diff options
Diffstat (limited to 'mm')
45 files changed, 2207 insertions, 1483 deletions
diff --git a/mm/balloon_compaction.c b/mm/balloon_compaction.c index 07dbc8ec46cf..6e45a5074bf0 100644 --- a/mm/balloon_compaction.c +++ b/mm/balloon_compaction.c @@ -267,7 +267,7 @@ void balloon_page_putback(struct page *page) put_page(page); } else { WARN_ON(1); - dump_page(page); + dump_page(page, "not movable balloon page"); } unlock_page(page); } @@ -287,7 +287,7 @@ int balloon_page_migrate(struct page *newpage, BUG_ON(!trylock_page(newpage)); if (WARN_ON(!__is_movable_balloon_page(page))) { - dump_page(page); + dump_page(page, "not movable balloon page"); unlock_page(newpage); return rc; } diff --git a/mm/cleancache.c b/mm/cleancache.c index 5875f48ce279..d0eac4350403 100644 --- a/mm/cleancache.c +++ b/mm/cleancache.c @@ -237,7 +237,7 @@ int __cleancache_get_page(struct page *page) goto out; } - VM_BUG_ON(!PageLocked(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); fake_pool_id = page->mapping->host->i_sb->cleancache_poolid; if (fake_pool_id < 0) goto out; @@ -279,7 +279,7 @@ void __cleancache_put_page(struct page *page) return; } - VM_BUG_ON(!PageLocked(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); fake_pool_id = page->mapping->host->i_sb->cleancache_poolid; if (fake_pool_id < 0) return; @@ -318,7 +318,7 @@ void __cleancache_invalidate_page(struct address_space *mapping, if (pool_id < 0) return; - VM_BUG_ON(!PageLocked(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); if (cleancache_get_key(mapping->host, &key) >= 0) { cleancache_ops->invalidate_page(pool_id, key, page->index); diff --git a/mm/compaction.c b/mm/compaction.c index f58bcd016f43..b48c5259ea33 100644 --- a/mm/compaction.c +++ b/mm/compaction.c @@ -459,6 +459,7 @@ isolate_migratepages_range(struct zone *zone, struct compact_control *cc, unsigned long flags; bool locked = false; struct page *page = NULL, *valid_page = NULL; + bool skipped_async_unsuitable = false; /* * Ensure that there are not too many pages isolated from the LRU @@ -522,7 +523,10 @@ isolate_migratepages_range(struct zone *zone, struct compact_control *cc, if (!isolation_suitable(cc, page)) goto next_pageblock; - /* Skip if free */ + /* + * Skip if free. page_order cannot be used without zone->lock + * as nothing prevents parallel allocations or buddy merging. + */ if (PageBuddy(page)) continue; @@ -534,6 +538,7 @@ isolate_migratepages_range(struct zone *zone, struct compact_control *cc, if (!cc->sync && last_pageblock_nr != pageblock_nr && !migrate_async_suitable(get_pageblock_migratetype(page))) { cc->finished_update_migrate = true; + skipped_async_unsuitable = true; goto next_pageblock; } @@ -599,7 +604,7 @@ isolate_migratepages_range(struct zone *zone, struct compact_control *cc, if (__isolate_lru_page(page, mode) != 0) continue; - VM_BUG_ON(PageTransCompound(page)); + VM_BUG_ON_PAGE(PageTransCompound(page), page); /* Successfully isolated */ cc->finished_update_migrate = true; @@ -627,8 +632,13 @@ next_pageblock: if (locked) spin_unlock_irqrestore(&zone->lru_lock, flags); - /* Update the pageblock-skip if the whole pageblock was scanned */ - if (low_pfn == end_pfn) + /* + * Update the pageblock-skip information and cached scanner pfn, + * if the whole pageblock was scanned without isolating any page. + * This is not done when pageblock was skipped due to being unsuitable + * for async compaction, so that eventual sync compaction can try. + */ + if (low_pfn == end_pfn && !skipped_async_unsuitable) update_pageblock_skip(cc, valid_page, nr_isolated, true); trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); @@ -660,7 +670,7 @@ static void isolate_freepages(struct zone *zone, * is the end of the pageblock the migration scanner is using. */ pfn = cc->free_pfn; - low_pfn = cc->migrate_pfn + pageblock_nr_pages; + low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages); /* * Take care that if the migration scanner is at the end of the zone @@ -676,7 +686,7 @@ static void isolate_freepages(struct zone *zone, * pages on cc->migratepages. We stop searching if the migrate * and free page scanners meet or enough free pages are isolated. */ - for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; + for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages; pfn -= pageblock_nr_pages) { unsigned long isolated; @@ -738,7 +748,14 @@ static void isolate_freepages(struct zone *zone, /* split_free_page does not map the pages */ map_pages(freelist); - cc->free_pfn = high_pfn; + /* + * If we crossed the migrate scanner, we want to keep it that way + * so that compact_finished() may detect this + */ + if (pfn < low_pfn) + cc->free_pfn = max(pfn, zone->zone_start_pfn); + else + cc->free_pfn = high_pfn; cc->nr_freepages = nr_freepages; } @@ -837,6 +854,10 @@ static int compact_finished(struct zone *zone, /* Compaction run completes if the migrate and free scanner meet */ if (cc->free_pfn <= cc->migrate_pfn) { + /* Let the next compaction start anew. */ + zone->compact_cached_migrate_pfn = zone->zone_start_pfn; + zone->compact_cached_free_pfn = zone_end_pfn(zone); + /* * Mark that the PG_migrate_skip information should be cleared * by kswapd when it goes to sleep. kswapd does not set the @@ -947,6 +968,14 @@ static int compact_zone(struct zone *zone, struct compact_control *cc) } /* + * Clear pageblock skip if there were failures recently and compaction + * is about to be retried after being deferred. kswapd does not do + * this reset as it'll reset the cached information when going to sleep. + */ + if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) + __reset_isolation_suitable(zone); + + /* * Setup to move all movable pages to the end of the zone. Used cached * information on where the scanners should start but check that it * is initialised by ensuring the values are within zone boundaries. @@ -962,13 +991,7 @@ static int compact_zone(struct zone *zone, struct compact_control *cc) zone->compact_cached_migrate_pfn = cc->migrate_pfn; } - /* - * Clear pageblock skip if there were failures recently and compaction - * is about to be retried after being deferred. kswapd does not do - * this reset as it'll reset the cached information when going to sleep. - */ - if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) - __reset_isolation_suitable(zone); + trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn); migrate_prep_local(); @@ -1003,7 +1026,11 @@ static int compact_zone(struct zone *zone, struct compact_control *cc) if (err) { putback_movable_pages(&cc->migratepages); cc->nr_migratepages = 0; - if (err == -ENOMEM) { + /* + * migrate_pages() may return -ENOMEM when scanners meet + * and we want compact_finished() to detect it + */ + if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) { ret = COMPACT_PARTIAL; goto out; } @@ -1015,6 +1042,8 @@ out: cc->nr_freepages -= release_freepages(&cc->freepages); VM_BUG_ON(cc->nr_freepages != 0); + trace_mm_compaction_end(ret); + return ret; } @@ -1120,12 +1149,11 @@ static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) compact_zone(zone, cc); if (cc->order > 0) { - int ok = zone_watermark_ok(zone, cc->order, - low_wmark_pages(zone), 0, 0); - if (ok && cc->order >= zone->compact_order_failed) - zone->compact_order_failed = cc->order + 1; + if (zone_watermark_ok(zone, cc->order, + low_wmark_pages(zone), 0, 0)) + compaction_defer_reset(zone, cc->order, false); /* Currently async compaction is never deferred. */ - else if (!ok && cc->sync) + else if (cc->sync) defer_compaction(zone, cc->order); } diff --git a/mm/filemap.c b/mm/filemap.c index b7749a92021c..7a7f3e0db738 100644 --- a/mm/filemap.c +++ b/mm/filemap.c @@ -409,9 +409,9 @@ int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) { int error; - VM_BUG_ON(!PageLocked(old)); - VM_BUG_ON(!PageLocked(new)); - VM_BUG_ON(new->mapping); + VM_BUG_ON_PAGE(!PageLocked(old), old); + VM_BUG_ON_PAGE(!PageLocked(new), new); + VM_BUG_ON_PAGE(new->mapping, new); error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); if (!error) { @@ -461,8 +461,8 @@ int add_to_page_cache_locked(struct page *page, struct address_space *mapping, { int error; - VM_BUG_ON(!PageLocked(page)); - VM_BUG_ON(PageSwapBacked(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); + VM_BUG_ON_PAGE(PageSwapBacked(page), page); error = mem_cgroup_cache_charge(page, current->mm, gfp_mask & GFP_RECLAIM_MASK); @@ -607,7 +607,7 @@ EXPORT_SYMBOL_GPL(add_page_wait_queue); */ void unlock_page(struct page *page) { - VM_BUG_ON(!PageLocked(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); clear_bit_unlock(PG_locked, &page->flags); smp_mb__after_clear_bit(); wake_up_page(page, PG_locked); @@ -760,7 +760,7 @@ repeat: page_cache_release(page); goto repeat; } - VM_BUG_ON(page->index != offset); + VM_BUG_ON_PAGE(page->index != offset, page); } return page; } @@ -1656,7 +1656,7 @@ retry_find: put_page(page); goto retry_find; } - VM_BUG_ON(page->index != offset); + VM_BUG_ON_PAGE(page->index != offset, page); /* * We have a locked page in the page cache, now we need to check diff --git a/mm/huge_memory.c b/mm/huge_memory.c index 95d1acb0f3d2..65c98eb5483c 100644 --- a/mm/huge_memory.c +++ b/mm/huge_memory.c @@ -130,8 +130,14 @@ static int set_recommended_min_free_kbytes(void) (unsigned long) nr_free_buffer_pages() / 20); recommended_min <<= (PAGE_SHIFT-10); - if (recommended_min > min_free_kbytes) + if (recommended_min > min_free_kbytes) { + if (user_min_free_kbytes >= 0) + pr_info("raising min_free_kbytes from %d to %lu " + "to help transparent hugepage allocations\n", + min_free_kbytes, recommended_min); + min_free_kbytes = recommended_min; + } setup_per_zone_wmarks(); return 0; } @@ -655,7 +661,7 @@ out: hugepage_exit_sysfs(hugepage_kobj); return err; } -module_init(hugepage_init) +subsys_initcall(hugepage_init); static int __init setup_transparent_hugepage(char *str) { @@ -712,7 +718,7 @@ static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, pgtable_t pgtable; spinlock_t *ptl; - VM_BUG_ON(!PageCompound(page)); + VM_BUG_ON_PAGE(!PageCompound(page), page); pgtable = pte_alloc_one(mm, haddr); if (unlikely(!pgtable)) return VM_FAULT_OOM; @@ -893,7 +899,7 @@ int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, goto out; } src_page = pmd_page(pmd); - VM_BUG_ON(!PageHead(src_page)); + VM_BUG_ON_PAGE(!PageHead(src_page), src_page); get_page(src_page); page_dup_rmap(src_page); add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); @@ -1067,7 +1073,7 @@ static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, ptl = pmd_lock(mm, pmd); if (unlikely(!pmd_same(*pmd, orig_pmd))) goto out_free_pages; - VM_BUG_ON(!PageHead(page)); + VM_BUG_ON_PAGE(!PageHead(page), page); pmdp_clear_flush(vma, haddr, pmd); /* leave pmd empty until pte is filled */ @@ -1133,7 +1139,7 @@ int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, goto out_unlock; page = pmd_page(orig_pmd); - VM_BUG_ON(!PageCompound(page) || !PageHead(page)); + VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); if (page_mapcount(page) == 1) { pmd_t entry; entry = pmd_mkyoung(orig_pmd); @@ -1211,7 +1217,7 @@ alloc: add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); put_huge_zero_page(); } else { - VM_BUG_ON(!PageHead(page)); + VM_BUG_ON_PAGE(!PageHead(page), page); page_remove_rmap(page); put_page(page); } @@ -1249,7 +1255,7 @@ struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, goto out; page = pmd_page(*pmd); - VM_BUG_ON(!PageHead(page)); + VM_BUG_ON_PAGE(!PageHead(page), page); if (flags & FOLL_TOUCH) { pmd_t _pmd; /* @@ -1274,7 +1280,7 @@ struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, } } page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; - VM_BUG_ON(!PageCompound(page)); + VM_BUG_ON_PAGE(!PageCompound(page), page); if (flags & FOLL_GET) get_page_foll(page); @@ -1432,9 +1438,9 @@ int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, } else { page = pmd_page(orig_pmd); page_remove_rmap(page); - VM_BUG_ON(page_mapcount(page) < 0); + VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); - VM_BUG_ON(!PageHead(page)); + VM_BUG_ON_PAGE(!PageHead(page), page); atomic_long_dec(&tlb->mm->nr_ptes); spin_unlock(ptl); tlb_remove_page(tlb, page); @@ -2176,9 +2182,9 @@ static int __collapse_huge_page_isolate(struct vm_area_struct *vma, if (unlikely(!page)) goto out; - VM_BUG_ON(PageCompound(page)); - BUG_ON(!PageAnon(page)); - VM_BUG_ON(!PageSwapBacked(page)); + VM_BUG_ON_PAGE(PageCompound(page), page); + VM_BUG_ON_PAGE(!PageAnon(page), page); + VM_BUG_ON_PAGE(!PageSwapBacked(page), page); /* cannot use mapcount: can't collapse if there's a gup pin */ if (page_count(page) != 1) @@ -2201,8 +2207,8 @@ static int __collapse_huge_page_isolate(struct vm_area_struct *vma, } /* 0 stands for page_is_file_cache(page) == false */ inc_zone_page_state(page, NR_ISOLATED_ANON + 0); - VM_BUG_ON(!PageLocked(page)); - VM_BUG_ON(PageLRU(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); + VM_BUG_ON_PAGE(PageLRU(page), page); /* If there is no mapped pte young don't collapse the page */ if (pte_young(pteval) || PageReferenced(page) || @@ -2232,7 +2238,7 @@ static void __collapse_huge_page_copy(pte_t *pte, struct page *page, } else { src_page = pte_page(pteval); copy_user_highpage(page, src_page, address, vma); - VM_BUG_ON(page_mapcount(src_page) != 1); + VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page); release_pte_page(src_page); /* * ptl mostly unnecessary, but preempt has to @@ -2311,7 +2317,7 @@ static struct page struct vm_area_struct *vma, unsigned long address, int node) { - VM_BUG_ON(*hpage); + VM_BUG_ON_PAGE(*hpage, *hpage); /* * Allocate the page while the vma is still valid and under * the mmap_sem read mode so there is no memory allocation @@ -2580,7 +2586,7 @@ static int khugepaged_scan_pmd(struct mm_struct *mm, */ node = page_to_nid(page); khugepaged_node_load[node]++; - VM_BUG_ON(PageCompound(page)); + VM_BUG_ON_PAGE(PageCompound(page), page); if (!PageLRU(page) || PageLocked(page) || !PageAnon(page)) goto out_unmap; /* cannot use mapcount: can't collapse if there's a gup pin */ @@ -2876,7 +2882,7 @@ again: return; } page = pmd_page(*pmd); - VM_BUG_ON(!page_count(page)); + VM_BUG_ON_PAGE(!page_count(page), page); get_page(page); spin_unlock(ptl); mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); diff --git a/mm/hugetlb.c b/mm/hugetlb.c index dee6cf4e6d34..c01cb9fedb18 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -584,7 +584,7 @@ static void update_and_free_page(struct hstate *h, struct page *page) 1 << PG_active | 1 << PG_reserved | 1 << PG_private | 1 << PG_writeback); } - VM_BUG_ON(hugetlb_cgroup_from_page(page)); + VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); set_compound_page_dtor(page, NULL); set_page_refcounted(page); arch_release_hugepage(page); @@ -690,15 +690,11 @@ static void prep_compound_gigantic_page(struct page *page, unsigned long order) */ int PageHuge(struct page *page) { - compound_page_dtor *dtor; - if (!PageCompound(page)) return 0; page = compound_head(page); - dtor = get_compound_page_dtor(page); - - return dtor == free_huge_page; + return get_compound_page_dtor(page) == free_huge_page; } EXPORT_SYMBOL_GPL(PageHuge); @@ -708,16 +704,11 @@ EXPORT_SYMBOL_GPL(PageHuge); */ int PageHeadHuge(struct page *page_head) { - compound_page_dtor *dtor; - if (!PageHead(page_head)) return 0; - dtor = get_compound_page_dtor(page_head); - - return dtor == free_huge_page; + return get_compound_page_dtor(page_head) == free_huge_page; } -EXPORT_SYMBOL_GPL(PageHeadHuge); pgoff_t __basepage_index(struct page *page) { @@ -1098,7 +1089,7 @@ retry: * no users -- drop the buddy allocator's reference. */ put_page_testzero(page); - VM_BUG_ON(page_count(page)); + VM_BUG_ON_PAGE(page_count(page), page); enqueue_huge_page(h, page); } free: @@ -1280,9 +1271,9 @@ int __weak alloc_bootmem_huge_page(struct hstate *h) for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { void *addr; - addr = __alloc_bootmem_node_nopanic(NODE_DATA(node), - huge_page_size(h), huge_page_size(h), 0); - + addr = memblock_virt_alloc_try_nid_nopanic( + huge_page_size(h), huge_page_size(h), + 0, BOOTMEM_ALLOC_ACCESSIBLE, node); if (addr) { /* * Use the beginning of the huge page to store the @@ -1322,8 +1313,8 @@ static void __init gather_bootmem_prealloc(void) #ifdef CONFIG_HIGHMEM page = pfn_to_page(m->phys >> PAGE_SHIFT); - free_bootmem_late((unsigned long)m, - sizeof(struct huge_bootmem_page)); + memblock_free_late(__pa(m), + sizeof(struct huge_bootmem_page)); #else page = virt_to_page(m); #endif @@ -2355,17 +2346,27 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, int cow; struct hstate *h = hstate_vma(vma); unsigned long sz = huge_page_size(h); + unsigned long mmun_start; /* For mmu_notifiers */ + unsigned long mmun_end; /* For mmu_notifiers */ + int ret = 0; cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; + mmun_start = vma->vm_start; + mmun_end = vma->vm_end; + if (cow) + mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); + for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { spinlock_t *src_ptl, *dst_ptl; src_pte = huge_pte_offset(src, addr); if (!src_pte) continue; dst_pte = huge_pte_alloc(dst, addr, sz); - if (!dst_pte) - goto nomem; + if (!dst_pte) { + ret = -ENOMEM; + break; + } /* If the pagetables are shared don't copy or take references */ if (dst_pte == src_pte) @@ -2386,10 +2387,11 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, spin_unlock(src_ptl); spin_unlock(dst_ptl); } - return 0; -nomem: - return -ENOMEM; + if (cow) + mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); + + return ret; } static int is_hugetlb_entry_migration(pte_t pte) @@ -3079,7 +3081,7 @@ long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, same_page: if (pages) { pages[i] = mem_map_offset(page, pfn_offset); - get_page(pages[i]); + get_page_foll(pages[i]); } if (vmas) @@ -3501,7 +3503,7 @@ int dequeue_hwpoisoned_huge_page(struct page *hpage) bool isolate_huge_page(struct page *page, struct list_head *list) { - VM_BUG_ON(!PageHead(page)); + VM_BUG_ON_PAGE(!PageHead(page), page); if (!get_page_unless_zero(page)) return false; spin_lock(&hugetlb_lock); @@ -3512,7 +3514,7 @@ bool isolate_huge_page(struct page *page, struct list_head *list) void putback_active_hugepage(struct page *page) { - VM_BUG_ON(!PageHead(page)); + VM_BUG_ON_PAGE(!PageHead(page), page); spin_lock(&hugetlb_lock); list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); spin_unlock(&hugetlb_lock); @@ -3521,7 +3523,7 @@ void putback_active_hugepage(struct page *page) bool is_hugepage_active(struct page *page) { - VM_BUG_ON(!PageHuge(page)); + VM_BUG_ON_PAGE(!PageHuge(page), page); /* * This function can be called for a tail page because the caller, * scan_movable_pages, scans through a given pfn-range which typically diff --git a/mm/hugetlb_cgroup.c b/mm/hugetlb_cgroup.c index bda8e44f6fde..cb00829bb466 100644 --- a/mm/hugetlb_cgroup.c +++ b/mm/hugetlb_cgroup.c @@ -242,22 +242,16 @@ void hugetlb_cgroup_uncharge_cgroup(int idx, unsigned long nr_pages, return; } -static ssize_t hugetlb_cgroup_read(struct cgroup_subsys_state *css, - struct cftype *cft, struct file *file, - char __user *buf, size_t nbytes, - loff_t *ppos) +static u64 hugetlb_cgroup_read_u64(struct cgroup_subsys_state *css, + struct cftype *cft) { - u64 val; - char str[64]; - int idx, name, len; + int idx, name; struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_css(css); idx = MEMFILE_IDX(cft->private); name = MEMFILE_ATTR(cft->private); - val = res_counter_read_u64(&h_cg->hugepage[idx], name); - len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); - return