); -} - -static void s_stop(struct seq_file *m, void *p) -{ - mutex_unlock(&slab_mutex); -} - static const struct seq_operations slabstats_op = { .start = leaks_start, - .next = s_next, - .stop = s_stop, + .next = slab_next, + .stop = slab_stop, .show = leaks_show, }; diff --git a/mm/slab.h b/mm/slab.h index f96b49e4704e..620ceeddbe1a 100644 --- a/mm/slab.h +++ b/mm/slab.h @@ -271,3 +271,6 @@ struct kmem_cache_node { #endif }; + +void *slab_next(struct seq_file *m, void *p, loff_t *pos); +void slab_stop(struct seq_file *m, void *p); diff --git a/mm/slab_common.c b/mm/slab_common.c index 2d414508e9ec..538bade6df7d 100644 --- a/mm/slab_common.c +++ b/mm/slab_common.c @@ -497,6 +497,13 @@ void __init create_kmalloc_caches(unsigned long flags) #ifdef CONFIG_SLABINFO + +#ifdef CONFIG_SLAB +#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR) +#else +#define SLABINFO_RIGHTS S_IRUSR +#endif + void print_slabinfo_header(struct seq_file *m) { /* @@ -531,12 +538,12 @@ static void *s_start(struct seq_file *m, loff_t *pos) return seq_list_start(&slab_caches, *pos); } -static void *s_next(struct seq_file *m, void *p, loff_t *pos) +void *slab_next(struct seq_file *m, void *p, loff_t *pos) { return seq_list_next(p, &slab_caches, pos); } -static void s_stop(struct seq_file *m, void *p) +void slab_stop(struct seq_file *m, void *p) { mutex_unlock(&slab_mutex); } @@ -613,8 +620,8 @@ static int s_show(struct seq_file *m, void *p) */ static const struct seq_operations slabinfo_op = { .start = s_start, - .next = s_next, - .stop = s_stop, + .next = slab_next, + .stop = slab_stop, .show = s_show, }; @@ -633,7 +640,8 @@ static const struct file_operations proc_slabinfo_operations = { static int __init slab_proc_init(void) { - proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations); + proc_create("slabinfo", SLABINFO_RIGHTS, NULL, + &proc_slabinfo_operations); return 0; } module_init(slab_proc_init); diff --git a/mm/slob.c b/mm/slob.c index eeed4a05a2ef..91bd3f2dd2f0 100644 --- a/mm/slob.c +++ b/mm/slob.c @@ -122,7 +122,7 @@ static inline void clear_slob_page_free(struct page *sp) } #define SLOB_UNIT sizeof(slob_t) -#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) +#define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT) /* * struct slob_rcu is inserted at the tail of allocated slob blocks, which @@ -554,7 +554,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) flags, node); } - if (c->ctor) + if (b && c->ctor) c->ctor(b); kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags); diff --git a/mm/slub.c b/mm/slub.c index 57707f01bcfb..2b02d666bf63 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -123,6 +123,15 @@ static inline int kmem_cache_debug(struct kmem_cache *s) #endif } +static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) +{ +#ifdef CONFIG_SLUB_CPU_PARTIAL + return !kmem_cache_debug(s); +#else + return false; +#endif +} + /* * Issues still to be resolved: * @@ -1573,7 +1582,8 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, put_cpu_partial(s, page, 0); stat(s, CPU_PARTIAL_NODE); } - if (kmem_cache_debug(s) || available > s->cpu_partial / 2) + if (!kmem_cache_has_cpu_partial(s) + || available > s->cpu_partial / 2) break; } @@ -1884,6 +1894,7 @@ redo: static void unfreeze_partials(struct kmem_cache *s, struct kmem_cache_cpu *c) { +#ifdef CONFIG_SLUB_CPU_PARTIAL struct kmem_cache_node *n = NULL, *n2 = NULL; struct page *page, *discard_page = NULL; @@ -1938,6 +1949,7 @@ static void unfreeze_partials(struct kmem_cache *s, discard_slab(s, page); stat(s, FREE_SLAB); } +#endif } /* @@ -1951,10 +1963,14 @@ static void unfreeze_partials(struct kmem_cache *s, */ static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) { +#ifdef CONFIG_SLUB_CPU_PARTIAL struct page *oldpage; int pages; int pobjects; + if (!s->cpu_partial) + return; + do { pages = 0; pobjects = 0; @@ -1987,6 +2003,7 @@ static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) page->next = oldpage; } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); +#endif } static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) @@ -2358,7 +2375,7 @@ redo: object = c->freelist; page = c->page; - if (unlikely(!object || !node_match(page, node))) + if (unlikely(!object || !page || !node_match(page, node))) object = __slab_alloc(s, gfpflags, node, addr, c); else { @@ -2495,7 +2512,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page, new.inuse--; if ((!new.inuse || !prior) && !was_frozen) { - if (!kmem_cache_debug(s) && !prior) + if (kmem_cache_has_cpu_partial(s) && !prior) /* * Slab was on no list before and will be partially empty @@ -2550,8 +2567,9 @@ static void __slab_free(struct kmem_cache *s, struct page *page, * Objects left in the slab. If it was not on the partial list before * then add it. */ - if (kmem_cache_debug(s) && unlikely(!prior)) { - remove_full(s, page); + if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { + if (kmem_cache_debug(s)) + remove_full(s, page); add_partial(n, page, DEACTIVATE_TO_TAIL); stat(s, FREE_ADD_PARTIAL); } @@ -3059,7 +3077,7 @@ static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) * per node list when we run out of per cpu objects. We only fetch 50% * to keep some capacity around for frees. */ - if (kmem_cache_debug(s)) + if (!kmem_cache_has_cpu_partial(s)) s->cpu_partial = 0; else if (s->size >= PAGE_SIZE) s->cpu_partial = 2; @@ -3755,7 +3773,7 @@ int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) * Use the cpu notifier to insure that the cpu slabs are flushed when * necessary. */ -static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, +static int slab_cpuup_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { long cpu = (long)hcpu; @@ -3781,7 +3799,7 @@ static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, return NOTIFY_OK; } -static struct notifier_block __cpuinitdata slab_notifier = { +static struct notifier_block slab_notifier = { .notifier_call = slab_cpuup_callback }; @@ -4456,7 +4474,7 @@ static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, err = strict_strtoul(buf, 10, &objects); if (err) return err; - if (objects && kmem_cache_debug(s)) + if (objects && !kmem_cache_has_cpu_partial(s)) return -EINVAL; s->cpu_partial = objects; @@ -5269,7 +5287,6 @@ __initcall(slab_sysfs_init); #ifdef CONFIG_SLABINFO void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) { - unsigned long nr_partials = 0; unsigned long nr_slabs = 0; unsigned long nr_objs = 0; unsigned long nr_free = 0; @@ -5281,9 +5298,8 @@ void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) if (!n) continue; - nr_partials += n->nr_partial; - nr_slabs += atomic_long_read(&n->nr_slabs); - nr_objs += atomic_long_read(&n->total_objects); + nr_slabs += node_nr_slabs(n); + nr_objs += node_nr_objs(n); nr_free += count_partial(n, count_free); } diff --git a/mm/sparse.c b/mm/sparse.c index b38400f0fb8d..308d50331bc3 100644 --- a/mm/sparse.c +++ b/mm/sparse.c @@ -753,6 +753,7 @@ out: return ret; } +#ifdef CONFIG_MEMORY_HOTREMOVE #ifdef CONFIG_MEMORY_FAILURE static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) { @@ -774,7 +775,6 @@ static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) } #endif -#ifdef CONFIG_MEMORY_HOTREMOVE static