simple_read_from_buffer(buf, nbytes, ppos, str, len); + return res_counter_read_u64(&h_cg->hugepage[idx], name); } static int hugetlb_cgroup_write(struct cgroup_subsys_state *css, @@ -337,28 +331,28 @@ static void __init __hugetlb_cgroup_file_init(int idx) cft = &h->cgroup_files[0]; snprintf(cft->name, MAX_CFTYPE_NAME, "%s.limit_in_bytes", buf); cft->private = MEMFILE_PRIVATE(idx, RES_LIMIT); - cft->read = hugetlb_cgroup_read; + cft->read_u64 = hugetlb_cgroup_read_u64; cft->write_string = hugetlb_cgroup_write; /* Add the usage file */ cft = &h->cgroup_files[1]; snprintf(cft->name, MAX_CFTYPE_NAME, "%s.usage_in_bytes", buf); cft->private = MEMFILE_PRIVATE(idx, RES_USAGE); - cft->read = hugetlb_cgroup_read; + cft->read_u64 = hugetlb_cgroup_read_u64; /* Add the MAX usage file */ cft = &h->cgroup_files[2]; snprintf(cft->name, MAX_CFTYPE_NAME, "%s.max_usage_in_bytes", buf); cft->private = MEMFILE_PRIVATE(idx, RES_MAX_USAGE); cft->trigger = hugetlb_cgroup_reset; - cft->read = hugetlb_cgroup_read; + cft->read_u64 = hugetlb_cgroup_read_u64; /* Add the failcntfile */ cft = &h->cgroup_files[3]; snprintf(cft->name, MAX_CFTYPE_NAME, "%s.failcnt", buf); cft->private = MEMFILE_PRIVATE(idx, RES_FAILCNT); cft->trigger = hugetlb_cgroup_reset; - cft->read = hugetlb_cgroup_read; + cft->read_u64 = hugetlb_cgroup_read_u64; /* NULL terminate the last cft */ cft = &h->cgroup_files[4]; @@ -396,7 +390,7 @@ void hugetlb_cgroup_migrate(struct page *oldhpage, struct page *newhpage) if (hugetlb_cgroup_disabled()) return; - VM_BUG_ON(!PageHuge(oldhpage)); + VM_BUG_ON_PAGE(!PageHuge(oldhpage), oldhpage); spin_lock(&hugetlb_lock); h_cg = hugetlb_cgroup_from_page(oldhpage); set_hugetlb_cgroup(oldhpage, NULL); diff --git a/mm/hwpoison-inject.c b/mm/hwpoison-inject.c index 4c84678371eb..95487c71cad5 100644 --- a/mm/hwpoison-inject.c +++ b/mm/hwpoison-inject.c @@ -55,7 +55,7 @@ static int hwpoison_inject(void *data, u64 val) return 0; inject: - printk(KERN_INFO "Injecting memory failure at pfn %lx\n", pfn); + pr_info("Injecting memory failure at pfn %#lx\n", pfn); return memory_failure(pfn, 18, MF_COUNT_INCREASED); } diff --git a/mm/internal.h b/mm/internal.h index 684f7aa9692a..612c14f5e0f5 100644 --- a/mm/internal.h +++ b/mm/internal.h @@ -27,8 +27,8 @@ static inline void set_page_count(struct page *page, int v) */ static inline void set_page_refcounted(struct page *page) { - VM_BUG_ON(PageTail(page)); - VM_BUG_ON(atomic_read(&page->_count)); + VM_BUG_ON_PAGE(PageTail(page), page); + VM_BUG_ON_PAGE(atomic_read(&page->_count), page); set_page_count(page, 1); } @@ -46,12 +46,10 @@ static inline void __get_page_tail_foll(struct page *page, * speculative page access (like in * page_cache_get_speculative()) on tail pages. */ - VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0); - VM_BUG_ON(atomic_read(&page->_count) != 0); - VM_BUG_ON(page_mapcount(page) < 0); + VM_BUG_ON_PAGE(atomic_read(&page->first_page->_count) <= 0, page); if (get_page_head) atomic_inc(&page->first_page->_count); - atomic_inc(&page->_mapcount); + get_huge_page_tail(page); } /* @@ -73,7 +71,7 @@ static inline void get_page_foll(struct page *page) * Getting a normal page or the head of a compound page * requires to already have an elevated page->_count. */ - VM_BUG_ON(atomic_read(&page->_count) <= 0); + VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); atomic_inc(&page->_count); } } @@ -101,6 +99,7 @@ extern void prep_compound_page(struct page *page, unsigned long order); #ifdef CONFIG_MEMORY_FAILURE extern bool is_free_buddy_page(struct page *page); #endif +extern int user_min_free_kbytes; #if defined CONFIG_COMPACTION || defined CONFIG_CMA @@ -144,9 +143,11 @@ isolate_migratepages_range(struct zone *zone, struct compact_control *cc, #endif /* - * function for dealing with page's order in buddy system. - * zone->lock is already acquired when we use these. - * So, we don't need atomic page->flags operations here. + * This function returns the order of a free page in the buddy system. In + * general, page_zone(page)->lock must be held by the caller to prevent the + * page from being allocated in parallel and returning garbage as the order. + * If a caller does not hold page_zone(page)->lock, it must guarantee that the + * page cannot be allocated or merged in parallel. */ static inline unsigned long page_order(struct page *page) { @@ -175,7 +176,7 @@ static inline void munlock_vma_pages_all(struct vm_area_struct *vma) static inline int mlocked_vma_newpage(struct vm_area_struct *vma, struct page *page) { - VM_BUG_ON(PageLRU(page)); + VM_BUG_ON_PAGE(PageLRU(page), page); if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) return 0; @@ -1891,21 +1891,24 @@ struct page *ksm_might_need_to_copy(struct page *page, return new_page; } -int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg, - unsigned long *vm_flags) +int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) { struct stable_node *stable_node; struct rmap_item *rmap_item; - unsigned int mapcount = page_mapcount(page); - int referenced = 0; + int ret = SWAP_AGAIN; int search_new_forks = 0; - VM_BUG_ON(!PageKsm(page)); - VM_BUG_ON(!PageLocked(page)); + VM_BUG_ON_PAGE(!PageKsm(page), page); + + /* + * Rely on the page lock to protect against concurrent modifications + * to that page's node of the stable tree. + */ + VM_BUG_ON_PAGE(!PageLocked(page), page); stable_node = page_stable_node(page); if (!stable_node) - return 0; + return ret; again: hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { struct anon_vma *anon_vma = rmap_item->anon_vma; @@ -1928,113 +1931,16 @@ again: if ((rmap_item->mm == vma->vm_mm) == search_new_forks) continue; - if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) - continue; - - referenced += page_referenced_one(page, vma, - rmap_item->address, &mapcount, vm_flags); - if (!search_new_forks || !mapcount) - break; - } - anon_vma_unlock_read(anon_vma); - if (!mapcount) - goto out; - } - if (!search_new_forks++) - goto again; -out: - return referenced; -} - -int try_to_unmap_ksm(struct page *page, enum ttu_flags flags) -{ - struct stable_node *stable_node; - struct rmap_item *rmap_item; - int ret = SWAP_AGAIN; - int search_new_forks = 0; - - VM_BUG_ON(!PageKsm(page)); - VM_BUG_ON(!PageLocked(page)); - - stable_node = page_stable_node(page); - if (!stable_node) - return SWAP_FAIL; -again: - hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { - struct anon_vma *anon_vma = rmap_item->anon_vma; - struct anon_vma_chain *vmac; - struct vm_area_struct *vma; - - anon_vma_lock_read(anon_vma); - anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, - 0, ULONG_MAX) { - vma = vmac->vma; - if (rmap_item->address < vma->vm_start || - rmap_item->address >= vma->vm_end) - continue; - /* - * Initially we examine only the vma which covers this - * rmap_item; but later, if there is still work to do, - * we examine covering vmas in other mms: in case they - * were forked from the original since ksmd passed. - */ - if ((rmap_item->mm == vma->vm_mm) == search_new_forks) + if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) continue; - ret = try_to_unmap_one(page, vma, - rmap_item->address, flags); - if (ret != SWAP_AGAIN || !page_mapped(page)) { + ret = rwc->rmap_one(page, vma, + rmap_item->address, rwc->arg); + if (ret != SWAP_AGAIN) { anon_vma_unlock_read(anon_vma); goto out; } - } - anon_vma_unlock_read(anon_vma); - } - if (!search_new_forks++) - goto again; -out: - return ret; -} - -#ifdef CONFIG_MIGRATION -int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *, - struct vm_area_struct *, unsigned long, void *), void *arg) -{ - struct stable_node *stable_node; - struct rmap_item *rmap_item; - int ret = SWAP_AGAIN; - int search_new_forks = 0; - - VM_BUG_ON(!PageKsm(page)); - VM_BUG_ON(!PageLocked(page)); - - stable_node = page_stable_node(page); - if (!stable_node) - return ret; -again: - hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { - struct anon_vma *anon_vma = rmap_item->anon_vma; - struct anon_vma_chain *vmac; - struct vm_area_struct *vma; - - anon_vma_lock_read(anon_vma); - anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, - 0, ULONG_MAX) { - vma = vmac->vma; - if (rmap_item->address < vma->vm_start || - rmap_item->address >= vma->vm_end) - continue; - /* - * Initially we examine only the vma which covers this - * rmap_item; but later, if there is still work to do, - * we examine covering vmas in other mms: in case they - * were forked from the original since ksmd passed. - */ - if ((rmap_item->mm == vma->vm_mm) == search_new_forks) - continue; - - ret = rmap_one(page, vma, rmap_item->address, arg); - if (ret != SWAP_AGAIN) { + if (rwc->done && rwc->done(page)) { anon_vma_unlock_read(anon_vma); goto out; } @@ -2047,17 +1953,18 @@ out: return ret; } +#ifdef CONFIG_MIGRATION void ksm_migrate_page(struct page *newpage, struct page *oldpage) { struct stable_node *stable_node; - VM_BUG_ON(!PageLocked(oldpage)); - VM_BUG_ON(!PageLocked(newpage)); - VM_BUG_ON(newpage->mapping != oldpage->mapping); + VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); + VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); + VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); stable_node = page_stable_node(newpage); if (stable_node) { - VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage)); + VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); stable_node->kpfn = page_to_pfn(newpage); /* * newpage->mapping was set in advance; now we need smp_wmb() @@ -2438,4 +2345,4 @@ out_free: out: return err; } -module_init(ksm_init) +subsys_initcall(ksm_init); diff --git a/mm/memblock.c b/mm/memblock.c index 53e477bb5558..9c0aeef19440 100644 --- a/mm/memblock.c +++ b/mm/memblock.c @@ -21,6 +21,9 @@ #include <linux/memblock.h> #include <asm-generic/sections.h> +#include <linux/io.h> + +#include "internal.h" static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; @@ -39,6 +42,9 @@ struct memblock memblock __initdata_memblock = { }; int memblock_debug __initdata_memblock; +#ifdef CONFIG_MOVABLE_NODE +bool movable_node_enabled __initdata_memblock = false; +#endif static int memblock_can_resize __initdata_memblock; static int memblock_memory_in_slab __initdata_memblock = 0; static int memblock_reserved_in_slab __initdata_memblock = 0; @@ -91,7 +97,7 @@ static long __init_memblock memblock_overlaps_region(struct memblock_type *type, * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} * @size: size of free area to find * @align: alignment of free area to find - * @nid: nid of the free area to find, %MAX_NUMNODES for any node + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node * * Utility called from memblock_find_in_range_node(), find free area bottom-up. * @@ -123,7 +129,7 @@ __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} * @size: size of free area to find * @align: alignment of free area to find - * @nid: nid of the free area to find, %MAX_NUMNODES for any node + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node * * Utility called from memblock_find_in_range_node(), find free area top-down. * @@ -154,11 +160,11 @@ __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, /** * memblock_find_in_range_node - find free area in given range and node - * @start: start of candidate range - * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} * @size: size of free area to find * @align: alignment of free area to find - * @nid: nid of the free area to find, %MAX_NUMNODES for any node + * @start: start of candidate range + * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE} + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node * * Find @size free area aligned to @align in the specified range and node. * @@ -173,9 +179,9 @@ __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, * RETURNS: * Found address on success, 0 on failure. */ -phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start, - phys_addr_t end, phys_addr_t size, - phys_addr_t align, int nid) +phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, + phys_addr_t align, phys_addr_t start, + phys_addr_t end, int nid) { int ret; phys_addr_t kernel_end; @@ -238,8 +244,8 @@ phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, phys_addr_t end, phys_addr_t size, phys_addr_t align) { - return memblock_find_in_range_node(start, end, size, align, - MAX_NUMNODES); + return memblock_find_in_range_node(size, align, start, end, + NUMA_NO_NODE); } static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) @@ -255,10 +261,13 @@ static void __init_memblock memblock_remove_region(struct memblock_type *type, u type->cnt = 1; type->regions[0].base = 0; type->regions[0].size = 0; + type->regions[0].flags = 0; memblock_set_region_node(&type->regions[0], MAX_NUMNODES); } } +#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK + phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( phys_addr_t *addr) { @@ -271,6 +280,20 @@ phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info( memblock.reserved.max); } +phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info( + phys_addr_t *addr) +{ + if (memblock.memory.regions == memblock_memory_init_regions) + return 0; + + *addr = __pa(memblock.memory.regions); + + return PAGE_ALIGN(sizeof(struct memblock_region) * + memblock.memory.max); +} + +#endif + /** * memblock_double_array - double the size of the memblock regions array * @type: memblock type of the regions array being doubled @@ -405,7 +428,8 @@ static void __init_memblock memblock_merge_regions(struct memblock_type *type) if (this->base + this->size != next->base || memblock_get_region_node(this) != - memblock_get_region_node(next)) { + memblock_get_region_node(next) || + this->flags != next->flags) { BUG_ON(this->base + this->size > next->base); i++; continue; @@ -425,13 +449,15 @@ static void __init_memblock memblock_merge_regions(struct memblock_type *type) * @base: base address of the new region * @size: size of the new region * @nid: node id of the new region + * @flags: flags of the new region * * Insert new memblock region [@base,@base+@size) into @type at @idx. * @type must already have extra room to accomodate the new region. */ static void __init_memblock memblock_insert_region(struct memblock_type *type, int idx, phys_addr_t base, - phys_addr_t size, int nid) + phys_addr_t size, + int nid, unsigned long flags) { struct memblock_region *rgn = &type->regions[idx]; @@ -439,6 +465,7 @@ static void __init_memblock memblock_insert_region(struct memblock_type *type, memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); rgn->base = base; rgn->size = size; + rgn->flags = flags; memblock_set_region_node(rgn, nid); type->cnt++; type->total_size += size; @@ -450,6 +477,7 @@ static void __init_memblock memblock_insert_region(struct memblock_type *type, * @base: base address of the new region * @size: size of the new region * @nid: nid of the new region + * @flags: flags of the new region * * Add new memblock region [@base,@base+@size) into @type. The new region * is allowed to overlap with existing ones - overlaps don't affect already @@ -460,7 +488,8 @@ static void __init_memblock memblock_insert_region(struct memblock_type *type, * 0 on success, -errno on failure. */ static int __init_memblock memblock_add_region(struct memblock_type *type, - phys_addr_t base, phys_addr_t size, int nid) + phys_addr_t base, phys_addr_t size, + int nid, unsigned long flags) { bool insert = false; phys_addr_t obase = base; @@ -475,6 +504,7 @@ static int __init_memblock memblock_add_region(struct memblock_type *type, WARN_ON(type->cnt != 1 || type->total_size); type->regions[0].base = base; type->regions[0].size = size; + type->regions[0].flags = flags; memblock_set_region_node(&type->regions[0], nid); type->total_size = size; return 0; @@ -505,7 +535,8 @@ repeat: nr_new++; if (insert) memblock_insert_region(type, i++, base, - rbase - base, nid); + rbase - base, nid, + flags); } /* area below @rend is dealt with, forget about it */ base = min(rend, end); @@ -515,7 +546,8 @@ repeat: if (base < end) { nr_new++; if (insert) - memblock_insert_region(type, i, base, end - base, nid); + memblock_insert_region(type, i, base, end - base, + nid, flags); } /* @@ -537,12 +569,13 @@ repeat: int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, int nid) { - return memblock_add_region(&memblock.memory, base, size, nid); + return memblock_add_region(&memblock.memory, base, size, nid, 0); } int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) { - return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES); + return memblock_add_region(&memblock.memory, base, size, + MAX_NUMNODES, 0); } /** @@ -597,7 +630,8 @@ static int __init_memblock memblock_isolate_range(struct memblock_type *type, rgn->size -= base - rbase; type->total_size -= base - rbase; memblock_insert_region(type, i, rbase, base - rbase, - memblock_get_region_node(rgn)); + memblock_get_region_node(rgn), + rgn->flags); } else if (rend > end) { /* * @rgn intersects from above. Split and redo the @@ -607,7 +641,8 @@ static int __init_memblock memblock_isolate_range(struct memblock_type *type, rgn->size -= end - rbase; type->total_size -= end - rbase; memblock_insert_region(type, i--, rbase, end - rbase, - memblock_get_region_node(rgn)); + memblock_get_region_node(rgn), + rgn->flags); } else { /* @rgn is fully contained, record it */ if (!*end_rgn) @@ -643,28 +678,89 @@ int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) { memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n", (unsigned long long)base, - (unsigned long long)base + size, + (unsigned long long)base + size - 1, (void *)_RET_IP_); return __memblock_remove(&memblock.reserved, base, size); } -int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) +static int __init_memblock memblock_reserve_region(phys_addr_t base, + phys_addr_t size, + int nid, + unsigned long flags) { struct memblock_type *_rgn = &memblock.reserved; - memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n", + memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n", (unsigned long long)base, - (unsigned long long)base + size, - (void *)_RET_IP_); + (unsigned long long)base + size - 1, + flags, (void *)_RET_IP_); + + return memblock_add_region(_rgn, base, size, nid, flags); +} + +int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) +{ + return memblock_reserve_region(base, size, MAX_NUMNODES, 0); +} + +/** + * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. + * @base: the base phys addr of the region + * @size: the size of the region + * + * This function isolates region [@base, @base + @size), and mark it with flag + * MEMBLOCK_HOTPLUG. + * + * Return 0 on succees, -errno on failure. + */ +int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) +{ + struct memblock_type *type = &memblock.memory; + int i, ret, start_rgn, end_rgn; + + ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); + if (ret) + return ret; + + for (i = start_rgn; i < end_rgn; i++) + memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG); + + memblock_merge_regions(type); + return 0; +} + +/** + * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. + * @base: the base phys addr of the region + * @size: the size of the region + * + * This function isolates region [@base, @base + @size), and clear flag + * MEMBLOCK_HOTPLUG for the isolated regions. + * + * Return 0 on succees, -errno on failure. + */ +int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) +{ + struct memblock_type *type = &memblock.memory; + int i, ret, start_rgn, end_rgn; + + ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); + if (ret) + return ret; + + for (i = start_rgn; i < end_rgn; i++) + memblock_clear_region_flags(&type->regions[i], + MEMBLOCK_HOTPLUG); - return memblock_add_region(_rgn, base, size, MAX_NUMNODES); + memblock_merge_regions(type); + return 0; } /** * __next_free_mem_range - next function for for_each_free_mem_range() * @idx: pointer to u64 loop variable - * @nid: node selector, %MAX_NUMNODES for all nodes + * @nid: node selector, %NUMA_NO_NODE for all nodes * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL * @out_nid: ptr to int for nid of the range, can be %NULL @@ -693,13 +789,16 @@ void __init_memblock __next_free_mem_range(u64 *idx, int nid, int mi = *idx & 0xffffffff; int ri = *idx >> 32; + if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) + nid = NUMA_NO_NODE; + for ( ; mi < mem->cnt; mi++) { struct memblock_region *m = &mem->regions[mi]; phys_addr_t m_start = m->base; phys_addr_t m_end = m->base + m->size; /* only memory regions are associated with nodes, check it */ - if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) + if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m)) continue; /* scan areas before each reservation for intersection */ @@ -740,12 +839,17 @@ void __init_memblock __next_free_mem_range(u64 *idx, int nid, /** * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse() * @idx: pointer to u64 loop variable - * @nid: nid: node selector, %MAX_NUMNODES for all nodes + * @nid: nid: node selector, %NUMA_NO_NODE for all nodes * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL * @out_nid: ptr to int for nid of the range, can be %NULL * * Reverse of __next_free_mem_range(). + * + * Linux kernel cannot migrate pages used by itself. Memory hotplug users won't + * be able to hot-remove hotpluggable memory used by the kernel. So this + * function skip hotpluggable regions if needed when allocating memory for the + * kernel. */ void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, phys_addr_t *out_start, @@ -756,6 +860,9 @@ void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, int mi = *idx & 0xffffffff; int ri = *idx >> 32; + if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) + nid = NUMA_NO_NODE; + if (*idx == (u64)ULLONG_MAX) { mi = mem->cnt - 1; ri = rsv->cnt; @@ -767,7 +874,11 @@ void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid, phys_addr_t m_end = m->base + m->size; /* only memory regions are associated with nodes, check it */ - if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m)) + if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m)) + continue; + + /* skip hotpluggable memory regions if needed */ + if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) continue; /* scan areas before each reservation for intersection */ @@ -837,18 +948,18 @@ void __init_memblock __next_mem_pfn_range(int *idx, int nid, * memblock_set_node - set node ID on memblock regions * @base: base of area to set node ID for * @size: size of area to set node ID for + * @type: memblock type to set node ID for * @nid: node ID to set * - * Set the nid of memblock memory regions in [@base,@base+@size) to @nid. + * Set the nid of memblock @type regions in [@base,@base+@size) to @nid. * Regions which cross the area boundaries are split as necessary. * * RETURNS: * 0 on success, -errno on failure. */ int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, - int nid) + struct memblock_type *type, int nid) { - struct memblock_type *type = &memblock.memory; int start_rgn, end_rgn; int i, ret; @@ -870,13 +981,13 @@ static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size, { phys_addr_t found; - if (WARN_ON(!align)) - align = __alignof__(long long); + if (!align) + align = SMP_CACHE_BYTES; /* align @size to avoid excessive fragmentation on reserved array */ size = round_up(size, align); - found = memblock_find_in_range_node(0, max_addr, size, align, nid); + found = memblock_find_in_range_node(size, align, 0, max_addr, nid); if (found && !memblock_reserve(found, size)) return found; @@ -890,7 +1001,7 @@ phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int n phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) { - return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES); + return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE); } phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr) @@ -920,6 +1031,207 @@ phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, i return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE); } +/** + * memblock_virt_alloc_internal - allocate boot memory block + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @min_addr: the lower bound of the memory region to allocate (phys address) + * @max_addr: the upper bound of the memory region to allocate (phys address) + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * + * The @min_addr limit is dropped if it can not be satisfied and the allocation + * will fall back to memory below @min_addr. Also, allocation may fall back + * to any node in the system if the specified node can not + * hold the requested memory. + * + * The allocation is performed from memory region limited by + * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE. + * + * The memory block is aligned on SMP_CACHE_BYTES if @align == 0. + * + * The phys address of allocated boot memory block is converted to virtual and + * allocated memory is reset to 0. + * + * In addition, function sets the min_count to 0 using kmemleak_alloc for + * allocated boot memory block, so that it is never reported as leaks. + * + * RETURNS: + * Virtual address of allocated memory block on success, NULL on failure. + */ +static void * __init memblock_virt_alloc_internal( + phys_addr_t size, phys_addr_t align, + phys_addr_t min_addr, phys_addr_t max_addr, + int nid) +{ + phys_addr_t alloc; + void *ptr; + + if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) + nid = NUMA_NO_NODE; + + /* + * Detect any accidental use of these APIs after slab is ready, as at + * this moment memblock may be deinitialized already and its + * internal data may be destroyed (after execution of free_all_bootmem) + */ + if (WARN_ON_ONCE(slab_is_available())) + return kzalloc_node(size, GFP_NOWAIT, nid); + + if (!align) + align = SMP_CACHE_BYTES; + + /* align @size to avoid excessive fragmentation on reserved array */ + size = round_up(size, align); + +again: + alloc = memblock_find_in_range_node(size, align, min_addr, max_addr, + nid); + if (alloc) + goto done; + + if (nid != NUMA_NO_NODE) { + alloc = memblock_find_in_range_node(size, align, min_addr, + max_addr, NUMA_NO_NODE); + if (alloc) + goto done; + } + + if (min_addr) { + min_addr = 0; + goto again; + } else { + goto error; + } + +done: + memblock_reserve(alloc, size); + ptr = phys_to_virt(alloc); + memset(ptr, 0, size); + + /* + * The min_count is set to 0 so that bootmem allocated blocks + * are never reported as leaks. This is because many of these blocks + * are only referred via the physical address which is not + * looked up by kmemleak. + */ + kmemleak_alloc(ptr, size, 0, 0); + + return ptr; + +error: + return NULL; +} + +/** + * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @min_addr: the lower bound of the memory region from where the allocation + * is preferred (phys address) + * @max_addr: the upper bound of the memory region from where the allocation + * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to + * allocate only from memory limited by memblock.current_limit value + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * + * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides + * additional debug information (including caller info), if enabled. + * + * RETURNS: + * Virtual address of allocated memory block on success, NULL on failure. + */ +void * __init memblock_virt_alloc_try_nid_nopanic( + phys_addr_t size, phys_addr_t align, + phys_addr_t min_addr, phys_addr_t max_addr, + int nid) +{ + memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", + __func__, (u64)size, (u64)align, nid, (u64)min_addr, + (u64)max_addr, (void *)_RET_IP_); + return memblock_virt_alloc_internal(size, align, min_addr, + max_addr, nid); +} + +/** + * memblock_virt_alloc_try_nid - allocate boot memory block with panicking + * @size: size of memory block to be allocated in bytes + * @align: alignment of the region and block's size + * @min_addr: the lower bound of the memory region from where the allocation + * is preferred (phys address) + * @max_addr: the upper bound of the memory region from where the allocation + * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to + * allocate only from memory limited by memblock.current_limit value + * @nid: nid of the free area to find, %NUMA_NO_NODE for any node + * + * Public panicking version of _memblock_virt_alloc_try_nid_nopanic() + * which provides debug information (including caller info), if enabled, + * and panics if the request can not be satisfied. + * + * RETURNS: + * Virtual address of allocated memory block on success, NULL on failure. + */ +void * __init memblock_virt_alloc_try_nid( + phys_addr_t size, phys_addr_t align, + phys_addr_t min_addr, phys_addr_t max_addr, + int nid) +{ + void *ptr; + + memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n", + __func__, (u64)size, (u64)align, nid, (u64)min_addr, + (u64)max_addr, (void *)_RET_IP_); + ptr = memblock_virt_alloc_internal(size, align, + min_addr, max_addr, nid); + if (ptr) + return ptr; + + panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n", + __func__, (u64)size, (u64)align, nid, (u64)min_addr, + (u64)max_addr); + return NULL; +} + +/** + * __memblock_free_early - free boot memory block + * @base: phys starting address of the boot memory block + * @size: size of the boot memory block in bytes + * + * Free boot memory block previously allocated by memblock_virt_alloc_xx() API. + * The freeing memory will not be released to the buddy allocator. + */ +void __init __memblock_free_early(phys_addr_t base, phys_addr_t size) +{ + memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", + __func__, (u64)base, (u64)base + size - 1, + (void *)_RET_IP_); + kmemleak_free_part(__va(base), size); + __memblock_remove(&memblock.reserved, base, size); +} + +/* + * __memblock_free_late - free bootmem block pages directly to buddy allocator + * @addr: phys starting address of the boot memory block + * @size: size of the boot memory block in bytes + * + * This is only useful when the bootmem allocator has already been torn + * down, but we are still initializing the system. Pages are released directly + * to the buddy allocator, no bootmem metadata is updated because it is gone. + */ +void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) +{ + u64 cursor, end; + + memblock_dbg("%s: [%#016llx-%#016llx] %pF\n", + __func__, (u64)base, (u64)base + size - 1, + (void *)_RET_IP_); + kmemleak_free_part(__va(base), size); + cursor = PFN_UP(base); + end = PFN_DOWN(base + size); + + for (; cursor < end; cursor++) { + __free_pages_bootmem(pfn_to_page(cursor), 0); + totalram_pages++; + } +} /* * Remaining API functions @@ -1101,6 +1413,7 @@ void __init_memblock memblock_set_current_limit(phys_addr_t limit) static void __init_memblock memblock_dump(struct memblock_type *type, char *name) { unsigned long long base, size; + unsigned long flags; int i; pr_info(" %s.cnt = 0x%lx\n", name, type->cnt); @@ -1111,13 +1424,14 @@ static void __init_memblock memblock_dump(struct memblock_type *type, char *name base = rgn->base; size = rgn->size; + flags = rgn->flags; #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP if (memblock_get_region_node(rgn) != MAX_NUMNODES) snprintf(nid_buf, sizeof(nid_buf), " on node %d", memblock_get_region_node(rgn)); #endif - pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n", - name, i, base, base + size - 1, size, nid_buf); + pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n", + name, i, base, base + size - 1, size, nid_buf, flags); } } diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 7f1a356153c0..19d5d4274e22 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -45,16 +45,17 @@ #include <linux/swapops.h> #include <linux/spinlock.h> #include <linux/eventfd.h> +#include <linux/poll.h> #include <linux/sort.h> #include <linux/fs.h> #include <linux/seq_file.h> -#include <linux/vmalloc.h> #include <linux/vmpressure.h> #include <linux/mm_inline.h> #include <linux/page_cgroup.h> #include <linux/cpu.h> #include <linux/oom.h> #include <linux/lockdep.h> +#include <linux/file.h> #include "internal.h" #include <net/sock.h> #include <net/ip.h> @@ -148,7 +149,7 @@ struct mem_cgroup_reclaim_iter { * matches memcg->dead_count of the hierarchy root group. */ struct mem_cgroup *last_visited; - unsigned long last_dead_count; + int last_dead_count; /* scan generation, increased every round-trip */ unsigned int generation; @@ -227,6 +228,46 @@ struct mem_cgroup_eventfd_list { struct eventfd_ctx *eventfd; }; +/* + * cgroup_event represents events which userspace want to receive. + */ +struct mem_cgroup_event { + /* + * memcg which the event belongs to. + */ + struct mem_cgroup *memcg; + /* + * eventfd to signal userspace about the event. + */ + struct eventfd_ctx *eventfd; + /* + * Each of these stored in a list by the cgroup. + */ + struct list_head list; + /* + * register_event() callback will be used to add new userspace + * waiter for changes related to this event. Use eventfd_signal() + * on eventfd to send notification to userspace. + */ + int (*register_event)(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, const char *args); + /* + * unregister_event() callback will be called when userspace closes + * the eventfd or on cgroup removing. This callback must be set, + * if you want provide notification functionality. + */ + void (*unregister_event)(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd); + /* + * All fields below needed to unregister event when + * userspace closes eventfd. + */ + poll_table pt; + wait_queue_head_t *wqh; + wait_queue_t wait; + struct work_struct remove; +}; + static void mem_cgroup_threshold(struct mem_cgroup *memcg); static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); @@ -331,27 +372,20 @@ struct mem_cgroup { atomic_t numainfo_updating; #endif + /* List of events which userspace want to receive */ + struct list_head event_list; + spinlock_t event_list_lock; + struct mem_cgroup_per_node *nodeinfo[0]; /* WARNING: nodeinfo must be the last member here */ }; -static size_t memcg_size(void) -{ - return sizeof(struct mem_cgroup) + - nr_node_ids * sizeof(struct mem_cgroup_per_node *); -} - /* internal only representation about the status of kmem accounting. */ enum { - KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ - KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ + KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */ KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ }; -/* We account when limit is on, but only after call sites are patched */ -#define KMEM_ACCOUNTED_MASK \ - ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) - #ifdef CONFIG_MEMCG_KMEM static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) { @@ -363,16 +397,6 @@ static bool memcg_kmem_is_active(struct mem_cgroup *memcg) return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); } -static void memcg_kmem_set_activated(struct mem_cgroup *memcg) -{ - set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); -} - -static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) -{ - clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); -} - static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) { /* @@ -490,11 +514,6 @@ struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; } -struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css) -{ - return &mem_cgroup_from_css(css)->vmpressure; -} - static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) { return (memcg == root_mem_cgroup); @@ -1098,16 +1117,22 @@ skip_node: * skipped and we should continue the tree walk. * last_visited css is safe to use because it is * protected by css_get and the tree walk is rcu safe. + * + * We do not take a reference on the root of the tree walk + * because we might race with the root removal when it would + * be the only node in the iterated hierarchy and mem_cgroup_iter + * would end up in an endless loop because it expects that at + * least one valid node will be returned. Root cannot disappear + * because caller of the iterator should hold it already so + * skipping css reference should be safe. */ if (next_css) { - struct mem_cgroup *mem = mem_cgroup_from_css(next_css); + if ((next_css->flags & CSS_ONLINE) && + (next_css == &root->css || css_tryget(next_css))) + return mem_cgroup_from_css(next_css); - if (css_tryget(&mem->css)) - return mem; - else { - prev_css = next_css; - goto skip_node; - } + prev_css = next_css; + goto skip_node; } return NULL; @@ -1141,7 +1166,15 @@ mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, if (iter->last_dead_count == *sequence) { smp_rmb(); position = iter->last_visited; - if (position && !css_tryget(&position->css)) + + /* + * We cannot take a reference to root because we might race + * with root removal and returning NULL would end up in + * an endless loop on the iterator user level when root + * would be returned all the time. + */ + if (position && position != root && + !css_tryget(&position->css)) position = NULL; } return position; @@ -1150,9 +1183,11 @@ mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, struct mem_cgroup *last_visited, struct mem_cgroup *new_position, + struct mem_cgroup *root, int sequence) { - if (last_visited) + /* root reference counting symmetric to mem_cgroup_iter_load */ + if (last_visited && last_visited != root) css_put(&last_visited->css); /* * We store the sequence count from the time @last_visited was @@ -1227,7 +1262,8 @@ struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, memcg = __mem_cgroup_iter_next(root, last_visited); if (reclaim) { - mem_cgroup_iter_update(iter, last_visited, memcg, seq); + mem_cgroup_iter_update(iter, last_visited, memcg, root, + seq); if (!memcg) iter->generation++; @@ -1647,13 +1683,13 @@ static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, */ void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) { - struct cgroup *task_cgrp; - struct cgroup *mem_cgrp; /* - * Need a buffer in BSS, can't rely on allocations. The code relies - * on the assumption that OOM is serialized for memory controller. - * If this assumption is broken, revisit this code. + * protects memcg_name and makes sure that parallel ooms do not + * interleave */ + static DEFINE_SPINLOCK(oom_info_lock); + struct cgroup *task_cgrp; + struct cgroup *mem_cgrp; static char memcg_name[PATH_MAX]; int ret; struct mem_cgroup *iter; @@ -1662,6 +1698,7 @@ void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) if (!p) return; + spin_lock(&oom_info_lock); rcu_read_lock(); mem_cgrp = memcg->css.cgroup; @@ -1730,6 +1767,7 @@ done: pr_cont("\n"); } + spin_unlock(&oom_info_lock); } /* @@ -1822,13 +1860,18 @@ static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, break; }; points = oom_badness(task, memcg, NULL, totalpages); - if (points > chosen_points) { - if (chosen) - put_task_struct(chosen); - chosen = task; - chosen_points = points; - get_task_struct(chosen); - } + if (!points || points < chosen_points) + continue; + /* Prefer thread group leaders for display purposes */ + if (points == chosen_points && + thread_group_leader(chosen)) + continue; + + if (chosen) + put_task_struct(chosen); + chosen = task; + chosen_points = points; + get_task_struct(chosen); } css_task_iter_end(&it); } @@ -2861,7 +2904,7 @@ struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) unsigned short id; swp_entry_t ent; - VM_BUG_ON(!PageLocked(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); pc = lookup_page_cgroup(page); lock_page_cgroup(pc); @@ -2895,7 +2938,7 @@ static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, bool anon; lock_page_cgroup(pc); - VM_BUG_ON(PageCgroupUsed(pc)); + VM_BUG_ON_PAGE(PageCgroupUsed(pc), page); /* * we don't need page_cgroup_lock about tail pages, becase they are not * accessed by any other context at this point. @@ -2930,7 +2973,7 @@ static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, if (lrucare) { if (was_on_lru) { lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); - VM_BUG_ON(PageLRU(page)); + VM_BUG_ON_PAGE(PageLRU(page), page); SetPageLRU(page); add_page_to_lru_list(page, lruvec, page_lru(page)); } @@ -2956,10 +2999,12 @@ static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, static DEFINE_MUTEX(set_limit_mutex); #ifdef CONFIG_MEMCG_KMEM +static DEFINE_MUTEX(activate_kmem_mutex); + static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) { return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && - (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); + memcg_kmem_is_active(memcg); } /* @@ -2976,10 +3021,9 @@ static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) } #ifdef CONFIG_SLABINFO -static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css, - struct cftype *cft, struct seq_file *m) +static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v) { - struct mem_cgroup *memcg = mem_cgroup_from_css(css); + struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); struct memcg_cache_params *params; if (!memcg_can_account_kmem(memcg)) @@ -3059,16 +3103,6 @@ static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) css_put(&memcg->css); } -void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) -{ - if (!memcg) - return; - - mutex_lock(&memcg->slab_caches_mutex); - list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); - mutex_unlock(&memcg->slab_caches_mutex); -} - /* * helper for acessing a memcg's index. It will be used as an index in the * child cache array in kmem_cache, and also to derive its name. This function @@ -3079,43 +3113,6 @@ int memcg_cache_id(struct mem_cgroup *memcg) return memcg ? memcg->kmemcg_id : -1; } -/* - * This ends up being protected by the set_limit mutex, during normal - * operation, because that is its main call site. - * - * But when we create a new cache, we can call this as well if its parent - * is kmem-limited. That will have to hold set_limit_mutex as well. - */ -int memcg_update_cache_sizes(struct mem_cgroup *memcg) -{ - int num, ret; - - num = ida_simple_get(&kmem_limited_groups, - 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); - if (num < 0) - return num; - /* - * After this point, kmem_accounted (that we test atomically in - * the beginning of this conditional), is no longer 0. This - * guarantees only one process will set the following boolean - * to true. We don't need test_and_set because we're protected - * by the set_limit_mutex anyway. - */ - memcg_kmem_set_activated(memcg); - - ret = memcg_update_all_caches(num+1); - if (ret) { - ida_simple_remove(&kmem_limited_groups, num); - memcg_kmem_clear_activated(memcg); - return ret; - } - - memcg->kmemcg_id = num; - INIT_LIST_HEAD(&memcg->memcg_slab_caches); - mutex_init(&memcg->slab_caches_mutex); - return 0; -} - static size_t memcg_caches_array_size(int num_groups) { ssize_t size; @@ -3152,18 +3149,17 @@ int memcg_update_cache_size(struct kmem_cache *s, int num_groups) if (num_groups > memcg_limited_groups_array_size) { int i; + struct memcg_cache_params *new_params; ssize_t size = memcg_caches_array_size(num_groups); size *= sizeof(void *); size += offsetof(struct memcg_cache_params, memcg_caches); - s->memcg_params = kzalloc(size, GFP_KERNEL); - if (!s->memcg_params) { - s->memcg_params = cur_params; + new_params = kzalloc(size, GFP_KERNEL); + if (!new_params) return -ENOMEM; - } - s->memcg_params->is_root_cache = true; + new_params->is_root_cache = true; /* * There is the chance it will be bigger than @@ -3177,7 +3173,7 @@ int memcg_update_cache_size(struct kmem_cache *s, int num_groups) for (i = 0; i < memcg_limited_groups_array_size; i++) { if (!cur_params->memcg_caches[i]) continue; - s->memcg_params->memcg_caches[i] = + new_params->memcg_caches[i] = cur_params->memcg_caches[i]; } @@ -3190,13 +3186,15 @@ int memcg_update_cache_size(struct kmem_cache *s, int num_groups) * bigger than the others. And all updates will reset this * anyway. */ - kfree(cur_params); + rcu_assign_pointer(s->memcg_params, new_params); + if (cur_params) + kfree_rcu(cur_params, rcu_head); } return 0; } -int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, - struct kmem_cache *root_cache) +int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s, + struct kmem_cache *root_cache) { size_t size; @@ -3224,35 +3222,85 @@ int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, return 0; } -void memcg_release_cache(struct kmem_cache *s) +void memcg_free_cache_params(struct kmem_cache *s) +{ + kfree(s->memcg_params); +} + +void memcg_register_cache(struct kmem_cache *s) { struct kmem_cache *root; struct mem_cgroup *memcg; int id; - /* - * This happens, for instance, when a root cache goes away before we - * add any memcg. - */ - if (!s->memcg_params) + if (is_root_cache(s)) return; - if (s->memcg_params->is_root_cache) - goto out; + /* + * Holding the slab_mutex assures nobody will touch the memcg_caches + * array while we are modifying it. + */ + lockdep_assert_held(&slab_mutex); + root = s->memcg_params->root_cache; memcg = s->memcg_params->memcg; - id = memcg_cache_id(memcg); + id = memcg_cache_id(memcg); + + css_get(&memcg->css); + + + /* + * Since readers won't lock (see cache_from_memcg_idx()), we need a + * barrier here to ensure nobody will see the kmem_cache partially + * initialized. + */ + smp_wmb(); + + /* + * Initialize the pointer to this cache in its parent's memcg_params + * before adding it to the memcg_slab_caches list, otherwise we can + * fail to convert memcg_params_to_cache() while traversing the list. + */ + VM_BUG_ON(root->memcg_params->memcg_caches[id]); + root->memcg_params->memcg_caches[id] = s; + + mutex_lock(&memcg->slab_caches_mutex); + list_add(&s->memcg_params->list, &memcg->memcg_slab_caches); + mutex_unlock(&memcg->slab_caches_mutex); +} + +void memcg_unregister_cache(struct kmem_cache *s) +{ + struct kmem_cache *root; + struct mem_cgroup *memcg; + int id; + + if (is_root_cache(s)) + return; + + /* + * Holding the slab_mutex assures nobody will touch the memcg_caches + * array while we are modifying it. + */ + lockdep_assert_held(&slab_mutex); root = s->memcg_params->root_cache; - root->memcg_params->memcg_caches[id] = NULL; + memcg = s->memcg_params->memcg; + id = memcg_cache_id(memcg); mutex_lock(&memcg->slab_caches_mutex); list_del(&s->memcg_params->list); mutex_unlock(&memcg->slab_caches_mutex); + /* + * Clear the pointer to this cache in its parent's memcg_params only + * after removing it from the memcg_slab_caches list, otherwise we can + * fail to convert memcg_params_to_cache() while traversing the list. + */ + VM_BUG_ON(!root->memcg_params->memcg_caches[id]); + root->memcg_params->memcg_caches[id] = NULL; + css_put(&memcg->css); -out: - kfree(s->memcg_params); } /* @@ -3311,11 +3359,9 @@ static void kmem_cache_destroy_work_func(struct work_struct *w) * So if we aren't down to zero, we'll just schedule a worker and try * again */ - if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { + if (atomic_read(&cachep->memcg_params->nr_pages) != 0) kmem_cache_shrink(cachep); - if (atomic_read(&cachep->memcg_params->nr_pages) == 0) - return; - } else + else kmem_cache_destroy(cachep); } @@ -3351,27 +3397,16 @@ void mem_cgroup_destroy_cache(struct kmem_cache *cachep) schedule_work(&cachep->memcg_params->destroy); } -/* - * This lock protects updaters, not readers. We want readers to be as fast as - * they can, and they will either see NULL or a valid cache value. Our model - * allow them to see NULL, in which case the root memcg will be selected. - * - * We need this lock because multiple allocations to the same cache from a non - * will span more than one worker. Only one of them can create the cache. - */ -static DEFINE_MUTEX(memcg_cache_mutex); - -/* - * Called with memcg_cache_mutex held - */ -static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, - struct kmem_cache *s) +static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, + struct kmem_cache *s) { struct kmem_cache *new; static char *tmp_name = NULL; + static DEFINE_MUTEX(mutex); /* protects tmp_name */ - lockdep_assert_held(&memcg_cache_mutex); + BUG_ON(!memcg_can_account_kmem(memcg)); + mutex_lock(&mutex); /* * kmem_cache_create_memcg duplicates the given name and * cgroup_name for this name requires RCU context. @@ -3394,47 +3429,13 @@ static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, if (new) new->allocflags |= __GFP_KMEMCG; + else + new = s; + mutex_unlock(&mutex); return new; } -static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, - struct kmem_cache *cachep) -{ - struct kmem_cache *new_cachep; - int idx; - - BUG_ON(!memcg_can_account_kmem(memcg)); - - idx = memcg_cache_id(memcg); - - mutex_lock(&memcg_cache_mutex); - new_cachep = cache_from_memcg_idx(cachep, idx); - if (new_cachep) { - css_put(&memcg->css); - goto out; - } - - new_cachep = kmem_cache_dup(memcg, cachep); - if (new_cachep == NULL) { - new_cachep = cachep; - css_put(&memcg->css); - goto out; - } - - atomic_set(&new_cachep->memcg_params->nr_pages , 0); - - cachep->memcg_params->memcg_caches[idx] = new_cachep; - /* - * the readers won't lock, make sure everybody sees the updated value, - * so they won't put stuff in the queue again for no reason - */ - wmb(); -out: - mutex_unlock(&memcg_cache_mutex); - return new_cachep; -} - void kmem_cache_destroy_memcg_children(struct kmem_cache *s) { struct kmem_cache *c; @@ -3452,9 +3453,10 @@ void kmem_cache_destroy_memcg_children(struct kmem_cache *s) * * Still, we don't want anyone else freeing memcg_caches under our * noses, which can happen if a new memcg comes to life. As usual, - * we'll take the set_limit_mutex to protect ourselves against this. + * we'll take the activate_kmem_mutex to protect ourselves against + * this. */ - mutex_lock(&set_limit_mutex); + mutex_lock(&activate_kmem_mutex); for_each_memcg_cache_index(i) { c = cache_from_memcg_idx(s, i); if (!c) @@ -3477,7 +3479,7 @@ void kmem_cache_destroy_memcg_children(struct kmem_cache *s) cancel_work_sync(&c->memcg_params->destroy); kmem_cache_destroy(c); } - mutex_unlock(&set_limit_mutex); + mutex_unlock(&activate_kmem_mutex); } struct create_work { @@ -3509,6 +3511,7 @@ static void memcg_create_cache_work_func(struct work_struct *w) cw = container_of(w, struct create_work, work); memcg_create_kmem_cache(cw->memcg, cw->cachep); + css_put(&cw->memcg->css); kfree(cw); } @@ -3568,7 +3571,7 @@ struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) { struct mem_cgroup *memcg; - int idx; + struct kmem_cache *memcg_cachep; VM_BUG_ON(!cachep->memcg_params); VM_BUG_ON(!cachep->memcg_params->is_root_cache); @@ -3582,15 +3585,9 @@ struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, if (!memcg_can_account_kmem(memcg)) goto out; - idx = memcg_cache_id(memcg); - - /* - * barrier to mare sure we're always seeing the up to date value. The - * code updating memcg_caches will issue a write barrier to match this. - */ - read_barrier_depends(); - if (likely(cache_from_memcg_idx(cachep, idx))) { - cachep = cache_from_memcg_idx(cachep, idx); + memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg)); + if (likely(memcg_cachep)) { + cachep = memcg_cachep; goto out; } @@ -3744,7 +3741,7 @@ void __memcg_kmem_uncharge_pages(struct page *page, int order) if (!memcg) return; - VM_BUG_ON(mem_cgroup_is_root(memcg)); + VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); memcg_uncharge_kmem(memcg, PAGE_SIZE << order); } #else @@ -3823,7 +3820,7 @@ static int mem_cgroup_move_account(struct page *page, bool anon = PageAnon(page); VM_BUG_ON(from == to); - VM_BUG_ON(PageLRU(page)); + VM_BUG_ON_PAGE(PageLRU(page), page); /* * The page is isolated from LRU. So, collapse function * will not handle this page. But page splitting can happen. @@ -3916,7 +3913,7 @@ static int mem_cgroup_move_parent(struct page *page, parent = root_mem_cgroup; if (nr_pages > 1) { - VM_BUG_ON(!PageTransHuge(page)); + VM_BUG_ON_PAGE(!PageTransHuge(page), page); flags = compound_lock_irqsave(page); } @@ -3950,7 +3947,7 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, if (PageTransHuge(page)) { nr_pages <<= compound_order(page); - VM_BUG_ON(!PageTransHuge(page)); + VM_BUG_ON_PAGE(!PageTransHuge(page), page); /* * Never OOM-kill a process for a huge page. The * fault handler will fall back to regular pages. @@ -3970,8 +3967,8 @@ int mem_cgroup_newpage_charge(struct page *page, { if (mem_cgroup_disabled()) return 0; - VM_BUG_ON(page_mapped(page)); - VM_BUG_ON(page->mapping && !PageAnon(page)); + VM_BUG_ON_PAGE(page_mapped(page), page); + VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page); VM_BUG_ON(!mm); return mem_cgroup_charge_common(page, mm, gfp_mask, MEM_CGROUP_CHARGE_TYPE_ANON); @@ -4175,7 +4172,7 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, if (PageTransHuge(page)) { nr_pages <<= compound_order(page); - VM_BUG_ON(!PageTransHuge(page)); + VM_BUG_ON_PAGE(!PageTransHuge(page), page); } /* * Check if our page_cgroup is valid @@ -4267,7 +4264,7 @@ void mem_cgroup_uncharge_page(struct page *page) /* early check. */ if (page_mapped(page)) return; - VM_BUG_ON(page->mapping && !PageAnon(page)); + VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page); /* * If the page is in swap cache, uncharge should be deferred * to the swap path, which also properly accounts swap usage @@ -4287,8 +4284,8 @@ void mem_cgroup_uncharge_page(struct page *page) void mem_cgroup_uncharge_cache_page(struct page *page) { - VM_BUG_ON(page_mapped(page)); - VM_BUG_ON(page->mapping); + VM_BUG_ON_PAGE(page_mapped(page), page); + VM_BUG_ON_PAGE(page->mapping, page); __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); } @@ -5112,14 +5109,12 @@ static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) return val << PAGE_SHIFT; } -static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css, - struct cftype *cft, struct file *file, - char __user *buf, size_t nbytes, loff_t *ppos) +static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, + struct cftype *cft) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); - char str[64]; u64 val; - int name, len; + int name; enum res_type type; type = MEMFILE_TYPE(cft->private); @@ -5145,15 +5140,26 @@ static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css, BUG(); } - len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); - return simple_read_from_buffer(buf, nbytes, ppos, str, len); + return val; } -static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val) -{ - int ret = -EINVAL; #ifdef CONFIG_MEMCG_KMEM - struct mem_cgroup *memcg = mem_cgroup_from_css(css); +/* should be called with activate_kmem_mutex held */ +static int __memcg_activate_kmem(struct mem_cgroup *memcg, + unsigned long long limit) +{ + int err = 0; + int memcg_id; + + if (memcg_kmem_is_active(memcg)) + return 0; + + /* + * We are going to allocate memory for data shared by all memory + * cgroups so let's stop accounting here. + */ + memcg_stop_kmem_account(); + /* * For simplicity, we won't allow this to be disabled. It also can't * be changed if the cgroup has children already, or if tasks had @@ -5167,72 +5173,101 @@ static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val) * of course permitted. */ mutex_lock(&memcg_create_mutex); - mutex_lock(&set_limit_mutex); - if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) { - if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) { - ret = -EBUSY; - goto out; - } - ret = res_counter_set_limit(&memcg->kmem, val); - VM_BUG_ON(ret); + if (cgroup_task_count(memcg->css.cgroup) || memcg_has_children(memcg)) + err = -EBUSY; + mutex_unlock(&memcg_create_mutex); + if (err) + goto out; - ret = memcg_update_cache_sizes(memcg); - if (ret) { - res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX); - goto out; - } - static_key_slow_inc(&memcg_kmem_enabled_key); - /* - * setting the active bit after the inc will guarantee no one - * starts accounting before all call sites are patched - */ - memcg_kmem_set_active(memcg); - } else - ret = res_counter_set_limit(&memcg->kmem, val); + memcg_id = ida_simple_get(&kmem_limited_groups, + 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); + if (memcg_id < 0) { + err = memcg_id; + goto out; + } + + /* + * Make sure we have enough space for this cgroup in each root cache's + * memcg_params. + */ + err = memcg_update_all_caches(memcg_id + 1); + if (err) + goto out_rmid; + + memcg->kmemcg_id = memcg_id; + INIT_LIST_HEAD(&memcg->memcg_slab_caches); + mutex_init(&memcg->slab_caches_mutex); + + /* + * We couldn't have accounted to this cgroup, because it hasn't got the + * active bit set yet, so this should succeed. + */ + err = res_counter_set_limit(&memcg->kmem, limit); + VM_BUG_ON(err); + + static_key_slow_inc(&memcg_kmem_enabled_key); + /* + * Setting the active bit after enabling static branching will + * guarantee no one starts accounting before all call sites are + * patched. + */ + memcg_kmem_set_active(memcg); out: - mutex_unlock(&set_limit_mutex); - mutex_unlock(&memcg_create_mutex); -#endif + memcg_resume_kmem_account(); + return err; + +out_rmid: + ida_simple_remove(&kmem_limited_groups, memcg_id); + goto out; +} + +static int memcg_activate_kmem(struct mem_cgroup *memcg, + unsigned long long limit) +{ + int ret; + + mutex_lock(&activate_kmem_mutex); + ret = __memcg_activate_kmem(memcg, limit); + mutex_unlock(&activate_kmem_mutex); + return ret; +} + +static int memcg_update_kmem_limit(struct mem_cgroup *memcg, + unsigned long long val) +{ + int ret; + + if (!memcg_kmem_is_active(memcg)) + ret = memcg_activate_kmem(memcg, val); + else + ret = res_counter_set_limit(&memcg->kmem, val); return ret; } -#ifdef CONFIG_MEMCG_KMEM static int memcg_propagate_kmem(struct mem_cgroup *memcg) { int ret = 0; struct mem_cgroup *parent = parent_mem_cgroup(memcg); - if (!parent) - goto out; - memcg->kmem_account_flags = parent->kmem_account_flags; - /* - * When that happen, we need to disable the static branch only on those - * memcgs that enabled it. To achieve this, we would be forced to - * complicate the code by keeping track of which memcgs were the ones - * that actually enabled limits, and which ones got it from its - * parents. - * - * It is a lot simpler just to do static_key_slow_inc() on every child - * that is accounted. - */ - if (!memcg_kmem_is_active(memcg)) - goto out; + if (!parent) + return 0; + mutex_lock(&activate_kmem_mutex); /* - * __mem_cgroup_free() will issue static_key_slow_dec() because this - * memcg is active already. If the later initialization fails then the - * cgroup core triggers the cleanup so we do not have to do it here. + * If the parent cgroup is not kmem-active now, it cannot be activated + * after this point, because it has at least one child already. */ - static_key_slow_inc(&memcg_kmem_enabled_key); - - mutex_lock(&set_limit_mutex); - memcg_stop_kmem_account(); - ret = memcg_update_cache_sizes(memcg); - memcg_resume_kmem_account(); - mutex_unlock(&set_limit_mutex); -out: + if (memcg_kmem_is_active(parent)) + ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX); + mutex_unlock(&activate_kmem_mutex); return ret; } +#else +static int memcg_update_kmem_limit(struct mem_cgroup *memcg, + unsigned long long val) +{ + return -EINVAL; +} #endif /* CONFIG_MEMCG_KMEM */ /* @@ -5266,7 +5301,7 @@ static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft, else if (type == _MEMSWAP) ret = mem_cgroup_resize_memsw_limit(memcg, val); else if (type == _KMEM) - ret = memcg_update_kmem_limit(css, val); + ret = memcg_update_kmem_limit(memcg, val); else return -EINVAL; break; @@ -5383,8 +5418,7 @@ static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, #endif #ifdef CONFIG_NUMA -static int memcg_numa_stat_show(struct cgroup_subsys_state *css, - struct cftype *cft, struct seq_file *m) +static int memcg_numa_stat_show(struct seq_file *m, void *v) { struct numa_stat { const char *name; @@ -5400,7 +5434,7 @@ static int memcg_numa_stat_show(struct cgroup_subsys_state *css, const struct numa_stat *stat; int nid; unsigned long nr; - struct mem_cgroup *memcg = mem_cgroup_from_css(css); + struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); @@ -5439,10 +5473,9 @@ static inline void mem_cgroup_lru_names_not_uptodate(void) BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); } -static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft, - struct seq_file *m) +static int memcg_stat_show(struct seq_file *m, void *v) { - struct mem_cgroup *memcg = mem_cgroup_from_css(css); + struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); struct mem_cgroup *mi; unsigned int i; @@ -5651,13 +5684,11 @@ static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) mem_cgroup_oom_notify_cb(iter); } -static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css, - struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) +static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, const char *args, enum res_type type) { - struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup_thresholds *thresholds; struct mem_cgroup_threshold_ary *new; - enum res_type type = MEMFILE_TYPE(cft->private); u64 threshold, usage; int i, size, ret; @@ -5734,13 +5765,23 @@ unlock: return ret; } -static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css, - struct cftype *cft, struct eventfd_ctx *eventfd) +static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, const char *args) +{ + return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); +} + +static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, const char *args) +{ + return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); +} + +static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, enum res_type type) { - struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup_thresholds *thresholds; struct mem_cgroup_threshold_ary *new; - enum res_type type = MEMFILE_TYPE(cft->private); u64 usage; int i, j, size; @@ -5813,14 +5854,23 @@ unlock: mutex_unlock(&memcg->thresholds_lock); } -static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css, - struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) +static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd) +{ + return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); +} + +static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd) +{ + return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); +} + +static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, const char *args) { - struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup_eventfd_list *event; - enum res_type type = MEMFILE_TYPE(cft->private); - BUG_ON(type != _OOM_TYPE); event = kmalloc(sizeof(*event), GFP_KERNEL); if (!event) return -ENOMEM; @@ -5838,14 +5888,10 @@ static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css, return 0; } -static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css, - struct cftype *cft, struct eventfd_ctx *eventfd) +static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd) { - struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup_eventfd_list *ev, *tmp; - enum res_type type = MEMFILE_TYPE(cft->private); - - BUG_ON(type != _OOM_TYPE); spin_lock(&memcg_oom_lock); @@ -5859,17 +5905,12 @@ static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css, spin_unlock(&memcg_oom_lock); } -static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css, - struct cftype *cft, struct cgroup_map_cb *cb) +static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) { - struct mem_cgroup *memcg = mem_cgroup_from_css(css); - - cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); + struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); - if (atomic_read(&memcg->under_oom)) - cb->fill(cb, "under_oom", 1); - else - cb->fill(cb, "under_oom", 0); + seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); + seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom)); return 0; } @@ -5962,41 +6003,261 @@ static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) } #endif +/* + * DO NOT USE IN NEW FILES. + * + * "cgroup.event_control" implementation. + * + * This is way over-engineered. It tries to support fully configurable + * events for each user. Such level of flexibility is completely + * unnecessary especially in the light of the planned unified hierarchy. + * + * Please deprecate this and replace with something simpler if at all + * possible. + */ + +/* + * Unregister event and free resources. + * + * Gets called from workqueue. + */ +static void memcg_event_remove(struct work_struct *work) +{ + struct mem_cgroup_event *event = + container_of(work, struct mem_cgroup_event, remove); + struct mem_cgroup *memcg = event->memcg; + + remove_wait_queue(event->wqh, &event->wait); + + event->unregister_event(memcg, event->eventfd); + + /* Notify userspace the event is going away. */ + eventfd_signal(event->eventfd, 1); + + eventfd_ctx_put(event->eventfd); + kfree(event); + css_put(&memcg->css); +} + +/* + * Gets called on POLLHUP on eventfd when user closes it. + * + * Called with wqh->lock held and interrupts disabled. + */ +static int memcg_event_wake(wait_queue_t *wait, unsigned mode, + int sync, void *key) +{ + struct mem_cgroup_event *event = + container_of(wait, struct mem_cgroup_event, wait); + struct mem_cgroup *memcg = event->memcg; + unsigned long flags = (unsigned long)key; + + if (flags & POLLHUP) { + /* + * If the event has been detached at cgroup removal, we + * can simply return knowing the other side will cleanup + * for us. + * + * We can't race against event freeing since the other + * side will require wqh->lock via remove_wait_queue(), + * which we hold. + */ + spin_lock(&memcg->event_list_lock); + if (!list_empty(&event->list)) { + list_del_init(&event->list); + /* + * We are in atomic context, but cgroup_event_remove() + * may sleep, so we have to call it in workqueue. + */ + schedule_work(&event->remove); + } + spin_unlock(&memcg->event_list_lock); + } + + return 0; +} + +static void memcg_event_ptable_queue_proc(struct file *file, + wait_queue_head_t *wqh, poll_table *pt) +{ + struct mem_cgroup_event *event = + container_of(pt, struct mem_cgroup_event, pt); + + event->wqh = wqh; + add_wait_queue(wqh, &event->wait); +} + +/* + * DO NOT USE IN NEW FILES. + * + * Parse input and register new cgroup event handler. + * + * Input must be in format '<event_fd> <control_fd> <args>'. + * Interpretation of args is defined by control file implementation. + */ +static int memcg_write_event_control(struct cgroup_subsys_state *css, + struct cftype *cft, const char *buffer) +{ + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + struct mem_cgroup_event *event; + struct cgroup_subsys_state *cfile_css; + unsigned int efd, cfd; + struct fd efile; + struct fd cfile; + const char *name; + char *endp; + int ret; + + efd = simple_strtoul(buffer, &endp, 10); + if (*endp != ' ') + return -EINVAL; + buffer = endp + 1; + + cfd = simple_strtoul(buffer, &endp, 10); + if ((*endp != ' ') && (*endp != '\0')) + return -EINVAL; + buffer = endp + 1; + + event = kzalloc(sizeof(*event), GFP_KERNEL); + if (!event) + return -ENOMEM; + + event->memcg = memcg; + INIT_LIST_HEAD(&event->list); + init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); + init_waitqueue_func_entry(&event->wait, memcg_event_wake); + INIT_WORK(&event->remove, memcg_event_remove); + + efile = fdget(efd); + if (!efile.file) { + ret = -EBADF; + goto out_kfree; + } + + event->eventfd = eventfd_ctx_fileget(efile.file); + if (IS_ERR(event->eventfd)) { + ret = PTR_ERR(event->eventfd); + goto out_put_efile; + } + + cfile = fdget(cfd); + if (!cfile.file) { + ret = -EBADF; + goto out_put_eventfd; + } + + /* the process need read permission on control file */ + /* AV: shouldn't we check that it's been opened for read instead? */ + ret = inode_permission(file_inode(cfile.file), MAY_READ); + if (ret < 0) + goto out_put_cfile; + + /* + * Determine the event callbacks and set them in @event. This used + * to be done via struct cftype but cgroup core no longer knows + * about these events. The following is crude but the whole thing + * is for compatibility anyway. + * + * DO NOT ADD NEW FILES. + */ + name = cfile.file->f_dentry->d_name.name; + + if (!strcmp(name, "memory.usage_in_bytes")) { + event->register_event = mem_cgroup_usage_register_event; + event->unregister_event = mem_cgroup_usage_unregister_event; + } else if (!strcmp(name, "memory.oom_control")) { + event->register_event = mem_cgroup_oom_register_event; + event->unregister_event = mem_cgroup_oom_unregister_event; + } else if (!strcmp(name, "memory.pressure_level")) { + event->register_event = vmpressure_register_event; + event->unregister_event = vmpressure_unregister_event; + } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { + event->register_event = memsw_cgroup_usage_register_event; + event->unregister_event = memsw_cgroup_usage_unregister_event; + } else { + ret = -EINVAL; + goto out_put_cfile; + } + + /* + * Verify @cfile should belong to @css. Also, remaining events are + * automatically removed on cgroup destruction but the removal is + * asynchronous, so take an extra ref on @css. + */ + rcu_read_lock(); + + ret = -EINVAL; + cfile_css = css_from_dir(cfile.file->f_dentry->d_parent, + &mem_cgroup_subsys); + if (cfile_css == css && css_tryget(css)) + ret = 0; + + rcu_read_unlock(); + if (ret) + goto out_put_cfile; + + ret = event->register_event(memcg, event->eventfd, buffer); + if (ret) + goto out_put_css; + + efile.file->f_op->poll(efile.file, &event->pt); + + spin_lock(&memcg->event_list_lock); + list_add(&event->list, &memcg->event_list); + spin_unlock(&memcg->event_list_lock); + + fdput(cfile); + fdput(efile); + + return 0; + +out_put_css: + css_put(css); +out_put_cfile: + fdput(cfile); +out_put_eventfd: + eventfd_ctx_put(event->eventfd); +out_put_efile: + fdput(efile); +out_kfree: + kfree(event); + + return ret; +} + static struct cftype mem_cgroup_files[] = { { .name = "usage_in_bytes", .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), - .read = mem_cgroup_read, - .register_event = mem_cgroup_usage_register_event, - .unregister_event = mem_cgroup_usage_unregister_event, + .read_u64 = mem_cgroup_read_u64, }, { .name = "max_usage_in_bytes", .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), .trigger = mem_cgroup_reset, - .read = mem_cgroup_read, + .read_u64 = mem_cgroup_read_u64, }, { .name = "limit_in_bytes", .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), .write_string = mem_cgroup_write, - .read = mem_cgroup_read, + .read_u64 = mem_cgroup_read_u64, }, { .name = "soft_limit_in_bytes", .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), .write_string = mem_cgroup_write, - .read = mem_cgroup_read, + .read_u64 = mem_cgroup_read_u64, }, { .name = "failcnt", .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), .trigger = mem_cgroup_reset, - .read = mem_cgroup_read, + .read_u64 = mem_cgroup_read_u64, }, { .name = "stat", - .read_seq_string = memcg_stat_show, + .seq_show = memcg_stat_show, }, { .name = "force_empty", @@ -6009,6 +6270,12 @@ static struct cftype mem_cgroup_files[] = { .read_u64 = mem_cgroup_hierarchy_read, }, { + .name = "cgroup.event_control", /* XXX: for compat */ + .write_string = memcg_write_event_control, + .flags = CFTYPE_NO_PREFIX, + .mode = S_IWUGO, + }, + { .name = "swappiness", .read_u64 = mem_cgroup_swappiness_read, .write_u64 = mem_cgroup_swappiness_write, @@ -6020,21 +6287,17 @@ static struct cftype mem_cgroup_files[] = { }, { .name = "oom_control", - .read_map = mem_cgroup_oom_control_read, + .seq_show = mem_cgroup_oom_control_read, .write_u64 = mem_cgroup_oom_control_write, - .register_event = mem_cgroup_oom_register_event, - .unregister_event = mem_cgroup_oom_unregister_event, .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), }, { .name = "pressure_level", - .register_event = vmpressure_register_event, - .unregister_event = vmpressure_unregister_event, }, #ifdef CONFIG_NUMA { .name = "numa_stat", - .read_seq_string = memcg_numa_stat_show, + .seq_show = memcg_numa_stat_show, }, #endif #ifdef CONFIG_MEMCG_KMEM @@ -6042,29 +6305,29 @@ static struct cftype mem_cgroup_files[] = { .name = "kmem.limit_in_bytes", .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), .write_string = mem_cgroup_write, - .read = mem_cgroup_read, + .read_u64 = mem_cgroup_read_u64, }, { .name = "kmem.usage_in_bytes", .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), - .read = mem_cgroup_read, + .read_u64 = mem_cgroup_read_u64, }, { .name = "kmem.failcnt", .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), .trigger = mem_cgroup_reset, - .read = mem_cgroup_read, + .read_u64 = mem_cgroup_read_u64, }, { .name = "kmem.max_usage_in_bytes", .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), .trigger = mem_cgroup_reset, - .read = mem_cgroup_read, + .read_u64 = mem_cgroup_read_u64, }, #ifdef CONFIG_SLABINFO { .name = "kmem.slabinfo", - .read_seq_string = mem_cgroup_slabinfo_read, + .seq_show = mem_cgroup_slabinfo_read, }, #endif #endif @@ -6076,27 +6339,25 @@ static struct cftype memsw_cgroup_files[] = { { .name = "memsw.usage_in_bytes", .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), - .read = mem_cgroup_read, - .register_event = mem_cgroup_usage_register_event, - .unregister_event = mem_cgroup_usage_unregister_event, + .read_u64 = mem_cgroup_read_u64, }, { .name = "memsw.max_usage_in_bytes", .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), .trigger = mem_cgroup_reset, - .read = mem_cgroup_read, + .read_u64 = mem_cgroup_read_u64, }, { .name = "memsw.limit_in_bytes", .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), .write_string = mem_cgroup_write, - .read = mem_cgroup_read, + .read_u64 = mem_cgroup_read_u64, }, { .name = "memsw.failcnt", .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), .trigger = mem_cgroup_reset, - .read = mem_cgroup_read, + .read_u64 = mem_cgroup_read_u64, }, { }, /* terminate */ }; @@ -6139,14 +6400,12 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) static struct mem_cgroup *mem_cgroup_alloc(void) { struct mem_cgroup *memcg; - size_t size = memcg_size(); + size_t size; - /* Can be very big if nr_node_ids is very big */ - if (size < PAGE_SIZE) - memcg = kzalloc(size, GFP_KERNEL); - else - memcg = vzalloc(size); + size = sizeof(struct mem_cgroup); + size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); + memcg = kzalloc(size, GFP_KERNEL); if (!memcg) return NULL; @@ -6157,10 +6416,7 @@ static struct mem_cgroup *mem_cgroup_alloc(void) return memcg; out_free: - if (size < PAGE_SIZE) - kfree(memcg); - else - vfree(memcg); + kfree(memcg); return NULL; } @@ -6178,7 +6434,6 @@ out_free: static void __mem_cgroup_free(struct mem_cgroup *memcg) { int node; - size_t size = memcg_size(); mem_cgroup_remove_from_trees(memcg); @@ -6199,10 +6454,7 @@ static void __mem_cgroup_free(struct mem_cgroup *memcg) * the cgroup_lock. */ disarm_static_keys(memcg); - if (size < PAGE_SIZE) - kfree(memcg); - else - vfree(memcg); + kfree(memcg); } /* @@ -6268,6 +6520,8 @@ mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) mutex_init(&memcg->thresholds_lock); spin_lock_init(&memcg->move_lock); vmpressure_init(&memcg->vmpressure); + INIT_LIST_HEAD(&memcg->event_list); + spin_lock_init(&memcg->event_list_lock); return &memcg->css; @@ -6281,7 +6535,6 @@ mem_cgroup_css_online(struct cgroup_subsys_state *css) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css)); - int error = 0; if (css->cgroup->id > MEM_CGROUP_ID_MAX) return -ENOSPC; @@ -6316,10 +6569,9 @@ mem_cgroup_css_online(struct cgroup_subsys_state *css) if (parent != root_mem_cgroup) mem_cgroup_subsys.broken_hierarchy = true; } - - error = memcg_init_kmem(memcg, &mem_cgroup_subsys); mutex_unlock(&memcg_create_mutex); - return error; + + return memcg_init_kmem(memcg, &mem_cgroup_subsys); } /* @@ -6343,6 +6595,19 @@ static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) { struct mem_cgroup *memcg = mem_cgroup_from_css(css); + struct mem_cgroup_event *event, *tmp; + + /* + * Unregister events and notify userspace. + * Notify userspace about cgroup removing only after rmdir of cgroup + * directory to avoid race between userspace and kernelspace. + */ + spin_lock(&memcg->event_list_lock); + list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { + list_del_init(&event->list); + schedule_work(&event->remove); + } + spin_unlock(&memcg->event_list_lock); kmem_cgroup_css_offline(memcg); @@ -6615,7 +6880,7 @@ static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, enum mc_target_type ret = MC_TARGET_NONE; page = pmd_page(pmd); - VM_BUG_ON(!page || !PageHead(page)); + VM_BUG_ON_PAGE(!page || !PageHead(page), page); if (!move_anon()) return ret; pc = lookup_page_cgroup(page); diff --git a/mm/memory-failure.c b/mm/memory-failure.c index fabe55046c1d..4f08a2d61487 100644 --- a/mm/memory-failure.c +++ b/mm/memory-failure.c @@ -611,7 +611,7 @@ static int me_pagecache_clean(struct page *p, unsigned long pfn) } /* - * Dirty cache page page + * Dirty pagecache page * Issues: when the error hit a hole page the error is not properly * propagated. */ @@ -856,14 +856,14 @@ static int page_action(struct page_state *ps, struct page *p, * the pages and send SIGBUS to the processes if the data was dirty. */ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, - int trapno, int flags) + int trapno, int flags, struct page **hpagep) { enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; struct address_space *mapping; LIST_HEAD(tokill); int ret; int kill = 1, forcekill; - struct page *hpage = compound_head(p); + struct page *hpage = *hpagep; struct page *ppage; if (PageReserved(p) || PageSlab(p)) @@ -942,11 +942,14 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, * We pinned the head page for hwpoison handling, * now we split the thp and we are interested in * the hwpoisoned raw page, so move the refcount - * to it. + * to it. Similarly, page lock is shifted. */ if (hpage != p) { put_page(hpage); get_page(p); + lock_page(p); + unlock_page(hpage); + *hpagep = p; } /* THP is split, so ppage should be the real poisoned page. */ ppage = p; @@ -964,17 +967,11 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, if (kill) collect_procs(ppage, &tokill); - if (hpage != ppage) - lock_page(ppage); - ret = try_to_unmap(ppage, ttu); if (ret != SWAP_SUCCESS) printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", pfn, page_mapcount(ppage)); - if (hpage != ppage) - unlock_page(ppage); - /* * Now that the dirty bit has been propagated to the * struct page and all unmaps done we can decide if @@ -1193,8 +1190,12 @@ int memory_failure(unsigned long pfn, int trapno, int flags) /* * Now take care of user space mappings. * Abort on fail: __delete_from_page_cache() assumes unmapped page. + * + * When the raw error page is thp tail page, hpage points to the raw + * page after thp split. */ - if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) { + if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage) + != SWAP_SUCCESS) { printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); res = -EBUSY; goto out; @@ -1585,7 +1586,13 @@ static int __soft_offline_page(struct page *page, int flags) ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, MIGRATE_SYNC, MR_MEMORY_FAILURE); if (ret) { - putback_lru_pages(&pagelist); + if (!list_empty(&pagelist)) { + list_del(&page->lru); + dec_zone_page_state(page, NR_ISOLATED_ANON + + page_is_file_cache(page)); + putback_lru_page(page); + } + pr_info("soft offline: %#lx: migration failed %d, type %lx\n", pfn, ret, page->flags); if (ret > 0) diff --git a/mm/memory.c b/mm/memory.c index 6768ce9e57d2..be6a0c0d4ae0 100644 --- a/mm/memory.c +++ b/mm/memory.c @@ -59,6 +59,7 @@ #include <linux/gfp.h> #include <linux/migrate.h> #include <linux/string.h> +#include <linux/dma-debug.h> #include <asm/io.h> #include <asm/pgalloc.h> @@ -288,7 +289,7 @@ int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) return 0; batch = tlb->active; } - VM_BUG_ON(batch->nr > batch->max); + VM_BUG_ON_PAGE(batch->nr > batch->max, page); return batch->max - batch->nr; } @@ -670,7 +671,7 @@ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, current->comm, (long long)pte_val(pte), (long long)pmd_val(*pmd)); if (page) - dump_page(page); + dump_page(page, "bad pte"); printk(KERN_ALERT "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); @@ -2559,6 +2560,8 @@ static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) { + debug_dma_assert_idle(src); + /* * If the source page was a PFN mapping, we don't have * a "struct page" for it. We do a best-effort copy by @@ -2699,7 +2702,7 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, goto unwritable_page; } } else - VM_BUG_ON(!PageLocked(old_page)); + VM_BUG_ON_PAGE(!PageLocked(old_page), old_page); /* * Since we dropped the lock we need to revalidate @@ -3355,7 +3358,7 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, if (unlikely(!