void free_section_usemap(struct page *memmap, unsigned long *usemap) { struct page *usemap_page; diff --git a/mm/util.c b/mm/util.c index ab1424dbe2e6..7441c41d00f6 100644 --- a/mm/util.c +++ b/mm/util.c @@ -295,7 +295,6 @@ void arch_pick_mmap_layout(struct mm_struct *mm) { mm->mmap_base = TASK_UNMAPPED_BASE; mm->get_unmapped_area = arch_get_unmapped_area; - mm->unmap_area = arch_unmap_area; } #endif diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 91a10472a39a..13a54953a273 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -388,12 +388,12 @@ nocache: addr = ALIGN(first->va_end, align); if (addr < vstart) goto nocache; - if (addr + size - 1 < addr) + if (addr + size < addr) goto overflow; } else { addr = ALIGN(vstart, align); - if (addr + size - 1 < addr) + if (addr + size < addr) goto overflow; n = vmap_area_root.rb_node; @@ -420,7 +420,7 @@ nocache: if (addr + cached_hole_size < first->va_start) cached_hole_size = first->va_start - addr; addr = ALIGN(first->va_end, align); - if (addr + size - 1 < addr) + if (addr + size < addr) goto overflow; if (list_is_last(&first->list, &vmap_area_list)) @@ -754,7 +754,6 @@ struct vmap_block { struct vmap_area *va; struct vmap_block_queue *vbq; unsigned long free, dirty; - DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); struct list_head free_list; struct rcu_head rcu_head; @@ -820,7 +819,6 @@ static struct vmap_block *new_vmap_block(gfp_t gfp_mask) vb->va = va; vb->free = VMAP_BBMAP_BITS; vb->dirty = 0; - bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); INIT_LIST_HEAD(&vb->free_list); @@ -873,7 +871,6 @@ static void purge_fragmented_blocks(int cpu) if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { vb->free = 0; /* prevent further allocs after releasing lock */ vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ - bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS); bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); spin_lock(&vbq->lock); list_del_rcu(&vb->free_list); @@ -891,11 +888,6 @@ static void purge_fragmented_blocks(int cpu) } } -static void purge_fragmented_blocks_thiscpu(void) -{ - purge_fragmented_blocks(smp_processor_id()); -} - static void purge_fragmented_blocks_allcpus(void) { int cpu; @@ -910,7 +902,6 @@ static void *vb_alloc(unsigned long size, gfp_t gfp_mask) struct vmap_block *vb; unsigned long addr = 0; unsigned int order; - int purge = 0; BUG_ON(size & ~PAGE_MASK); BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); @@ -934,17 +925,7 @@ again: if (vb->free < 1UL << order) goto next; - i = bitmap_find_free_region(vb->alloc_map, - VMAP_BBMAP_BITS, order); - - if (i < 0) { - if (vb->free + vb->dirty == VMAP_BBMAP_BITS) { - /* fragmented and no outstanding allocations */ - BUG_ON(vb->dirty != VMAP_BBMAP_BITS); - purge = 1; - } - goto next; - } + i = VMAP_BBMAP_BITS - vb->free; addr = vb->va->va_start + (i << PAGE_SHIFT); BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(vb->va->va_start)); @@ -960,9 +941,6 @@ next: spin_unlock(&vb->lock); } - if (purge) - purge_fragmented_blocks_thiscpu(); - put_cpu_var(vmap_block_queue); rcu_read_unlock(); @@ -1311,15 +1289,15 @@ static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, spin_unlock(&vmap_area_lock); } -static void clear_vm_unlist(struct vm_struct *vm) +static void clear_vm_uninitialized_flag(struct vm_struct *vm) { /* - * Before removing VM_UNLIST, + * Before removing VM_UNINITIALIZED, * we should make sure that vm has proper values. * Pair with smp_rmb() in show_numa_info(). */ smp_wmb(); - vm->flags &= ~VM_UNLIST; + vm->flags &= ~VM_UNINITIALIZED; } static struct vm_struct *__get_vm_area_node(unsigned long size, @@ -1453,7 +1431,7 @@ static void __vunmap(const void *addr, int deallocate_pages) return; if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", - addr)); + addr)) return; area = remove_vm_area(addr); @@ -1499,7 +1477,6 @@ static void __vunmap(const void *addr, int deallocate_pages) * conventions for vfree() arch-depenedent would be a really bad idea) * * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) - * */ void vfree(const void *addr) { @@ -1511,8 +1488,8 @@ void vfree(const void *addr) return; if (unlikely(in_interrupt())) { struct vfree_deferred *p = &__get_cpu_var(vfree_deferred); - llist_add((struct llist_node *)addr, &p->list); - schedule_work(&p->wq); + if (llist_add((struct llist_node *)addr, &p->list)) + schedule_work(&p->wq); } else __vunmap(addr, 1); } @@ -1657,21 +1634,21 @@ void *__vmalloc_node_range(unsigned long size, unsigned long align, if (!size || (size >> PAGE_SHIFT) > totalram_pages) goto fail; - area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST, + area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED, start, end, node, gfp_mask, caller); if (!area) goto fail; addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); if (!addr) - return NULL; + goto fail; /* - * In this function, newly allocated vm_struct has VM_UNLIST flag. - * It means that vm_struct is not fully initialized. + * In this function, newly allocated vm_struct has VM_UNINITIALIZED + * flag. It means that vm_struct is not fully initialized. * Now, it is fully initialized, so remove this flag here. */ - clear_vm_unlist(area); + clear_vm_uninitialized_flag(area); /* * A ref_count = 3 is needed because the vm_struct and vmap_area @@ -2591,11 +2568,6 @@ static void show_numa_info(struct seq_file *m, struct vm_struct *v) if (!counters) return; - /* Pair with smp_wmb() in clear_vm_unlist() */ - smp_rmb(); - if (v->flags & VM_UNLIST) - return; - memset(counters, 0, nr_node_ids * sizeof(unsigned int)); for (nr = 0; nr < v->nr_pages; nr++) @@ -2624,6 +2596,11 @@ static int s_show(struct seq_file *m, void *p) v = va->vm; + /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ + smp_rmb(); + if (v->flags & VM_UNINITIALIZED) + return 0; + seq_printf(m, "0x%pK-0x%pK %7ld", v->addr, v->addr + v->size, v->size); diff --git a/mm/vmscan.c b/mm/vmscan.c index 99b3ac7771ad..2cff0d491c6d 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -1443,25 +1443,11 @@ shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, * as there is no guarantee the dirtying process is throttled in the * same way balance_dirty_pages() manages. * - * This scales the number of dirty pages that must be under writeback - * before a zone gets flagged ZONE_WRITEBACK. It is a simple backoff - * function that has the most effect in the range DEF_PRIORITY to - * DEF_PRIORITY-2 which is the priority reclaim is considered to be - * in trouble and reclaim is considered to be in trouble. - * - * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle - * DEF_PRIORITY-1 50% must be PageWriteback - * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble - * ... - * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any - * isolated page is PageWriteback - * * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number * of pages under pages flagged for immediate reclaim and stall if any * are encountered in the nr_immediate check below. */ - if (nr_writeback && nr_writeback >= - (nr_taken >> (DEF_PRIORITY - sc->priority))) + if (nr_writeback && nr_writeback == nr_taken) zone_set_flag(zone, ZONE_WRITEBACK); /* @@ -2361,8 +2347,10 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, aborted_reclaim = shrink_zones(zonelist, sc); /* - * Don't shrink slabs when reclaiming memory from - * over limit cgroups + * Don't shrink slabs when reclaiming memory from over limit + * cgroups but do shrink slab at least once when aborting + * reclaim for compaction to avoid unevenly scanning file/anon + * LRU pages over slab pages. */ if (global_reclaim(sc)) { unsigned long lru_pages = 0; @@ -2404,7 +2392,7 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, WB_REASON_TRY_TO_FREE_PAGES); sc->may_writepage = 1; } - } while (--sc->priority >= 0); + } while (--sc->priority >= 0 && !aborted_reclaim); out: delayacct_freepages_end(); diff --git a/mm/vmstat.c b/mm/vmstat.c index f42745e65780..20c2ef4458fa 100644 --- a/mm/vmstat.c +++ b/mm/vmstat.c @@ -1182,7 +1182,7 @@ static void vmstat_update(struct work_struct *w) round_jiffies_relative(sysctl_stat_interval)); } -static void __cpuinit start_cpu_timer(int cpu) +static void start_cpu_timer(int cpu) { struct delayed_work *work = &per_cpu(vmstat_work, cpu); @@ -1194,7 +1194,7 @@ static void __cpuinit start_cpu_timer(int cpu) * Use the cpu notifier to insure that the thresholds are recalculated * when necessary. */ -static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb, +static int vmstat_cpuup_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { @@ -1226,7 +1226,7 @@ static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb, return NOTIFY_OK; } -static struct notifier_block __cpuinitdata vmstat_notifier = +static struct notifier_block vmstat_notifier = { &vmstat_cpuup_callback, NULL, 0 }; #endif diff --git a/mm/zbud.c b/mm/zbud.c new file mode 100644 index 000000000000..9bb4710e3589 --- /dev/null +++ b/mm/zbud.c @@ -0,0 +1,527 @@ +/* + * zbud.c + * + * Copyright (C) 2013, Seth Jennings, IBM + * + * Concepts based on zcache internal zbud allocator by Dan Magenheimer. + * + * zbud is an special purpose allocator for storing compressed pages. Contrary + * to what its name may suggest, zbud is not a buddy allocator, but rather an + * allocator that "buddies" two compressed pages together in a single memory + * page. + * + * While this design limits storage density, it has simple and deterministic + * reclaim properties that make it preferable to a higher density approach when + * reclaim will be used. + * + * zbud works by storing compressed pages, or "zpages", together in pairs in a + * single memory page called a "zbud page". The first buddy is "left + * justifed" at the beginning of the zbud page, and the last buddy is "right + * justified" at the end of the zbud page. The benefit is that if either + * buddy is freed, the freed buddy space, coalesced with whatever slack space + * that existed between the buddies, results in the largest possible free region + * within the zbud page. + * + * zbud also provides an attractive lower bound on density. The ratio of zpages + * to zbud pages can not be less than 1. This ensures that zbud can never "do + * harm" by using more pages to store zpages than the uncompressed zpages would + * have used on their own. + * + * zbud pages are divided into "chunks". The size of the chunks is fixed at + * compile time and determined by NCHUNKS_ORDER below. Dividing zbud pages + * into chunks allows organizing unbuddied zbud pages into a manageable number + * of unbuddied lists according to the number of free chunks available in the + * zbud page. + * + * The zbud API differs from that of conventional allocators in that the + * allocation function, zbud_alloc(), returns an opaque handle to the user, + * not a dereferenceable pointer. The user must map the handle using + * zbud_map() in order to get a usable pointer by which to access the + * allocation data and unmap the handle with zbud_unmap() when operations + * on the allocation data are complete. + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/atomic.h> +#include <linux/list.h> +#include <linux/mm.h> +#include <linux/module.h> +#include <linux/preempt.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include <linux/zbud.h> + +/***************** + * Structures +*****************/ +/* + * NCHUNKS_ORDER determines the internal allocation granularity, effectively + * adjusting internal fragmentation. It also determines the number of + * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the + * allocation granularity will be in chunks of size PAGE_SIZE/64, and there + * will be 64 freelists per pool. + */ +#define NCHUNKS_ORDER 6 + +#define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER) +#define CHUNK_SIZE (1 << CHUNK_SHIFT) +#define NCHUNKS (PAGE_SIZE >> CHUNK_SHIFT) +#define ZHDR_SIZE_ALIGNED CHUNK_SIZE + +/** + * struct zbud_pool - stores metadata for each zbud pool + * @lock: protects all pool fields and first|last_chunk fields of any + * zbud page in the pool + * @unbuddied: array of lists tracking zbud pages that only contain one buddy; + * the lists each zbud page is added to depends on the size of + * its free region. + * @buddied: list tracking the zbud pages that contain two buddies; + * these zbud pages are full + * @lru: list tracking the zbud pages in LRU order by most recently + * added buddy. + * @pages_nr: number of zbud pages in the pool. + * @ops: pointer to a structure of user defined operations specified at + * pool creation time. + * + * This structure is allocated at pool creation time and maintains metadata + * pertaining to a particular zbud pool. + */ +struct zbud_pool { + spinlock_t lock; + struct list_head unbuddied[NCHUNKS]; + struct list_head buddied; + struct list_head lru; + u64 pages_nr; + struct zbud_ops *ops; +}; + +/* + * struct zbud_header - zbud page metadata occupying the first chunk of each + * zbud page. + * @buddy: links the zbud page into the unbuddied/buddied lists in the pool + * @lru: links the zbud page into the lru list in the pool + * @first_chunks: the size of the first buddy in chunks, 0 if free + * @last_chunks: the size of the last buddy in chunks, 0 if free + */ +struct zbud_header { + struct list_head buddy; + struct list_head lru; + unsigned int first_chunks; + unsigned int last_chunks; + bool under_reclaim; +}; + +/***************** + * Helpers +*****************/ +/* Just to make the code easier to read */ +enum buddy { + FIRST, + LAST +}; + +/* Converts an allocation size in bytes to size in zbud chunks */ +static int size_to_chunks(int size) +{ + return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT; +} + +#define for_each_unbuddied_list(_iter, _begin) \ + for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++) + +/* Initializes the zbud header of a newly allocated zbud page */ +static struct zbud_header *init_zbud_page(struct page *page) +{ + struct zbud_header *zhdr = page_address(page); + zhdr->first_chunks = 0; + zhdr->last_chunks = 0; + INIT_LIST_HEAD(&zhdr->buddy); + INIT_LIST_HEAD(&zhdr->lru); + zhdr->under_reclaim = 0; + return zhdr; +} + +/* Resets the struct page fields and frees the page */ +static void free_zbud_page(struct zbud_header *zhdr) +{ + __free_page(virt_to_page(zhdr)); +} + +/* + * Encodes the handle of a particular buddy within a zbud page + * Pool lock should be held as this function