(ret & VM_FAULT_LOCKED))) lock_page(vmf.page); else - VM_BUG_ON(!PageLocked(vmf.page)); + VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); /* * Should we do an early C-O-W break? @@ -3392,7 +3395,7 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, goto unwritable_page; } } else - VM_BUG_ON(!PageLocked(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); page_mkwrite = 1; } } @@ -4272,11 +4275,20 @@ void copy_user_huge_page(struct page *dst, struct page *src, #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS + +static struct kmem_cache *page_ptl_cachep; + +void __init ptlock_cache_init(void) +{ + page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, + SLAB_PANIC, NULL); +} + bool ptlock_alloc(struct page *page) { spinlock_t *ptl; - ptl = kmalloc(sizeof(spinlock_t), GFP_KERNEL); + ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); if (!ptl) return false; page->ptl = ptl; @@ -4285,6 +4297,6 @@ bool ptlock_alloc(struct page *page) void ptlock_free(struct page *page) { - kfree(page->ptl); + kmem_cache_free(page_ptl_cachep, page->ptl); } #endif diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c index 489f235502db..a650db29606f 100644 --- a/mm/memory_hotplug.c +++ b/mm/memory_hotplug.c @@ -9,7 +9,6 @@ #include <linux/swap.h> #include <linux/interrupt.h> #include <linux/pagemap.h> -#include <linux/bootmem.h> #include <linux/compiler.h> #include <linux/export.h> #include <linux/pagevec.h> @@ -269,7 +268,7 @@ static void fix_zone_id(struct zone *zone, unsigned long start_pfn, } /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or - * alloc_bootmem_node_nopanic() */ + * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */ static int __ref ensure_zone_is_initialized(struct zone *zone, unsigned long start_pfn, unsigned long num_pages) { @@ -1108,17 +1107,18 @@ int __ref add_memory(int nid, u64 start, u64 size) if (ret) return ret; - lock_memory_hotplug(); - res = register_memory_resource(start, size); ret = -EEXIST; if (!res) - goto out; + return ret; { /* Stupid hack to suppress address-never-null warning */ void *p = NODE_DATA(nid); new_pgdat = !p; } + + lock_memory_hotplug(); + new_node = !node_online(nid); if (new_node) { pgdat = hotadd_new_pgdat(nid, start); @@ -1310,7 +1310,7 @@ do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) #ifdef CONFIG_DEBUG_VM printk(KERN_ALERT "removing pfn %lx from LRU failed\n", pfn); - dump_page(page); + dump_page(page, "failed to remove from LRU"); #endif put_page(page); /* Because we don't have big zone->lock. we should @@ -1446,6 +1446,7 @@ static int __init cmdline_parse_movable_node(char *p) * the kernel away from hotpluggable memory. */ memblock_set_bottom_up(true); + movable_node_enabled = true; #else pr_warn("movable_node option not supported\n"); #endif diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 0cd2c4d4e270..463b7fbf0d1d 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -1199,10 +1199,8 @@ static struct page *new_vma_page(struct page *page, unsigned long private, int * } if (PageHuge(page)) { - if (vma) - return alloc_huge_page_noerr(vma, address, 1); - else - return NULL; + BUG_ON(!vma); + return alloc_huge_page_noerr(vma, address, 1); } /* * if !vma, alloc_page_vma() will use task or system default policy @@ -2668,7 +2666,7 @@ static void __init check_numabalancing_enable(void) if (nr_node_ids > 1 && !numabalancing_override) { printk(KERN_INFO "Enabling automatic NUMA balancing. " - "Configure with numa_balancing= or sysctl"); + "Configure with numa_balancing= or the kernel.numa_balancing sysctl"); set_numabalancing_state(numabalancing_default); } } diff --git a/mm/migrate.c b/mm/migrate.c index 9194375b2307..734704f6f29b 100644 --- a/mm/migrate.c +++ b/mm/migrate.c @@ -72,28 +72,12 @@ int migrate_prep_local(void) } /* - * Add isolated pages on the list back to the LRU under page lock - * to avoid leaking evictable pages back onto unevictable list. - */ -void putback_lru_pages(struct list_head *l) -{ - struct page *page; - struct page *page2; - - list_for_each_entry_safe(page, page2, l, lru) { - list_del(&page->lru); - dec_zone_page_state(page, NR_ISOLATED_ANON + - page_is_file_cache(page)); - putback_lru_page(page); - } -} - -/* * Put previously isolated pages back onto the appropriate lists * from where they were once taken off for compaction/migration. * - * This function shall be used instead of putback_lru_pages(), - * whenever the isolated pageset has been built by isolate_migratepages_range() + * This function shall be used whenever the isolated pageset has been + * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range() + * and isolate_huge_page(). */ void putback_movable_pages(struct list_head *l) { @@ -199,7 +183,12 @@ out: */ static void remove_migration_ptes(struct page *old, struct page *new) { - rmap_walk(new, remove_migration_pte, old); + struct rmap_walk_control rwc = { + .rmap_one = remove_migration_pte, + .arg = old, + }; + + rmap_walk(new, &rwc); } /* @@ -510,7 +499,7 @@ void migrate_page_copy(struct page *newpage, struct page *page) if (PageUptodate(page)) SetPageUptodate(newpage); if (TestClearPageActive(page)) { - VM_BUG_ON(PageUnevictable(page)); + VM_BUG_ON_PAGE(PageUnevictable(page), page); SetPageActive(newpage); } else if (TestClearPageUnevictable(page)) SetPageUnevictable(newpage); @@ -563,14 +552,6 @@ void migrate_page_copy(struct page *newpage, struct page *page) * Migration functions ***********************************************************/ -/* Always fail migration. Used for mappings that are not movable */ -int fail_migrate_page(struct address_space *mapping, - struct page *newpage, struct page *page) -{ - return -EIO; -} -EXPORT_SYMBOL(fail_migrate_page); - /* * Common logic to directly migrate a single page suitable for * pages that do not use PagePrivate/PagePrivate2. @@ -890,7 +871,7 @@ static int __unmap_and_move(struct page *page, struct page *newpage, * free the metadata, so the page can be freed. */ if (!page->mapping) { - VM_BUG_ON(PageAnon(page)); + VM_BUG_ON_PAGE(PageAnon(page), page); if (page_has_private(page)) { try_to_free_buffers(page); goto uncharge; @@ -1008,7 +989,7 @@ static int unmap_and_move_huge_page(new_page_t get_new_page, { int rc = 0; int *result = NULL; - struct page *new_hpage = get_new_page(hpage, private, &result); + struct page *new_hpage; struct anon_vma *anon_vma = NULL; /* @@ -1018,9 +999,12 @@ static int unmap_and_move_huge_page(new_page_t get_new_page, * tables or check whether the hugepage is pmd-based or not before * kicking migration. */ - if (!hugepage_migration_support(page_hstate(hpage))) + if (!hugepage_migration_support(page_hstate(hpage))) { + putback_active_hugepage(hpage); return -ENOSYS; + } + new_hpage = get_new_page(hpage, private, &result); if (!new_hpage) return -ENOMEM; @@ -1120,7 +1104,12 @@ int migrate_pages(struct list_head *from, new_page_t get_new_page, nr_succeeded++; break; default: - /* Permanent failure */ + /* + * Permanent failure (-EBUSY, -ENOSYS, etc.): + * unlike -EAGAIN case, the failed page is + * removed from migration page list and not + * retried in the next outer loop. + */ nr_failed++; break; } @@ -1594,35 +1583,42 @@ bool migrate_ratelimited(int node) } /* Returns true if the node is migrate rate-limited after the update */ -bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages) +static bool numamigrate_update_ratelimit(pg_data_t *pgdat, + unsigned long nr_pages) { - bool rate_limited = false; - /* * Rate-limit the amount of data that is being migrated to a node. * Optimal placement is no good if the memory bus is saturated and * all the time is being spent migrating! */ - spin_lock(&pgdat->numabalancing_migrate_lock); if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) { + spin_lock(&pgdat->numabalancing_migrate_lock); pgdat->numabalancing_migrate_nr_pages = 0; pgdat->numabalancing_migrate_next_window = jiffies + msecs_to_jiffies(migrate_interval_millisecs); + spin_unlock(&pgdat->numabalancing_migrate_lock); } - if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) - rate_limited = true; - else - pgdat->numabalancing_migrate_nr_pages += nr_pages; - spin_unlock(&pgdat->numabalancing_migrate_lock); - - return rate_limited; + if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) { + trace_mm_numa_migrate_ratelimit(current, pgdat->node_id, + nr_pages); + return true; + } + + /* + * This is an unlocked non-atomic update so errors are possible. + * The consequences are failing to migrate when we potentiall should + * have which is not severe enough to warrant locking. If it is ever + * a problem, it can be converted to a per-cpu counter. + */ + pgdat->numabalancing_migrate_nr_pages += nr_pages; + return false; } -int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) +static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page) { int page_lru; - VM_BUG_ON(compound_order(page) && !PageTransHuge(page)); + VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page); /* Avoid migrating to a node that is nearly full */ if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page))) @@ -1705,7 +1701,12 @@ int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma, nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page, node, MIGRATE_ASYNC, MR_NUMA_MISPLACED); if (nr_remaining) { - putback_lru_pages(&migratepages); + if (!list_empty(&migratepages)) { + list_del(&page->lru); + dec_zone_page_state(page, NR_ISOLATED_ANON + + page_is_file_cache(page)); + putback_lru_page(page); + } isolated = 0; } else count_vm_numa_event(NUMA_PAGE_MIGRATE); @@ -1752,8 +1753,6 @@ int migrate_misplaced_transhuge_page(struct mm_struct *mm, if (!new_page) goto out_fail; - page_cpupid_xchg_last(new_page, page_cpupid_last(page)); - isolated = numamigrate_isolate_page(pgdat, page); if (!isolated) { put_page(new_page); diff --git a/mm/mincore.c b/mm/mincore.c index da2be56a7b8f..101623378fbf 100644 --- a/mm/mincore.c +++ b/mm/mincore.c @@ -225,13 +225,6 @@ static long do_mincore(unsigned long addr, unsigned long pages, unsigned char *v end = min(vma->vm_end, addr + (pages << PAGE_SHIFT)); - if (is_vm_hugetlb_page(vma)) { - mincore_hugetlb_page_range(vma, addr, end, vec); - return (end - addr) >> PAGE_SHIFT; - } - - end = pmd_addr_end(addr, end); - if (is_vm_hugetlb_page(vma)) mincore_hugetlb_page_range(vma, addr, end, vec); else diff --git a/mm/mlock.c b/mm/mlock.c index 192e6eebe4f2..4e1a68162285 100644 --- a/mm/mlock.c +++ b/mm/mlock.c @@ -91,6 +91,26 @@ void mlock_vma_page(struct page *page) } /* + * Isolate a page from LRU with optional get_page() pin. + * Assumes lru_lock already held and page already pinned. + */ +static bool __munlock_isolate_lru_page(struct page *page, bool getpage) +{ + if (PageLRU(page)) { + struct lruvec *lruvec; + + lruvec = mem_cgroup_page_lruvec(page, page_zone(page)); + if (getpage) + get_page(page); + ClearPageLRU(page); + del_page_from_lru_list(page, lruvec, page_lru(page)); + return true; + } + + return false; +} + +/* * Finish munlock after successful page isolation * * Page must be locked. This is a wrapper for try_to_munlock() @@ -126,9 +146,9 @@ static void __munlock_isolated_page(struct page *page) static void __munlock_isolation_failed(struct page *page) { if (PageUnevictable(page)) - count_vm_event(UNEVICTABLE_PGSTRANDED); + __count_vm_event(UNEVICTABLE_PGSTRANDED); else - count_vm_event(UNEVICTABLE_PGMUNLOCKED); + __count_vm_event(UNEVICTABLE_PGMUNLOCKED); } /** @@ -152,28 +172,34 @@ static void __munlock_isolation_failed(struct page *page) unsigned int munlock_vma_page(struct page *page) { unsigned int nr_pages; + struct zone *zone = page_zone(page); BUG_ON(!PageLocked(page)); - if (TestClearPageMlocked(page)) { - nr_pages = hpage_nr_pages(page); - mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); - if (!isolate_lru_page(page)) - __munlock_isolated_page(page); - else - __munlock_isolation_failed(page); - } else { - nr_pages = hpage_nr_pages(page); - } - /* - * Regardless of the original PageMlocked flag, we determine nr_pages - * after touching the flag. This leaves a possible race with a THP page - * split, such that a whole THP page was munlocked, but nr_pages == 1. - * Returning a smaller mask due to that is OK, the worst that can - * happen is subsequent useless scanning of the former tail pages. - * The NR_MLOCK accounting can however become broken. + * Serialize with any parallel __split_huge_page_refcount() which + * might otherwise copy PageMlocked to part of the tail pages before + * we clear it in the head page. It also stabilizes hpage_nr_pages(). */ + spin_lock_irq(&zone->lru_lock); + + nr_pages = hpage_nr_pages(page); + if (!TestClearPageMlocked(page)) + goto unlock_out; + + __mod_zone_page_state(zone, NR_MLOCK, -nr_pages); + + if (__munlock_isolate_lru_page(page, true)) { + spin_unlock_irq(&zone->lru_lock); + __munlock_isolated_page(page); + goto out; + } + __munlock_isolation_failed(page); + +unlock_out: + spin_unlock_irq(&zone->lru_lock); + +out: return nr_pages - 1; } @@ -253,8 +279,8 @@ static int __mlock_posix_error_return(long retval) static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, int *pgrescued) { - VM_BUG_ON(PageLRU(page)); - VM_BUG_ON(!PageLocked(page)); + VM_BUG_ON_PAGE(PageLRU(page), page); + VM_BUG_ON_PAGE(!PageLocked(page), page); if (page_mapcount(page) <= 1 && page_evictable(page)) { pagevec_add(pvec, page); @@ -310,34 +336,24 @@ static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) struct page *page = pvec->pages[i]; if (TestClearPageMlocked(page)) { - struct lruvec *lruvec; - int lru; - - if (PageLRU(page)) { - lruvec = mem_cgroup_page_lruvec(page, zone); - lru = page_lru(page); - /* - * We already have pin from follow_page_mask() - * so we can spare the get_page() here. - */ - ClearPageLRU(page); - del_page_from_lru_list(page, lruvec, lru); - } else { - __munlock_isolation_failed(page); - goto skip_munlock; - } - - } else { -skip_munlock: /* - * We won't be munlocking this page in the next phase - * but we still need to release the follow_page_mask() - * pin. We cannot do it under lru_lock however. If it's - * the last pin, __page_cache_release would deadlock. + * We already have pin from follow_page_mask() + * so we can spare the get_page() here. */ - pagevec_add(&pvec_putback, pvec->pages[i]); - pvec->pages[i] = NULL; + if (__munlock_isolate_lru_page(page, false)) + continue; + else + __munlock_isolation_failed(page); } + + /* + * We won't be munlocking this page in the next phase + * but we still need to release the follow_page_mask() + * pin. We cannot do it under lru_lock however. If it's + * the last pin, __page_cache_release() would deadlock. + */ + pagevec_add(&pvec_putback, pvec->pages[i]); + pvec->pages[i] = NULL; } delta_munlocked = -nr + pagevec_count(&pvec_putback); __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); @@ -709,19 +725,21 @@ SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) lru_add_drain_all(); /* flush pagevec */ - down_write(¤t->mm->mmap_sem); len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); start &= PAGE_MASK; - locked = len >> PAGE_SHIFT; - locked += current->mm->locked_vm; - lock_limit = rlimit(RLIMIT_MEMLOCK); lock_limit >>= PAGE_SHIFT; + locked = len >> PAGE_SHIFT; + + down_write(¤t->mm->mmap_sem); + + locked += current->mm->locked_vm; /* check against resource limits */ if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) error = do_mlock(start, len, 1); + up_write(¤t->mm->mmap_sem); if (!error) error = __mm_populate(start, len, 0); @@ -732,11 +750,13 @@ SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) { int ret; - down_write(¤t->mm->mmap_sem); len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); start &= PAGE_MASK; + + down_write(¤t->mm->mmap_sem); ret = do_mlock(start, len, 0); up_write(¤t->mm->mmap_sem); + return ret; } @@ -781,12 +801,12 @@ SYSCALL_DEFINE1(mlockall, int, flags) if (flags & MCL_CURRENT) lru_add_drain_all(); /* flush pagevec */ - down_write(¤t->mm->mmap_sem); - lock_limit = rlimit(RLIMIT_MEMLOCK); lock_limit >>= PAGE_SHIFT; ret = -ENOMEM; + down_write(¤t->mm->mmap_sem); + if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || capable(CAP_IPC_LOCK)) ret = do_mlockall(flags); diff --git a/mm/mm_init.c b/mm/mm_init.c index 68562e92d50c..857a6434e3a5 100644 --- a/mm/mm_init.c +++ b/mm/mm_init.c @@ -202,5 +202,4 @@ static int __init mm_sysfs_init(void) return 0; } - -__initcall(mm_sysfs_init); +pure_initcall(mm_sysfs_init); diff --git a/mm/mmap.c b/mm/mmap.c index 834b2d785f1e..20ff0c33274c 100644 --- a/mm/mmap.c +++ b/mm/mmap.c @@ -86,6 +86,7 @@ EXPORT_SYMBOL(vm_get_page_prot); int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */ int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */ +unsigned long sysctl_overcommit_kbytes __read_mostly; int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ @@ -893,7 +894,15 @@ again: remove_next = 1 + (end > next->vm_end); static inline int is_mergeable_vma(struct vm_area_struct *vma, struct file *file, unsigned long vm_flags) { - if (vma->vm_flags ^ vm_flags) + /* + * VM_SOFTDIRTY should not prevent from VMA merging, if we + * match the flags but dirty bit -- the caller should mark + * merged VMA as dirty. If dirty bit won't be excluded from + * comparison, we increase pressue on the memory system forcing + * the kernel to generate new VMAs when old one could be + * extended instead. + */ + if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY) return 0; if (vma->vm_file != file) return 0; @@ -1082,7 +1091,7 @@ static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct * return a->vm_end == b->vm_start && mpol_equal(vma_policy(a), vma_policy(b)) && a->vm_file == b->vm_file && - !