accesses first|last_chunks + */ +static unsigned long encode_handle(struct zbud_header *zhdr, enum buddy bud) +{ + unsigned long handle; + + /* + * For now, the encoded handle is actually just the pointer to the data + * but this might not always be the case. A little information hiding. + * Add CHUNK_SIZE to the handle if it is the first allocation to jump + * over the zbud header in the first chunk. + */ + handle = (unsigned long)zhdr; + if (bud == FIRST) + /* skip over zbud header */ + handle += ZHDR_SIZE_ALIGNED; + else /* bud == LAST */ + handle += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT); + return handle; +} + +/* Returns the zbud page where a given handle is stored */ +static struct zbud_header *handle_to_zbud_header(unsigned long handle) +{ + return (struct zbud_header *)(handle & PAGE_MASK); +} + +/* Returns the number of free chunks in a zbud page */ +static int num_free_chunks(struct zbud_header *zhdr) +{ + /* + * Rather than branch for different situations, just use the fact that + * free buddies have a length of zero to simplify everything. -1 at the + * end for the zbud header. + */ + return NCHUNKS - zhdr->first_chunks - zhdr->last_chunks - 1; +} + +/***************** + * API Functions +*****************/ +/** + * zbud_create_pool() - create a new zbud pool + * @gfp: gfp flags when allocating the zbud pool structure + * @ops: user-defined operations for the zbud pool + * + * Return: pointer to the new zbud pool or NULL if the metadata allocation + * failed. + */ +struct zbud_pool *zbud_create_pool(gfp_t gfp, struct zbud_ops *ops) +{ + struct zbud_pool *pool; + int i; + + pool = kmalloc(sizeof(struct zbud_pool), gfp); + if (!pool) + return NULL; + spin_lock_init(&pool->lock); + for_each_unbuddied_list(i, 0) + INIT_LIST_HEAD(&pool->unbuddied[i]); + INIT_LIST_HEAD(&pool->buddied); + INIT_LIST_HEAD(&pool->lru); + pool->pages_nr = 0; + pool->ops = ops; + return pool; +} + +/** + * zbud_destroy_pool() - destroys an existing zbud pool + * @pool: the zbud pool to be destroyed + * + * The pool should be emptied before this function is called. + */ +void zbud_destroy_pool(struct zbud_pool *pool) +{ + kfree(pool); +} + +/** + * zbud_alloc() - allocates a region of a given size + * @pool: zbud pool from which to allocate + * @size: size in bytes of the desired allocation + * @gfp: gfp flags used if the pool needs to grow + * @handle: handle of the new allocation + * + * This function will attempt to find a free region in the pool large enough to + * satisfy the allocation request. A search of the unbuddied lists is + * performed first. If no suitable free region is found, then a new page is + * allocated and added to the pool to satisfy the request. + * + * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used + * as zbud pool pages. + * + * Return: 0 if success and handle is set, otherwise -EINVAL is the size or + * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate + * a new page. + */ +int zbud_alloc(struct zbud_pool *pool, int size, gfp_t gfp, + unsigned long *handle) +{ + int chunks, i, freechunks; + struct zbud_header *zhdr = NULL; + enum buddy bud; + struct page *page; + + if (size <= 0 || gfp & __GFP_HIGHMEM) + return -EINVAL; + if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED) + return -ENOSPC; + chunks = size_to_chunks(size); + spin_lock(&pool->lock); + + /* First, try to find an unbuddied zbud page. */ + zhdr = NULL; + for_each_unbuddied_list(i, chunks) { + if (!list_empty(&pool->unbuddied[i])) { + zhdr = list_first_entry(&pool->unbuddied[i], + struct zbud_header, buddy); + list_del(&zhdr->buddy); + if (zhdr->first_chunks == 0) + bud = FIRST; + else + bud = LAST; + goto found; + } + } + + /* Couldn't find unbuddied zbud page, create new one */ + spin_unlock(&pool->lock); + page = alloc_page(gfp); + if (!page) + return -ENOMEM; + spin_lock(&pool->lock); + pool->pages_nr++; + zhdr = init_zbud_page(page); + bud = FIRST; + +found: + if (bud == FIRST) + zhdr->first_chunks = chunks; + else + zhdr->last_chunks = chunks; + + if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0) { + /* Add to unbuddied list */ + freechunks = num_free_chunks(zhdr); + list_add(&zhdr->buddy, &pool->unbuddied[freechunks]); + } else { + /* Add to buddied list */ + list_add(&zhdr->buddy, &pool->buddied); + } + + /* Add/move zbud page to beginning of LRU */ + if (!list_empty(&zhdr->lru)) + list_del(&zhdr->lru); + list_add(&zhdr->lru, &pool->lru); + + *handle = encode_handle(zhdr, bud); + spin_unlock(&pool->lock); + + return 0; +} + +/** + * zbud_free() - frees the allocation associated with the given handle + * @pool: pool in which the allocation resided + * @handle: handle associated with the allocation returned by zbud_alloc() + * + * In the case that the zbud page in which the allocation resides is under + * reclaim, as indicated by the PG_reclaim flag being set, this function + * only sets the first|last_chunks to 0. The page is actually freed + * once both buddies are evicted (see zbud_reclaim_page() below). + */ +void zbud_free(struct zbud_pool *pool, unsigned long handle) +{ + struct zbud_header *zhdr; + int freechunks; + + spin_lock(&pool->lock); + zhdr = handle_to_zbud_header(handle); + + /* If first buddy, handle will be page aligned */ + if ((handle - ZHDR_SIZE_ALIGNED) & ~PAGE_MASK) + zhdr->last_chunks = 0; + else + zhdr->first_chunks = 0; + + if (zhdr->under_reclaim) { + /* zbud page is under reclaim, reclaim will free */ + spin_unlock(&pool->lock); + return; + } + + /* Remove from existing buddy list */ + list_del(&zhdr->buddy); + + if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { + /* zbud page is empty, free */ + list_del(&zhdr->lru); + free_zbud_page(zhdr); + pool->pages_nr--; + } else { + /* Add to unbuddied list */ + freechunks = num_free_chunks(zhdr); + list_add(&zhdr->buddy, &pool->unbuddied[freechunks]); + } + + spin_unlock(&pool->lock); +} + +#define list_tail_entry(ptr, type, member) \ + list_entry((ptr)->prev, type, member) + +/** + * zbud_reclaim_page() - evicts allocations from a pool page and frees it + * @pool: pool from which a page will attempt to be evicted + * @retires: number of pages on the LRU list for which eviction will + * be attempted before failing + * + * zbud reclaim is different from normal system reclaim in that the reclaim is + * done from the bottom, up. This is because only the bottom layer, zbud, has + * information on how the allocations are organized within each zbud page. This + * has the potential to create interesting locking situations between zbud and + * the user, however. + * + * To avoid these, this is how zbud_reclaim_page() should be called: + + * The user detects a page should be reclaimed and calls zbud_reclaim_page(). + * zbud_reclaim_page() will remove a zbud page from the pool LRU list and call + * the user-defined eviction handler with the pool and handle as arguments. + * + * If the handle can not be evicted, the eviction handler should return + * non-zero. zbud_reclaim_page() will add the zbud page back to the + * appropriate list and try the next zbud page on the LRU up to + * a user defined number of retries. + * + * If the handle is successfully evicted, the eviction handler should + * return 0 _and_ should have called zbud_free() on the handle. zbud_free() + * contains logic to delay freeing the page if the page is under reclaim, + * as indicated by the setting of the PG_reclaim flag on the underlying page. + * + * If all buddies in the zbud page are successfully evicted, then the + * zbud page can be freed. + * + * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are + * no pages to evict or an eviction handler is not registered, -EAGAIN if + * the retry limit was hit. + */ +int zbud_reclaim_page(struct zbud_pool *pool, unsigned int retries) +{ + int i, ret, freechunks; + struct zbud_header *zhdr; + unsigned long first_handle = 0, last_handle = 0; + + spin_lock(&pool->lock); + if (!pool->ops || !pool->ops->evict || list_empty(&pool->lru) || + retries == 0) { + spin_unlock(&pool->lock); + return -EINVAL; + } + for (i = 0; i < retries; i++) { + zhdr = list_tail_entry(&pool->lru, struct zbud_header, lru); + list_del(&zhdr->lru); + list_del(&zhdr->buddy); + /* Protect zbud page against free */ + zhdr->under_reclaim = true; + /* + * We need encode the handles before unlocking, since we can + * race with free that will set (first|last)_chunks to 0 + */ + first_handle = 0; + last_handle = 0; + if (zhdr->first_chunks) + first_handle = encode_handle(zhdr, FIRST); + if (zhdr->last_chunks) + last_handle = encode_handle(zhdr, LAST); + spin_unlock(&pool->lock); + + /* Issue the eviction callback(s) */ + if (first_handle) { + ret = pool->ops->evict(pool, first_handle); + if (ret) + goto next; + } + if (last_handle) { + ret = pool->ops->evict(pool, last_handle); + if (ret) + goto next; + } +next: + spin_lock(&pool->lock); + zhdr->under_reclaim = false; + if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) { + /* + * Both buddies are now free, free the zbud page and + * return success. + */ + free_zbud_page(zhdr); + pool->pages_nr--; + spin_unlock(&pool->lock); + return 0; + } else if (zhdr->first_chunks == 0 || + zhdr->last_chunks == 0) { + /* add to unbuddied list */ + freechunks = num_free_chunks(zhdr); + list_add(&zhdr->buddy, &pool->unbuddied[freechunks]); + } else { + /* add to buddied list */ + list_add(&zhdr->buddy, &pool->buddied); + } + + /* add to beginning of LRU */ + list_add(&zhdr->lru, &pool->lru); + } + spin_unlock(&pool->lock); + return -EAGAIN; +} + +/** + * zbud_map() - maps the allocation associated with the given handle + * @pool: pool in which the allocation resides + * @handle: handle associated with the allocation to be mapped + * + * While trivial for zbud, the mapping functions for others allocators + * implementing this allocation API could have more complex information encoded + * in the handle and could create temporary mappings to make the data + * accessible to the user. + * + * Returns: a pointer to the mapped allocation + */ +void *zbud_map(struct zbud_pool *pool, unsigned long handle) +{ + return (void *)(handle); +} + +/** + * zbud_unmap() - maps the allocation associated with the given handle + * @pool: pool in which the allocation resides + * @handle: handle associated with the allocation to be unmapped + */ +void zbud_unmap(struct zbud_pool *pool, unsigned long handle) +{ +} + +/** + * zbud_get_pool_size() - gets the zbud pool size in pages + * @pool: pool whose size is being queried + * + * Returns: size in pages of the given pool. The pool lock need not be + * taken to access pages_nr. + */ +u64 zbud_get_pool_size(struct zbud_pool *pool) +{ + return pool->pages_nr; +} + +static int __init init_zbud(void) +{ + /* Make sure the zbud header will fit in one chunk */ + BUILD_BUG_ON(sizeof(struct zbud_header) > ZHDR_SIZE_ALIGNED); + pr_info("loaded\n"); + return 0; +} + +static void __exit exit_zbud(void) +{ + pr_info("unloaded\n"); +} + +module_init(init_zbud); +module_exit(exit_zbud); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>"); +MODULE_DESCRIPTION("Buddy Allocator for Compressed Pages"); diff --git a/mm/zswap.c b/mm/zswap.c new file mode 100644 index 000000000000..deda2b671e12 --- /dev/null +++ b/mm/zswap.c @@ -0,0 +1,943 @@ +/* + * zswap.c - zswap driver file + * + * zswap is a backend for frontswap that takes pages that are in the process + * of being swapped out and attempts to compress and store them in a + * RAM-based memory pool. This can result in a significant I/O reduction on + * the swap device and, in the case where decompressing from RAM is faster + * than reading from the swap device, can also improve workload performance. + * + * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. +*/ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/module.h> +#include <linux/cpu.h> +#include <linux/highmem.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include <linux/types.h> +#include <linux/atomic.h> +#include <linux/frontswap.h> +#include <linux/rbtree.h> +#include <linux/swap.h> +#include <linux/crypto.h> +#include <linux/mempool.h> +#include <linux/zbud.h> + +#include <linux/mm_types.h> +#include <linux/page-flags.h> +#include <linux/swapops.h> +#include <linux/writeback.h> +#include <linux/pagemap.h> + +/********************************* +* statistics +**********************************/ +/* Number of memory pages used by the compressed pool */ +static u64 zswap_pool_pages; +/* The number of compressed pages currently stored in zswap */ +static atomic_t zswap_stored_pages = ATOMIC_INIT(0); + +/* + * The statistics below are not protected from concurrent access for + * performance reasons so they may not be a 100% accurate. However, + * they do provide useful information on roughly how many times a + * certain event is occurring. +*/ + +/* Pool limit was hit (see zswap_max_pool_percent) */ +static u64 zswap_pool_limit_hit; +/* Pages written back when pool limit was reached */ +static u64 zswap_written_back_pages; +/* Store failed due to a reclaim failure after pool limit was reached */ +static u64 zswap_reject_reclaim_fail; +/* Compressed page was too big for the allocator to (optimally) store */ +static u64 zswap_reject_compress_poor; +/* Store failed because underlying allocator could not get memory */ +static u64 zswap_reject_alloc_fail; +/* Store failed because the entry metadata could not be allocated (rare) */ +static u64 zswap_reject_kmemcache_fail; +/* Duplicate store was encountered (rare) */ +static u64 zswap_duplicate_entry; + +/********************************* +* tunables +**********************************/ +/* Enable/disable zswap (disabled by default, fixed at boot for now) */ +static bool zswap_enabled __read_mostly; +module_param_named(enabled, zswap_enabled, bool, 0); + +/* Compressor to be used by zswap (fixed at boot for now) */ +#define ZSWAP_COMPRESSOR_DEFAULT "lzo" +static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; +module_param_named(compressor, zswap_compressor, charp, 0); + +/* The maximum percentage of memory that the compressed pool can occupy */ +static unsigned int zswap_max_pool_percent = 20; +module_param_named(max_pool_percent, + zswap_max_pool_percent, uint, 0644); + +/********************************* +* compression functions +**********************************/ +/* per-cpu compression transforms */ +static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms; + +enum