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) && + !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) && b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); } @@ -1190,6 +1199,24 @@ static inline unsigned long round_hint_to_min(unsigned long hint) return hint; } +static inline int mlock_future_check(struct mm_struct *mm, + unsigned long flags, + unsigned long len) +{ + unsigned long locked, lock_limit; + + /* mlock MCL_FUTURE? */ + if (flags & VM_LOCKED) { + locked = len >> PAGE_SHIFT; + locked += mm->locked_vm; + lock_limit = rlimit(RLIMIT_MEMLOCK); + lock_limit >>= PAGE_SHIFT; + if (locked > lock_limit && !capable(CAP_IPC_LOCK)) + return -EAGAIN; + } + return 0; +} + /* * The caller must hold down_write(¤t->mm->mmap_sem). */ @@ -1251,16 +1278,8 @@ unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, if (!can_do_mlock()) return -EPERM; - /* mlock MCL_FUTURE? */ - if (vm_flags & VM_LOCKED) { - unsigned long locked, lock_limit; - locked = len >> PAGE_SHIFT; - locked += mm->locked_vm; - lock_limit = rlimit(RLIMIT_MEMLOCK); - lock_limit >>= PAGE_SHIFT; - if (locked > lock_limit && !capable(CAP_IPC_LOCK)) - return -EAGAIN; - } + if (mlock_future_check(mm, vm_flags, len)) + return -EAGAIN; if (file) { struct inode *inode = file_inode(file); @@ -2591,18 +2610,9 @@ static unsigned long do_brk(unsigned long addr, unsigned long len) if (error & ~PAGE_MASK) return error; - /* - * mlock MCL_FUTURE? - */ - if (mm->def_flags & VM_LOCKED) { - unsigned long locked, lock_limit; - locked = len >> PAGE_SHIFT; - locked += mm->locked_vm; - lock_limit = rlimit(RLIMIT_MEMLOCK); - lock_limit >>= PAGE_SHIFT; - if (locked > lock_limit && !capable(CAP_IPC_LOCK)) - return -EAGAIN; - } + error = mlock_future_check(mm, mm->def_flags, len); + if (error) + return error; /* * mm->mmap_sem is required to protect against another thread @@ -3140,7 +3150,7 @@ static int init_user_reserve(void) sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); return 0; } -module_init(init_user_reserve) +subsys_initcall(init_user_reserve); /* * Initialise sysctl_admin_reserve_kbytes. @@ -3161,7 +3171,7 @@ static int init_admin_reserve(void) sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); return 0; } -module_init(init_admin_reserve) +subsys_initcall(init_admin_reserve); /* * Reinititalise user and admin reserves if memory is added or removed. @@ -3231,4 +3241,4 @@ static int __meminit init_reserve_notifier(void) return 0; } -module_init(init_reserve_notifier) +subsys_initcall(init_reserve_notifier); diff --git a/mm/mmu_notifier.c b/mm/mmu_notifier.c index 93e6089cb456..41cefdf0aadd 100644 --- a/mm/mmu_notifier.c +++ b/mm/mmu_notifier.c @@ -329,5 +329,4 @@ static int __init mmu_notifier_init(void) { return init_srcu_struct(&srcu); } - -module_init(mmu_notifier_init); +subsys_initcall(mmu_notifier_init); diff --git a/mm/mprotect.c b/mm/mprotect.c index bb53a6591aea..7332c1785744 100644 --- a/mm/mprotect.c +++ b/mm/mprotect.c @@ -23,6 +23,7 @@ #include <linux/mmu_notifier.h> #include <linux/migrate.h> #include <linux/perf_event.h> +#include <linux/ksm.h> #include <asm/uaccess.h> #include <asm/pgtable.h> #include <asm/cacheflush.h> @@ -63,7 +64,7 @@ static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd, ptent = *pte; page = vm_normal_page(vma, addr, oldpte); - if (page) { + if (page && !PageKsm(page)) { if (!pte_numa(oldpte)) { ptent = pte_mknuma(ptent); set_pte_at(mm, addr, pte, ptent); diff --git a/mm/nobootmem.c b/mm/nobootmem.c index 2c254d374655..f73f2987a852 100644 --- a/mm/nobootmem.c +++ b/mm/nobootmem.c @@ -41,11 +41,13 @@ static void * __init __alloc_memory_core_early(int nid, u64 size, u64 align, if (limit > memblock.current_limit) limit = memblock.current_limit; - addr = memblock_find_in_range_node(goal, limit, size, align, nid); + addr = memblock_find_in_range_node(size, align, goal, limit, nid); if (!addr) return NULL; - memblock_reserve(addr, size); + if (memblock_reserve(addr, size)) + return NULL; + ptr = phys_to_virt(addr); memset(ptr, 0, size); /* @@ -114,16 +116,27 @@ static unsigned long __init __free_memory_core(phys_addr_t start, static unsigned long __init free_low_memory_core_early(void) { unsigned long count = 0; - phys_addr_t start, end, size; + phys_addr_t start, end; u64 i; - for_each_free_mem_range(i, MAX_NUMNODES, &start, &end, NULL) + for_each_free_mem_range(i, NUMA_NO_NODE, &start, &end, NULL) count += __free_memory_core(start, end); - /* free range that is used for reserved array if we allocate it */ - size = get_allocated_memblock_reserved_regions_info(&start); - if (size) - count += __free_memory_core(start, start + size); +#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK + { + phys_addr_t size; + + /* Free memblock.reserved array if it was allocated */ + size = get_allocated_memblock_reserved_regions_info(&start); + if (size) + count += __free_memory_core(start, start + size); + + /* Free memblock.memory array if it was allocated */ + size = get_allocated_memblock_memory_regions_info(&start); + if (size) + count += __free_memory_core(start, start + size); + } +#endif return count; } @@ -161,7 +174,7 @@ unsigned long __init free_all_bootmem(void) reset_all_zones_managed_pages(); /* - * We need to use MAX_NUMNODES instead of NODE_DATA(0)->node_id + * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id * because in some case like Node0 doesn't have RAM installed * low ram will be on Node1 */ @@ -215,7 +228,7 @@ static void * __init ___alloc_bootmem_nopanic(unsigned long size, restart: - ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align, goal, limit); + ptr = __alloc_memory_core_early(NUMA_NO_NODE, size, align, goal, limit); if (ptr) return ptr; @@ -299,7 +312,7 @@ again: if (ptr) return ptr; - ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align, + ptr = __alloc_memory_core_early(NUMA_NO_NODE, size, align, goal, limit); if (ptr) return ptr; diff --git a/mm/nommu.c b/mm/nommu.c index fec093adad9c..8740213b1647 100644 --- a/mm/nommu.c +++ b/mm/nommu.c @@ -60,6 +60,7 @@ unsigned long highest_memmap_pfn; struct percpu_counter vm_committed_as; int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ int sysctl_overcommit_ratio = 50; /* default is 50% */ +unsigned long sysctl_overcommit_kbytes __read_mostly; int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ diff --git a/mm/oom_kill.c b/mm/oom_kill.c index 1e4a600a6163..37b1b1903fb2 100644 --- a/mm/oom_kill.c +++ b/mm/oom_kill.c @@ -47,19 +47,21 @@ static DEFINE_SPINLOCK(zone_scan_lock); #ifdef CONFIG_NUMA /** * has_intersects_mems_allowed() - check task eligiblity for kill - * @tsk: task struct of which task to consider + * @start: task struct of which task to consider * @mask: nodemask passed to page allocator for mempolicy ooms * * Task eligibility is determined by whether or not a candidate task, @tsk, * shares the same mempolicy nodes as current if it is bound by such a policy * and whether or not it has the same set of allowed cpuset nodes. */ -static bool has_intersects_mems_allowed(struct task_struct *tsk, +static bool has_intersects_mems_allowed(struct task_struct *start, const nodemask_t *mask) { - struct task_struct *start = tsk; + struct task_struct *tsk; + bool ret = false; - do { + rcu_read_lock(); + for_each_thread(start, tsk) { if (mask) { /* * If this is a mempolicy constrained oom, tsk's @@ -67,19 +69,20 @@ static bool has_intersects_mems_allowed(struct task_struct *tsk, * mempolicy intersects current, otherwise it may be * needlessly killed. */ - if (mempolicy_nodemask_intersects(tsk, mask)) - return true; + ret = mempolicy_nodemask_intersects(tsk, mask); } else { /* * This is not a mempolicy constrained oom, so only * check the mems of tsk's cpuset. */ - if (cpuset_mems_allowed_intersects(current, tsk)) - return true; + ret = cpuset_mems_allowed_intersects(current, tsk); } - } while_each_thread(start, tsk); + if (ret) + break; + } + rcu_read_unlock(); - return false; + return ret; } #else static bool has_intersects_mems_allowed(struct task_struct *tsk, @@ -97,16 +100,21 @@ static bool has_intersects_mems_allowed(struct task_struct *tsk, */ struct task_struct *find_lock_task_mm(struct task_struct *p) { - struct task_struct *t = p; + struct task_struct *t; - do { + rcu_read_lock(); + + for_each_thread(p, t) { task_lock(t); if (likely(t->mm)) - return t; + goto found; task_unlock(t); - } while_each_thread(p, t); + } + t = NULL; +found: + rcu_read_unlock(); - return NULL; + return t; } /* return true if the task is not adequate as candidate victim task. */ @@ -301,7 +309,7 @@ static struct task_struct *select_bad_process(unsigned int *ppoints, unsigned long chosen_points = 0; rcu_read_lock(); - do_each_thread(g, p) { + for_each_process_thread(g, p) { unsigned int points; switch (oom_scan_process_thread(p, totalpages, nodemask, @@ -319,11 +327,15 @@ static struct task_struct *select_bad_process(unsigned int *ppoints, break; }; points = oom_badness(p, NULL, nodemask, totalpages); - if (points > chosen_points) { - chosen = p; - chosen_points = points; - } - } while_each_thread(g, p); + if (!points || points < chosen_points) + continue; + /* Prefer thread group leaders for display purposes */ + if (points == chosen_points && thread_group_leader(chosen)) + continue; + + chosen = p; + chosen_points = points; + } if (chosen) get_task_struct(chosen); rcu_read_unlock(); @@ -406,7 +418,7 @@ void oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, { struct task_struct *victim = p; struct task_struct *child; - struct task_struct *t = p; + struct task_struct *t; struct mm_struct *mm; unsigned int victim_points = 0; static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, @@ -437,7 +449,7 @@ void oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, * still freeing memory. */ read_lock(&tasklist_lock); - do { + for_each_thread(p, t) { list_for_each_entry(child, &t->children, sibling) { unsigned int child_points; @@ -455,13 +467,11 @@ void oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, get_task_struct(victim); } } - } while_each_thread(p, t); + } read_unlock(&tasklist_lock); - rcu_read_lock(); p = find_lock_task_mm(victim); if (!p) { - rcu_read_unlock(); put_task_struct(victim); return; } else if (victim != p) { @@ -487,6 +497,7 @@ void oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, * That thread will now get access to memory reserves since it has a * pending fatal signal. */ + rcu_read_lock(); for_each_process(p) if (p->mm == mm && !same_thread_group(p, victim) && !(p->flags & PF_KTHREAD)) { diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 5248fe070aa4..e3758a09a009 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -205,7 +205,7 @@ static char * const zone_names[MAX_NR_ZONES] = { }; int min_free_kbytes = 1024; -int user_min_free_kbytes; +int user_min_free_kbytes = -1; static unsigned long __meminitdata nr_kernel_pages; static unsigned long __meminitdata nr_all_pages; @@ -295,7 +295,7 @@ static inline int bad_range(struct zone *zone, struct page *page) } #endif -static void bad_page(struct page *page) +static void bad_page(struct page *page, char *reason, unsigned long bad_flags) { static unsigned long resume; static unsigned long nr_shown; @@ -329,7 +329,7 @@ static void bad_page(struct page *page) printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", current->comm, page_to_pfn(page)); - dump_page(page); + dump_page_badflags(page, reason, bad_flags); print_modules(); dump_stack(); @@ -383,7 +383,7 @@ static int destroy_compound_page(struct page *page, unsigned long order) int bad = 0; if (unlikely(compound_order(page) != order)) { - bad_page(page); + bad_page(page, "wrong compound order", 0); bad++; } @@ -392,8 +392,11 @@ static int destroy_compound_page(struct page *page, unsigned long order) for (i = 1; i < nr_pages; i++) { struct page *p = page + i; - if (unlikely(!PageTail(p) || (p->first_page != page))) { - bad_page(page); + if (unlikely(!PageTail(p))) { + bad_page(page, "PageTail not set", 0); + bad++; + } else if (unlikely(p->first_page != page)) { + bad_page(page, "first_page not consistent", 0); bad++; } __ClearPageTail(p); @@ -506,12 +509,12 @@ static inline int page_is_buddy(struct page *page, struct page *buddy, return 0; if (page_is_guard(buddy) && page_order(buddy) == order) { - VM_BUG_ON(page_count(buddy) != 0); + VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); return 1; } if (PageBuddy(buddy) && page_order(buddy) == order) { - VM_BUG_ON(page_count(buddy) != 0); + VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); return 1; } return 0; @@ -561,8 +564,8 @@ static inline void __free_one_page(struct page *page, page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); - VM_BUG_ON(page_idx & ((1 << order) - 1)); - VM_BUG_ON(bad_range(zone, page)); + VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); + VM_BUG_ON_PAGE(bad_range(zone, page), page); while (order < MAX_ORDER-1) { buddy_idx = __find_buddy_index(page_idx, order); @@ -618,12 +621,23 @@ out: static inline int free_pages_check(struct page *page) { - if (unlikely(page_mapcount(page) | - (page->mapping != NULL) | - (atomic_read(&page->_count) != 0) | - (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | - (mem_cgroup_bad_page_check(page)))) { - bad_page(page); + char *bad_reason = NULL; + unsigned long bad_flags = 0; + + if (unlikely(page_mapcount(page))) + bad_reason = "nonzero mapcount"; + if (unlikely(page->mapping != NULL)) + bad_reason = "non-NULL mapping"; + if (unlikely(atomic_read(&page->_count) != 0)) + bad_reason = "nonzero _count"; + if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { + bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; + bad_flags = PAGE_FLAGS_CHECK_AT_FREE; + } + if (unlikely(mem_cgroup_bad_page_check(page))) + bad_reason = "cgroup check failed"; + if (unlikely(bad_reason)) { + bad_page(page, bad_reason, bad_flags); return 1; } page_cpupid_reset_last(page); @@ -813,7 +827,7 @@ static inline void expand(struct zone *zone, struct page *page, area--; high--; size >>= 1; - VM_BUG_ON(bad_range(zone, &page[size])); + VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); #ifdef CONFIG_DEBUG_PAGEALLOC if (high < debug_guardpage_minorder()) { @@ -843,12 +857,23 @@ static inline void expand(struct zone *zone, struct page *page, */ static inline int check_new_page(struct page *page) { - if (unlikely(page_mapcount(page) | - (page->mapping != NULL) | - (atomic_read(&page->_count) != 0) | - (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | - (mem_cgroup_bad_page_check(page)))) { - bad_page(page); + char *bad_reason = NULL; + unsigned long bad_flags = 0; + + if (unlikely(page_mapcount(page))) + bad_reason = "nonzero mapcount"; + if (unlikely(page->mapping != NULL)) + bad_reason = "non-NULL mapping"; + if (unlikely(atomic_read(&page->_count) != 0)) + bad_reason = "nonzero _count"; + if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { + bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; + bad_flags = PAGE_FLAGS_CHECK_AT_PREP; + } + if (unlikely(mem_cgroup_bad_page_check(page))) + bad_reason = "cgroup check failed"; + if (unlikely(bad_reason)) { + bad_page(page, bad_reason, bad_flags); return 1; } return 0; @@ -955,7 +980,7 @@ int move_freepages(struct zone *zone, for (page = start_page; page <= end_page;) { /* Make sure we are not inadvertently changing nodes */ - VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); + VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); if (!pfn_valid_within(page_to_pfn(page))) { page++; @@ -1404,8 +1429,8 @@ void split_page(struct page *page, unsigned int order) { int i; - VM_BUG_ON(PageCompound(page)); - VM_BUG_ON(!page_count(page)); + VM_BUG_ON_PAGE(PageCompound(page), page); + VM_BUG_ON_PAGE(!page_count(page), page); #ifdef CONFIG_KMEMCHECK /* @@ -1552,7 +1577,7 @@ again: zone_statistics(preferred_zone, zone, gfp_flags); local_irq_restore(flags); - VM_BUG_ON(bad_range(zone, page)); + VM_BUG_ON_PAGE(bad_range(zone, page), page); if (prep_new_page(page, order, gfp_flags)) goto again; return page; @@ -2072,13 +2097,6 @@ void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) return; /* - * Walking all memory to count page types is very expensive and should - * be inhibited in non-blockable contexts. - */ - if (!