comp_op { + ZSWAP_COMPOP_COMPRESS, + ZSWAP_COMPOP_DECOMPRESS +}; + +static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen, + u8 *dst, unsigned int *dlen) +{ + struct crypto_comp *tfm; + int ret; + + tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu()); + switch (op) { + case ZSWAP_COMPOP_COMPRESS: + ret = crypto_comp_compress(tfm, src, slen, dst, dlen); + break; + case ZSWAP_COMPOP_DECOMPRESS: + ret = crypto_comp_decompress(tfm, src, slen, dst, dlen); + break; + default: + ret = -EINVAL; + } + + put_cpu(); + return ret; +} + +static int __init zswap_comp_init(void) +{ + if (!crypto_has_comp(zswap_compressor, 0, 0)) { + pr_info("%s compressor not available\n", zswap_compressor); + /* fall back to default compressor */ + zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; + if (!crypto_has_comp(zswap_compressor, 0, 0)) + /* can't even load the default compressor */ + return -ENODEV; + } + pr_info("using %s compressor\n", zswap_compressor); + + /* alloc percpu transforms */ + zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *); + if (!zswap_comp_pcpu_tfms) + return -ENOMEM; + return 0; +} + +static void zswap_comp_exit(void) +{ + /* free percpu transforms */ + if (zswap_comp_pcpu_tfms) + free_percpu(zswap_comp_pcpu_tfms); +} + +/********************************* +* data structures +**********************************/ +/* + * struct zswap_entry + * + * This structure contains the metadata for tracking a single compressed + * page within zswap. + * + * rbnode - links the entry into red-black tree for the appropriate swap type + * refcount - the number of outstanding reference to the entry. This is needed + * to protect against premature freeing of the entry by code + * concurent calls to load, invalidate, and writeback. The lock + * for the zswap_tree structure that contains the entry must + * be held while changing the refcount. Since the lock must + * be held, there is no reason to also make refcount atomic. + * offset - the swap offset for the entry. Index into the red-black tree. + * handle - zsmalloc allocation handle that stores the compressed page data + * length - the length in bytes of the compressed page data. Needed during + * decompression + */ +struct zswap_entry { + struct rb_node rbnode; + pgoff_t offset; + int refcount; + unsigned int length; + unsigned long handle; +}; + +struct zswap_header { + swp_entry_t swpentry; +}; + +/* + * The tree lock in the zswap_tree struct protects a few things: + * - the rbtree + * - the refcount field of each entry in the tree + */ +struct zswap_tree { + struct rb_root rbroot; + spinlock_t lock; + struct zbud_pool *pool; +}; + +static struct zswap_tree *zswap_trees[MAX_SWAPFILES]; + +/********************************* +* zswap entry functions +**********************************/ +static struct kmem_cache *zswap_entry_cache; + +static int zswap_entry_cache_create(void) +{ + zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); + return (zswap_entry_cache == NULL); +} + +static void zswap_entry_cache_destory(void) +{ + kmem_cache_destroy(zswap_entry_cache); +} + +static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp) +{ + struct zswap_entry *entry; + entry = kmem_cache_alloc(zswap_entry_cache, gfp); + if (!entry) + return NULL; + entry->refcount = 1; + return entry; +} + +static void zswap_entry_cache_free(struct zswap_entry *entry) +{ + kmem_cache_free(zswap_entry_cache, entry); +} + +/* caller must hold the tree lock */ +static void zswap_entry_get(struct zswap_entry *entry) +{ + entry->refcount++; +} + +/* caller must hold the tree lock */ +static int zswap_entry_put(struct zswap_entry *entry) +{ + entry->refcount--; + return entry->refcount; +} + +/********************************* +* rbtree functions +**********************************/ +static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset) +{ + struct rb_node *node = root->rb_node; + struct zswap_entry *entry; + + while (node) { + entry = rb_entry(node, struct zswap_entry, rbnode); + if (entry->offset > offset) + node = node->rb_left; + else if (entry->offset < offset) + node = node->rb_right; + else + return entry; + } + return NULL; +} + +/* + * In the case that a entry with the same offset is found, a pointer to + * the existing entry is stored in dupentry and the function returns -EEXIST + */ +static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry, + struct zswap_entry **dupentry) +{ + struct rb_node **link = &root->rb_node, *parent = NULL; + struct zswap_entry *myentry; + + while (*link) { + parent = *link; + myentry = rb_entry(parent, struct zswap_entry, rbnode); + if (myentry->offset > entry->offset) + link = &(*link)->rb_left; + else if (myentry->offset < entry->offset) + link = &(*link)->rb_right; + else { + *dupentry = myentry; + return -EEXIST; + } + } + rb_link_node(&entry->rbnode, parent, link); + rb_insert_color(&entry->rbnode, root); + return 0; +} + +/********************************* +* per-cpu code +**********************************/ +static DEFINE_PER_CPU(u8 *, zswap_dstmem); + +static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu) +{ + struct crypto_comp *tfm; + u8 *dst; + + switch (action) { + case CPU_UP_PREPARE: + tfm = crypto_alloc_comp(zswap_compressor, 0, 0); + if (IS_ERR(tfm)) { + pr_err("can't allocate compressor transform\n"); + return NOTIFY_BAD; + } + *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm; + dst = kmalloc(PAGE_SIZE * 2, GFP_KERNEL); + if (!dst) { + pr_err("can't allocate compressor buffer\n"); + crypto_free_comp(tfm); + *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL; + return NOTIFY_BAD; + } + per_cpu(zswap_dstmem, cpu) = dst; + break; + case CPU_DEAD: + case CPU_UP_CANCELED: + tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu); + if (tfm) { + crypto_free_comp(tfm); + *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL; + } + dst = per_cpu(zswap_dstmem, cpu); + kfree(dst); + per_cpu(zswap_dstmem, cpu) = NULL; + break; + default: + break; + } + return NOTIFY_OK; +} + +static int zswap_cpu_notifier(struct notifier_block *nb, + unsigned long action, void *pcpu) +{ + unsigned long cpu = (unsigned long)pcpu; + return __zswap_cpu_notifier(action, cpu); +} + +static struct notifier_block zswap_cpu_notifier_block = { + .notifier_call = zswap_cpu_notifier +}; + +static int zswap_cpu_init(void) +{ + unsigned long cpu; + + get_online_cpus(); + for_each_online_cpu(cpu) + if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK) + goto cleanup; + register_cpu_notifier(&zswap_cpu_notifier_block); + put_online_cpus(); + return 0; + +cleanup: + for_each_online_cpu(cpu) + __zswap_cpu_notifier(CPU_UP_CANCELED, cpu); + put_online_cpus(); + return -ENOMEM; +} + +/********************************* +* helpers +**********************************/ +static bool zswap_is_full(void) +{ + return (totalram_pages * zswap_max_pool_percent / 100 < + zswap_pool_pages); +} + +/* + * Carries out the common pattern of freeing and entry's zsmalloc allocation, + * freeing the entry itself, and decrementing the number of stored pages. + */ +static void zswap_free_entry(struct zswap_tree *tree, struct zswap_entry *entry) +{ + zbud_free(tree->pool, entry->handle); + zswap_entry_cache_free(entry); + atomic_dec(&zswap_stored_pages); + zswap_pool_pages = zbud_get_pool_size(tree->pool); +} + +/********************************* +* writeback code +**********************************/ +/* return enum for zswap_get_swap_cache_page */ +enum zswap_get_swap_ret { + ZSWAP_SWAPCACHE_NEW, + ZSWAP_SWAPCACHE_EXIST, + ZSWAP_SWAPCACHE_NOMEM +}; + +/* + * zswap_get_swap_cache_page + * + * This is an adaption of read_swap_cache_async() + * + * This function tries to find a page with the given swap entry + * in the swapper_space address space (the swap cache). If the page + * is found, it is returned in retpage. Otherwise, a page is allocated, + * added to the swap cache, and returned in retpage. + * + * If success, the swap cache page is returned in retpage + * Returns 0 if page was already in the swap cache, page is not locked + * Returns 1 if the new page needs to be populated, page is locked + * Returns <0 on error + */ +static int zswap_get_swap_cache_page(swp_entry_t entry, + struct page **retpage) +{ + struct page *found_page, *new_page = NULL; + struct address_space *swapper_space = &swapper_spaces[swp_type(entry)]; + int err; + + *retpage = NULL; + do { + /* + * First check the swap cache. Since this is normally + * called after lookup_swap_cache() failed, re-calling + * that would confuse statistics. + */ + found_page = find_get_page(swapper_space, entry.val); + if (found_page) + break; + + /* + * Get a new page to read into from swap. + */ + if (!new_page) { + new_page = alloc_page(GFP_KERNEL); + if (!new_page) + break; /* Out of memory */ + } + + /* + * call radix_tree_preload() while we can wait. + */ + err = radix_tree_preload(GFP_KERNEL); + if (err) + break; + + /* + * Swap entry may have been freed since our caller observed it. + */ + err = swapcache_prepare(entry); + if (err == -EEXIST) { /* seems racy */ + radix_tree_preload_end(); + continue; + } + if (err) { /* swp entry is obsolete ? */ + radix_tree_preload_end(); + break; + } + + /* May fail (-ENOMEM) if radix-tree node allocation failed. */ + __set_page_locked(new_page); + SetPageSwapBacked(new_page); + err = __add_to_swap_cache(new_page, entry); + if (likely(!err)) { + radix_tree_preload_end(); + lru_cache_add_anon(new_page); + *retpage = new_page; + return ZSWAP_SWAPCACHE_NEW; + } + radix_tree_preload_end(); + ClearPageSwapBacked(new_page); + __clear_page_locked(new_page); + /* + * add_to_swap_cache() doesn't return -EEXIST, so we can safely + * clear SWAP_HAS_CACHE flag. + */ + swapcache_free(entry, NULL); + } while (err != -ENOMEM); + + if (new_page) + page_cache_release(new_page); + if (!found_page) + return ZSWAP_SWAPCACHE_NOMEM; + *retpage = found_page; + return ZSWAP_SWAPCACHE_EXIST; +} + +/* + * Attempts to free an entry by adding a page to the swap cache, + * decompressing the entry data into the page, and issuing a + * bio write to write the page back to the swap device. + * + * This can be thought of as a "resumed writeback" of the page + * to the swap device. We are basically resuming the same swap + * writeback path that was intercepted with the frontswap_store() + * in the first place. After the page has been decompressed into + * the swap cache, the compressed version stored by zswap can be + * freed. + */ +static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle) +{ + struct zswap_header *zhdr; + swp_entry_t swpentry; + struct zswap_tree *tree; + pgoff_t offset; + struct zswap_entry *entry; + struct page *page; + u8 *src, *dst; + unsigned int dlen; + int ret, refcount; + struct writeback_control wbc = { + .sync_mode = WB_SYNC_NONE, + }; + + /* extract swpentry from data */ + zhdr = zbud_map(pool, handle); + swpentry = zhdr->swpentry; /* here */ + zbud_unmap(pool, handle); + tree = zswap_trees[swp_type(swpentry)]; + offset = swp_offset(swpentry); + BUG_ON(pool != tree->pool); + + /* find and ref zswap entry */ + spin_lock(&tree->lock); + entry = zswap_rb_search(&tree->rbroot, offset); + if (!entry) { + /* entry was invalidated */ + spin_unlock(&tree->lock); + return 0; + } + zswap_entry_get(entry); + spin_unlock(&tree->lock); + BUG_ON(offset != entry->offset); + + /* try to allocate swap cache page */ + switch (zswap_get_swap_cache_page(swpentry, &page)) { + case ZSWAP_SWAPCACHE_NOMEM: /* no memory */ + ret = -ENOMEM; + goto fail; + + case ZSWAP_SWAPCACHE_EXIST: /* page is unlocked */ + /* page is already in the swap cache, ignore for now */ + page_cache_release(page); + ret = -EEXIST; + goto fail; + + case ZSWAP_SWAPCACHE_NEW: /* page is locked */ + /* decompress */ + dlen = PAGE_SIZE; + src = (u8 *)zbud_map(tree->pool, entry->handle) + + sizeof(struct zswap_header); + dst = kmap_atomic(page); + ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, + entry->length, dst, &dlen); + kunmap_atomic(dst); + zbud_unmap(tree->pool, entry->handle); + BUG_ON(ret); + BUG_ON(dlen != PAGE_SIZE); + + /* page is up to date */ + SetPageUptodate(page); + } + + /* start writeback */ + __swap_writepage(page, &wbc, end_swap_bio_write); + page_cache_release(page); + zswap_written_back_pages++; + + spin_lock(&tree->lock); + + /* drop local reference */ + zswap_entry_put(entry); + /* drop the initial reference from entry creation */ + refcount = zswap_entry_put(entry); + + /* + * There are three possible values for refcount here: + * (1) refcount is 1, load is in progress, unlink from rbtree, + * load will free + * (2) refcount is 0, (normal case) entry is valid, + * remove from rbtree and free entry + * (3) refcount is -1, invalidate happened during writeback, + * free entry + */ + if (refcount >= 0) { + /* no invalidate yet, remove from rbtree */ + rb_erase(&entry->rbnode, &tree->rbroot); + } + spin_unlock(&tree->lock); + if (refcount <= 0) { + /* free the entry */ + zswap_free_entry(tree, entry); + return 0; + } + return -EAGAIN; + +fail: + spin_lock(&tree->lock); + zswap_entry_put(entry); + spin_unlock(&tree->lock); + return ret; +} + +/********************************* +* frontswap hooks +**********************************/ +/* attempts to compress and store an single page */ +static int zswap_frontswap_store(unsigned type, pgoff_t offset, + struct page *page) +{ + struct zswap_tree *tree = zswap_trees[type]; + struct zswap_entry *entry, *dupentry; + int ret; + unsigned int dlen = PAGE_SIZE, len; + unsigned long handle; + char *buf; + u8 *src, *dst; + struct zswap_header *zhdr; + + if (!tree) { + ret = -ENODEV; + goto reject; + } + + /* reclaim space if needed */ + if (zswap_is_full()) { + zswap_pool_limit_hit++; + if (zbud_reclaim_page(tree->pool, 8)) { + zswap_reject_reclaim_fail++; + ret = -ENOMEM; + goto reject; + } + } + + /* allocate entry */ + entry = zswap_entry_cache_alloc(GFP_KERNEL); + if (!entry) { + zswap_reject_kmemcache_fail++; + ret = -ENOMEM; + goto reject; + } + + /* compress */ + dst = get_cpu_var(zswap_dstmem); + src = kmap_atomic(page); + ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen); + kunmap_atomic(src); + if (ret) { + ret = -EINVAL; + goto freepage; + } + + /* store */ + len = dlen + sizeof(struct zswap_header); + ret = zbud_alloc(tree->pool, len, __GFP_NORETRY | __GFP_NOWARN, + &handle); + if (ret == -ENOSPC) { + zswap_reject_compress_poor++; + goto freepage; + } + if (ret) { + zswap_reject_alloc_fail++; + goto freepage; + } + zhdr = zbud_map(tree->pool, handle); + zhdr->swpentry = swp_entry(type, offset); + buf = (u8 *)(zhdr + 1); + memcpy(buf, dst, dlen); + zbud_unmap(tree->pool, handle); + put_cpu_var(zswap_dstmem); + + /* populate entry */ + entry->offset = offset; + entry->handle = handle; + entry->length = dlen; + + /* map */ + spin_lock(&tree->lock); + do { + ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry); + if (ret == -EEXIST) { + zswap_duplicate_entry++; + /* remove from rbtree */ + rb_erase(&dupentry->rbnode, &tree->rbroot); + if (!zswap_entry_put(dupentry)) { + /* free */ + zswap_free_entry(tree, dupentry); + } + } + } while (ret == -EEXIST); + spin_unlock(&tree->lock); + + /* update stats */ + atomic_inc(&zswap_stored_pages); + zswap_pool_pages = zbud_get_pool_size(tree->pool); + + return 0; + +freepage: + put_cpu_var(zswap_dstmem); + zswap_entry_cache_free(entry); +reject: + return ret; +} + +/* + * returns 0 if the page was successfully decompressed + * return -1 on entry not found or error +*/ +static int zswap_frontswap_load(unsigned type, pgoff_t offset, + struct page *page) +{ + struct zswap_tree *tree = zswap_trees[type]; + struct zswap_entry *entry; + u8 *src, *dst; + unsigned int dlen; + int refcount, ret; + + /* find */ + spin_lock(&tree->lock); + entry = zswap_rb_search(&tree->rbroot, offset); + if (!entry) { + /* entry was written back */ + spin_unlock(&tree->lock); + return -1; + } + zswap_entry_get(entry); + spin_unlock(&tree->lock); + + /* decompress */ + dlen = PAGE_SIZE; + src = (u8 *)zbud_map(tree->pool, entry->handle) + + sizeof(struct zswap_header); + dst = kmap_atomic(page); + ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length, + dst, &dlen); + kunmap_atomic(dst); + zbud_unmap(tree->pool, entry->handle); + BUG_ON(ret); + + spin_lock(&tree->lock); + refcount = zswap_entry_put(entry); + if (likely(refcount)) { + spin_unlock(&tree->lock); + return 0; + } + spin_unlock(&tree->lock); + + /* + * We don't have to unlink from the rbtree because + * zswap_writeback_entry() or zswap_frontswap_invalidate page() + * has already done this for us if we are the last reference. + */ + /* free */ + + zswap_free_entry(tree, entry); + + return 0; +} + +/* frees an entry in zswap */ +static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset) +{ + struct zswap_tree *tree = zswap_trees[type]; + struct zswap_entry *entry; + int refcount; + + /* find */ + spin_lock(&tree->lock); + entry = zswap_rb_search(&tree->rbroot, offset); + if (!entry) { + /* entry was written back */ + spin_unlock(&tree->lock); + return; + } + + /* remove from rbtree */ + rb_erase(&entry->rbnode, &tree->rbroot); + + /* drop the initial reference from entry creation */ + refcount = zswap_entry_put(entry); + + spin_unlock(&tree->lock); + + if (refcount) { + /* writeback in progress, writeback will free */ + return; + } + + /* free */ + zswap_free_entry(tree, entry); +} + +/* frees all zswap entries for the given swap type */ +static void zswap_frontswap_invalidate_area(unsigned type) +{ + struct zswap_tree *tree = zswap_trees[type]; + struct rb_node *node; + struct zswap_entry *entry; + + if (!tree) + return; + + /* walk the tree and free everything */ + spin_lock(&tree->lock); + /* + * TODO: Even though this code should not be executed because + * the try_to_unuse() in swapoff should have emptied the tree, + * it is very wasteful to rebalance the tree after every + * removal when we are freeing the whole tree. + * + * If post-order traversal code is ever added to the rbtree + * implementation, it should be used here. + */ + while ((node = rb_first(&tree->rbroot))) { + entry = rb_entry(node, struct zswap_entry, rbnode); + rb_erase(&entry->rbnode, &tree->rbroot); + zbud_free(tree->pool, entry->handle); + zswap_entry_cache_free(entry); + atomic_dec(&zswap_stored_pages); + } + tree->rbroot = RB_ROOT; + spin_unlock(&tree->lock); +} + +static struct zbud_ops zswap_zbud_ops = { + .evict = zswap_writeback_entry +}; + +static void zswap_frontswap_init(unsigned type) +{ + struct zswap_tree *tree; + + tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL); + if (!tree) + goto err; + tree->pool = zbud_create_pool(GFP_KERNEL, &zswap_zbud_ops); + if (!tree->pool) + goto freetree; + tree->rbroot = RB_ROOT; + spin_lock_init(&tree->lock); + zswap_trees[type] = tree; + return; + +freetree: + kfree(tree); +err: + pr_err("alloc failed, zswap disabled for swap type %d\n", type); +} + +static struct frontswap_ops zswap_frontswap_ops = { + .store = zswap_frontswap_store, + .load = zswap_frontswap_load, + .invalidate_page = zswap_frontswap_invalidate_page, + .invalidate_area = zswap_frontswap_invalidate_area, + .init = zswap_frontswap_init +}; + +/********************************* +* debugfs functions +**********************************/ +#ifdef CONFIG_DEBUG_FS +#include <linux/debugfs.h> + +static struct dentry *zswap_debugfs_root; + +static int __init zswap_debugfs_init(void) +{ + if (!debugfs_initialized()) + return -ENODEV; + + zswap_debugfs_root = debugfs_create_dir("zswap", NULL); + if (!zswap_debugfs_root) + return -ENOMEM; + + debugfs_create_u64("pool_limit_hit", S_IRUGO, + zswap_debugfs_root, &zswap_pool_limit_hit); + debugfs_create_u64("reject_reclaim_fail", S_IRUGO, + zswap_debugfs_root, &zswap_reject_reclaim_fail); + debugfs_create_u64("reject_alloc_fail", S_IRUGO, + zswap_debugfs_root, &zswap_reject_alloc_fail); + debugfs_create_u64("reject_kmemcache_fail", S_IRUGO, + zswap_debugfs_root, &zswap_reject_kmemcache_fail); + debugfs_create_u64("reject_compress_poor", S_IRUGO, + zswap_debugfs_root, &zswap_reject_compress_poor); + debugfs_create_u64("written_back_pages", S_IRUGO, + zswap_debugfs_root, &zswap_written_back_pages); + debugfs_create_u64("duplicate_entry", S_IRUGO, + zswap_debugfs_root, &zswap_duplicate_entry); + debugfs_create_u64("pool_pages", S_IRUGO, + zswap_debugfs_root, &zswap_pool_pages); + debugfs_create_atomic_t("stored_pages", S_IRUGO, + zswap_debugfs_root, &zswap_stored_pages); + + return 0; +} + +static void __exit zswap_debugfs_exit(void) +{ + debugfs_remove_recursive(zswap_debugfs_root); +} +#else +static int __init zswap_debugfs_init(void) +{ + return 0; +} + +static void __exit zswap_debugfs_exit(void) { } +#endif + +/********************************* +* module init and exit +**********************************/ +static int __init init_zswap(void) +{ + if (!zswap_enabled) + return 0; + + pr_info("loading zswap\n"); + if (zswap_entry_cache_create()) { + pr_err("entry cache creation failed\n"); + goto error; + } + if (zswap_comp_init()) { + pr_err("compressor initialization failed\n"); + goto compfail; + } + if (zswap_cpu_init()) { + pr_err("per-cpu initialization failed\n"); + goto pcpufail; + } + frontswap_register_ops(&zswap_frontswap_ops); + if (zswap_debugfs_init()) + pr_warn("debugfs initialization failed\n"); + return 0; +pcpufail: + zswap_comp_exit(); +compfail: + zswap_entry_cache_destory(); +error: + return -ENOMEM; +} +/* must be late so crypto has time to come up */ +late_initcall(init_zswap); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>"); +MODULE_DESCRIPTION("Compressed cache for swap pages"); |