(gfp_mask & __GFP_WAIT)) - filter |= SHOW_MEM_FILTER_PAGE_COUNT; - - /* * This documents exceptions given to allocations in certain * contexts that are allowed to allocate outside current's set * of allowed nodes. @@ -2242,10 +2260,7 @@ __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, preferred_zone, migratetype); if (page) { preferred_zone->compact_blockskip_flush = false; - preferred_zone->compact_considered = 0; - preferred_zone->compact_defer_shift = 0; - if (order >= preferred_zone->compact_order_failed) - preferred_zone->compact_order_failed = order + 1; + compaction_defer_reset(preferred_zone, order, true); count_vm_event(COMPACTSUCCESS); return page; } @@ -2535,8 +2550,15 @@ rebalance: } /* Atomic allocations - we can't balance anything */ - if (!wait) + if (!wait) { + /* + * All existing users of the deprecated __GFP_NOFAIL are + * blockable, so warn of any new users that actually allow this + * type of allocation to fail. + */ + WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); goto nopage; + } /* Avoid recursion of direct reclaim */ if (current->flags & PF_MEMALLOC) @@ -3901,6 +3923,7 @@ static void setup_zone_migrate_reserve(struct zone *zone) struct page *page; unsigned long block_migratetype; int reserve; + int old_reserve; /* * Get the start pfn, end pfn and the number of blocks to reserve @@ -3922,6 +3945,12 @@ static void setup_zone_migrate_reserve(struct zone *zone) * future allocation of hugepages at runtime. */ reserve = min(2, reserve); + old_reserve = zone->nr_migrate_reserve_block; + + /* When memory hot-add, we almost always need to do nothing */ + if (reserve == old_reserve) + return; + zone->nr_migrate_reserve_block = reserve; for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { if (!pfn_valid(pfn)) @@ -3959,6 +3988,12 @@ static void setup_zone_migrate_reserve(struct zone *zone) reserve--; continue; } + } else if (!old_reserve) { + /* + * At boot time we don't need to scan the whole zone + * for turning off MIGRATE_RESERVE. + */ + break; } /* @@ -4209,7 +4244,6 @@ static noinline __init_refok int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) { int i; - struct pglist_data *pgdat = zone->zone_pgdat; size_t alloc_size; /* @@ -4225,7 +4259,8 @@ int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) if (!slab_is_available()) { zone->wait_table = (wait_queue_head_t *) - alloc_bootmem_node_nopanic(pgdat, alloc_size); + memblock_virt_alloc_node_nopanic( + alloc_size, zone->zone_pgdat->node_id); } else { /* * This case means that a zone whose size was 0 gets new memory @@ -4345,13 +4380,14 @@ bool __meminit early_pfn_in_nid(unsigned long pfn, int node) #endif /** - * free_bootmem_with_active_regions - Call free_bootmem_node for each active range + * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. - * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node + * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid * * If an architecture guarantees that all ranges registered with * add_active_ranges() contain no holes and may be freed, this - * this function may be used instead of calling free_bootmem() manually. + * this function may be used instead of calling memblock_free_early_nid() + * manually. */ void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) { @@ -4363,9 +4399,9 @@ void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) end_pfn = min(end_pfn, max_low_pfn); if (start_pfn < end_pfn) - free_bootmem_node(NODE_DATA(this_nid), - PFN_PHYS(start_pfn), - (end_pfn - start_pfn) << PAGE_SHIFT); + memblock_free_early_nid(PFN_PHYS(start_pfn), + (end_pfn - start_pfn) << PAGE_SHIFT, + this_nid); } } @@ -4636,8 +4672,9 @@ static void __init setup_usemap(struct pglist_data *pgdat, unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); zone->pageblock_flags = NULL; if (usemapsize) - zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, - usemapsize); + zone->pageblock_flags = + memblock_virt_alloc_node_nopanic(usemapsize, + pgdat->node_id); } #else static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, @@ -4831,7 +4868,8 @@ static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) size = (end - start) * sizeof(struct page); map = alloc_remap(pgdat->node_id, size); if (!map) - map = alloc_bootmem_node_nopanic(pgdat, size); + map = memblock_virt_alloc_node_nopanic(size, + pgdat->node_id); pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); } #ifndef CONFIG_NEED_MULTIPLE_NODES @@ -5012,9 +5050,33 @@ static void __init find_zone_movable_pfns_for_nodes(void) nodemask_t saved_node_state = node_states[N_MEMORY]; unsigned long totalpages = early_calculate_totalpages(); int usable_nodes = nodes_weight(node_states[N_MEMORY]); + struct memblock_type *type = &memblock.memory; + + /* Need to find movable_zone earlier when movable_node is specified. */ + find_usable_zone_for_movable(); + + /* + * If movable_node is specified, ignore kernelcore and movablecore + * options. + */ + if (movable_node_is_enabled()) { + for (i = 0; i < type->cnt; i++) { + if (!memblock_is_hotpluggable(&type->regions[i])) + continue; + + nid = type->regions[i].nid; + + usable_startpfn = PFN_DOWN(type->regions[i].base); + zone_movable_pfn[nid] = zone_movable_pfn[nid] ? + min(usable_startpfn, zone_movable_pfn[nid]) : + usable_startpfn; + } + + goto out2; + } /* - * If movablecore was specified, calculate what size of + * If movablecore=nn[KMG] was specified, calculate what size of * kernelcore that corresponds so that memory usable for * any allocation type is evenly spread. If both kernelcore * and movablecore are specified, then the value of kernelcore @@ -5040,7 +5102,6 @@ static void __init find_zone_movable_pfns_for_nodes(void) goto out; /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ - find_usable_zone_for_movable(); usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; restart: @@ -5131,6 +5192,7 @@ restart: if (usable_nodes && required_kernelcore > usable_nodes) goto restart; +out2: /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ for (nid = 0; nid < MAX_NUMNODES; nid++) zone_movable_pfn[nid] = @@ -5692,7 +5754,12 @@ module_init(init_per_zone_wmark_min) int min_free_kbytes_sysctl_handler(ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) { - proc_dointvec(table, write, buffer, length, ppos); + int rc; + + rc = proc_dointvec_minmax(table, write, buffer, length, ppos); + if (rc) + return rc; + if (write) { user_min_free_kbytes = min_free_kbytes; setup_per_zone_wmarks(); @@ -5857,7 +5924,7 @@ void *__init alloc_large_system_hash(const char *tablename, do { size = bucketsize << log2qty; if (flags & HASH_EARLY) - table = alloc_bootmem_nopanic(size); + table = memblock_virt_alloc_nopanic(size, 0); else if (hashdist) table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); else { @@ -5959,7 +6026,7 @@ void set_pageblock_flags_group(struct page *page, unsigned long flags, pfn = page_to_pfn(page); bitmap = get_pageblock_bitmap(zone, pfn); bitidx = pfn_to_bitidx(zone, pfn); - VM_BUG_ON(!zone_spans_pfn(zone, pfn)); + VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) if (flags & value) @@ -6457,12 +6524,24 @@ static void dump_page_flags(unsigned long flags) printk(")\n"); } -void dump_page(struct page *page) +void dump_page_badflags(struct page *page, char *reason, unsigned long badflags) { printk(KERN_ALERT "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", page, atomic_read(&page->_count), page_mapcount(page), page->mapping, page->index); dump_page_flags(page->flags); + if (reason) + pr_alert("page dumped because: %s\n", reason); + if (page->flags & badflags) { + pr_alert("bad because of flags:\n"); + dump_page_flags(page->flags & badflags); + } mem_cgroup_print_bad_page(page); } + +void dump_page(struct page *page, char *reason) +{ + dump_page_badflags(page, reason, 0); +} +EXPORT_SYMBOL_GPL(dump_page); diff --git a/mm/page_cgroup.c b/mm/page_cgroup.c index 6d757e3a872a..cfd162882c00 100644 --- a/mm/page_cgroup.c +++ b/mm/page_cgroup.c @@ -54,8 +54,9 @@ static int __init alloc_node_page_cgroup(int nid) table_size = sizeof(struct page_cgroup) * nr_pages; - base = __alloc_bootmem_node_nopanic(NODE_DATA(nid), - table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); + base = memblock_virt_alloc_try_nid_nopanic( + table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), + BOOTMEM_ALLOC_ACCESSIBLE, nid); if (!base) return -ENOMEM; NODE_DATA(nid)->node_page_cgroup = base; @@ -451,7 +452,7 @@ unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id) * lookup_swap_cgroup_id - lookup mem_cgroup id tied to swap entry * @ent: swap entry to be looked up. * - * Returns CSS ID of mem_cgroup at success. 0 at failure. (0 is invalid ID) + * Returns ID of mem_cgroup at success. 0 at failure. (0 is invalid ID) */ unsigned short lookup_swap_cgroup_id(swp_entry_t ent) { diff --git a/mm/page_io.c b/mm/page_io.c index 8c79a4764be0..7247be6114ac 100644 --- a/mm/page_io.c +++ b/mm/page_io.c @@ -320,8 +320,8 @@ int swap_readpage(struct page *page) int ret = 0; struct swap_info_struct *sis = page_swap_info(page); - VM_BUG_ON(!PageLocked(page)); - VM_BUG_ON(PageUptodate(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); + VM_BUG_ON_PAGE(PageUptodate(page), page); if (frontswap_load(page) == 0) { SetPageUptodate(page); unlock_page(page); diff --git a/mm/percpu.c b/mm/percpu.c index 0d10defe951e..036cfe07050f 100644 --- a/mm/percpu.c +++ b/mm/percpu.c @@ -1063,7 +1063,7 @@ struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, __alignof__(ai->groups[0].cpu_map[0])); ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); - ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size)); + ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0); if (!ptr) return NULL; ai = ptr; @@ -1088,7 +1088,7 @@ struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, */ void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) { - free_bootmem(__pa(ai), ai->__ai_size); + memblock_free_early(__pa(ai), ai->__ai_size); } /** @@ -1246,10 +1246,12 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); /* process group information and build config tables accordingly */ - group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); - group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0])); - unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0])); - unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0])); + group_offsets = memblock_virt_alloc(ai->nr_groups * + sizeof(group_offsets[0]), 0); + group_sizes = memblock_virt_alloc(ai->nr_groups * + sizeof(group_sizes[0]), 0); + unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0); + unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0); for (cpu = 0; cpu < nr_cpu_ids; cpu++) unit_map[cpu] = UINT_MAX; @@ -1311,7 +1313,8 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, * empty chunks. */ pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; - pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); + pcpu_slot = memblock_virt_alloc( + pcpu_nr_slots * sizeof(pcpu_slot[0]), 0); for (i = 0; i < pcpu_nr_slots; i++) INIT_LIST_HEAD(&pcpu_slot[i]); @@ -1322,7 +1325,7 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, * covers static area + reserved area (mostly used for module * static percpu allocation). */ - schunk = alloc_bootmem(pcpu_chunk_struct_size); + schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); INIT_LIST_HEAD(&schunk->list); schunk->base_addr = base_addr; schunk->map = smap; @@ -1346,7 +1349,7 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, /* init dynamic chunk if necessary */ if (dyn_size) { - dchunk = alloc_bootmem(pcpu_chunk_struct_size); + dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); INIT_LIST_HEAD(&dchunk->list); dchunk->base_addr = base_addr; dchunk->map = dmap; @@ -1626,7 +1629,7 @@ int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); - areas = alloc_bootmem_nopanic(areas_size); + areas = memblock_virt_alloc_nopanic(areas_size, 0); if (!areas) { rc = -ENOMEM; goto out_free; @@ -1686,10 +1689,10 @@ int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, max_distance += ai->unit_size; /* warn if maximum distance is further than 75% of vmalloc space */ - if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) { + if (max_distance > VMALLOC_TOTAL * 3 / 4) { pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " "space 0x%lx\n", max_distance, - (unsigned long)(VMALLOC_END - VMALLOC_START)); + VMALLOC_TOTAL); #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK /* and fail if we have fallback */ rc = -EINVAL; @@ -1712,7 +1715,7 @@ out_free_areas: out_free: pcpu_free_alloc_info(ai); if (areas) - free_bootmem(__pa(areas), areas_size); + memblock_free_early(__pa(areas), areas_size); return rc; } #endif /* BUILD_EMBED_FIRST_CHUNK */ @@ -1760,7 +1763,7 @@ int __init pcpu_page_first_chunk(size_t reserved_size, /* unaligned allocations can't be freed, round up to page size */ pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * sizeof(pages[0])); - pages = alloc_bootmem(pages_size); + pages = memblock_virt_alloc(pages_size, 0); /* allocate pages */ j = 0; @@ -1823,7 +1826,7 @@ enomem: free_fn(page_address(pages[j]), PAGE_SIZE); rc = -ENOMEM; out_free_ar: - free_bootmem(__pa(pages), pages_size); + memblock_free_early(__pa(pages), pages_size); pcpu_free_alloc_info(ai); return rc; } @@ -1848,12 +1851,13 @@ EXPORT_SYMBOL(__per_cpu_offset); static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, size_t align) { - return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); + return memblock_virt_alloc_from_nopanic( + size, align, __pa(MAX_DMA_ADDRESS)); } static void __init pcpu_dfl_fc_free(void *ptr, size_t size) { - free_bootmem(__pa(ptr), size); + memblock_free_early(__pa(ptr), size); } void __init setup_per_cpu_areas(void) @@ -1896,7 +1900,9 @@ void __init setup_per_cpu_areas(void) void *fc; ai = pcpu_alloc_alloc_info(1, 1); - fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); + fc = memblock_virt_alloc_from_nopanic(unit_size, + PAGE_SIZE, + __pa(MAX_DMA_ADDRESS)); if (!ai || !fc) panic("Failed to allocate memory for percpu areas."); /* kmemleak tracks the percpu allocations separately */ diff --git a/mm/rmap.c b/mm/rmap.c index 068522d8502a..d9d42316a99a 100644 --- a/mm/rmap.c +++ b/mm/rmap.c @@ -660,17 +660,22 @@ int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) return 1; } +struct page_referenced_arg { + int mapcount; + int referenced; + unsigned long vm_flags; + struct mem_cgroup *memcg; +}; /* - * Subfunctions of page_referenced: page_referenced_one called - * repeatedly from either page_referenced_anon or page_referenced_file. + * arg: page_referenced_arg will be passed */ int page_referenced_one(struct page *page, struct vm_area_struct *vma, - unsigned long address, unsigned int *mapcount, - unsigned long *vm_flags) + unsigned long address, void *arg) { struct mm_struct *mm = vma->vm_mm; spinlock_t *ptl; int referenced = 0; + struct page_referenced_arg *pra = arg; if (unlikely(PageTransHuge(page))) { pmd_t *pmd; @@ -682,13 +687,12 @@ int page_referenced_one(struct page *page, struct vm_area_struct *vma, pmd = page_check_address_pmd(page, mm, address, PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl); if (!pmd) - goto out; + return SWAP_AGAIN; if (vma->vm_flags & VM_LOCKED) { spin_unlock(ptl); - *mapcount = 0; /* break early from loop */ - *vm_flags |= VM_LOCKED; - goto out; + pra->vm_flags |= VM_LOCKED; + return SWAP_FAIL; /* To break the loop */ } /* go ahead even if the pmd is pmd_trans_splitting() */ @@ -704,13 +708,12 @@ int page_referenced_one(struct page *page, struct vm_area_struct *vma, */ pte = page_check_address(page, mm, address, &ptl, 0); if (!pte) - goto out; + return SWAP_AGAIN; if (vma->vm_flags & VM_LOCKED) { pte_unmap_unlock(pte, ptl); - *mapcount = 0; /* break early from loop */ - *vm_flags |= VM_LOCKED; - goto out; + pra->vm_flags |= VM_LOCKED; + return SWAP_FAIL; /* To break the loop */ } if (ptep_clear_flush_young_notify(vma, address, pte)) { @@ -727,113 +730,27 @@ int page_referenced_one(struct page *page, struct vm_area_struct *vma, pte_unmap_unlock(pte, ptl); } - (*mapcount)--; - - if (referenced) - *vm_flags |= vma->vm_flags; -out: - return referenced; -} - -static int page_referenced_anon(struct page *page, - struct mem_cgroup *memcg, - unsigned long *vm_flags) -{ - unsigned int mapcount; - struct anon_vma *anon_vma; - pgoff_t pgoff; - struct anon_vma_chain *avc; - int referenced = 0; - - anon_vma = page_lock_anon_vma_read(page); - if (!anon_vma) - return referenced; - - mapcount = page_mapcount(page); - pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); - anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { - struct vm_area_struct *vma = avc->vma; - unsigned long address = vma_address(page, vma); - /* - * If we are reclaiming on behalf of a cgroup, skip - * counting on behalf of references from different - * cgroups - */ - if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) - continue; - referenced += page_referenced_one(page, vma, address, - &mapcount, vm_flags); - if (!mapcount) - break; + if (referenced) { + pra->referenced++; + pra->vm_flags |= vma->vm_flags; } - page_unlock_anon_vma_read(anon_vma); - return referenced; + pra->mapcount--; + if (!pra->mapcount) + return SWAP_SUCCESS; /* To break the loop */ + + return SWAP_AGAIN; } -/** - * page_referenced_file - referenced check for object-based rmap - * @page: the page we're checking references on. - * @memcg: target memory control group - * @vm_flags: collect encountered vma->vm_flags who actually referenced the page - * - * For an object-based mapped page, find all the places it is mapped and - * check/clear the referenced flag. This is done by following the page->mapping - * pointer, then walking the chain of vmas it holds. It returns the number - * of references it found. - * - * This function is only called from page_referenced for object-based pages. - */ -static int page_referenced_file(struct page *page, - struct mem_cgroup *memcg, - unsigned long *vm_flags) +static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) { - unsigned int mapcount; - struct address_space *mapping = page->mapping; - pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); - struct vm_area_struct *vma; - int referenced = 0; + struct page_referenced_arg *pra = arg; + struct mem_cgroup *memcg = pra->memcg; - /* - * The caller's checks on page->mapping and !PageAnon have made - * sure that this is a file page: the check for page->mapping - * excludes the case just before it gets set on an anon page. - */ - BUG_ON(PageAnon(page)); - - /* - * The page lock not only makes sure that page->mapping cannot - * suddenly be NULLified by truncation, it makes sure that the - * structure at mapping cannot be freed and reused yet, - * so we can safely take mapping->i_mmap_mutex. - */ - BUG_ON(!PageLocked(page)); - - mutex_lock(&mapping->i_mmap_mutex); - - /* - * i_mmap_mutex does not stabilize mapcount at all, but mapcount - * is more likely to be accurate if we note it after spinning. - */ - mapcount = page_mapcount(page); - - vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { - unsigned long address = vma_address(page, vma); - /* - * If we are reclaiming on behalf of a cgroup, skip - * counting on behalf of references from different - * cgroups - */ - if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) - continue; - referenced += page_referenced_one(page, vma, address, - &mapcount, vm_flags); - if (!mapcount) - break; - } + if (!mm_match_cgroup(vma->vm_mm, memcg)) + return true; - mutex_unlock(&mapping->i_mmap_mutex); - return referenced; + return false; } /** @@ -851,41 +768,57 @@ int page_referenced(struct page *page, struct mem_cgroup *memcg, unsigned long *vm_flags) { - int referenced = 0; + int ret; int we_locked = 0; + struct page_referenced_arg pra = { + .mapcount = page_mapcount(page), + .memcg = memcg, + }; + struct rmap_walk_control rwc = { + .rmap_one = page_referenced_one, + .arg = (void *)&pra, + .anon_lock = page_lock_anon_vma_read, + }; *vm_flags = 0; - if (page_mapped(page) && page_rmapping(page)) { - if (!is_locked && (!PageAnon(page) || PageKsm(page))) { - we_locked = trylock_page(page); - if (!we_locked) { - referenced++; - goto out; - } - } - if (unlikely(PageKsm(page))) - referenced += page_referenced_ksm(page, memcg, - vm_flags); - else if (PageAnon(page)) - referenced += page_referenced_anon(page, memcg, - vm_flags); - else if (page->mapping) - referenced += page_referenced_file(page, memcg, - vm_flags); - if (we_locked) - unlock_page(page); + if (!page_mapped(page)) + return 0; + + if (!page_rmapping(page)) + return 0; + + if (!is_locked && (!PageAnon(page) || PageKsm(page))) { + we_locked = trylock_page(page); + if (!we_locked) + return 1; } -out: - return referenced; + + /* + * If we are reclaiming on behalf of a cgroup, skip + * counting on behalf of references from different + * cgroups + */ + if (memcg) { + rwc.invalid_vma = invalid_page_referenced_vma; + } + + ret = rmap_walk(page, &rwc); + *vm_flags = pra.vm_flags; + + if (we_locked) + unlock_page(page); + + return pra.referenced; } static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, - unsigned long address) + unsigned long address, void *arg) { struct mm_struct *mm = vma->vm_mm; pte_t *pte; spinlock_t *ptl; int ret = 0; + int *cleaned = arg; pte = page_check_address(page, mm, address, &ptl, 1); if (!pte) @@ -904,44 +837,44 @@ static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, pte_unmap_unlock(pte, ptl); - if (ret) + if (ret) { mmu_notifier_invalidate_page(mm, address); + (*cleaned)++; + } out: - return ret; + return SWAP_AGAIN; } -static int page_mkclean_file(struct address_space *mapping, struct page *page) +static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) { - pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); - struct vm_area_struct *vma; - int ret = 0; - - BUG_ON(PageAnon(page)); + if (vma->vm_flags & VM_SHARED) + return false; - mutex_lock(&mapping->i_mmap_mutex); - vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { - if (vma->vm_flags & VM_SHARED) { - unsigned long address = vma_address(page, vma); - ret += page_mkclean_one(page, vma, address); - } - } - mutex_unlock(&mapping->i_mmap_mutex); - return ret; + return true; } int page_mkclean(struct page *page) { - int ret = 0; + int cleaned = 0; + struct address_space *mapping; + struct rmap_walk_control rwc = { + .arg = (void *)&cleaned, + .rmap_one = page_mkclean_one, + .invalid_vma = invalid_mkclean_vma, + }; BUG_ON(!PageLocked(page)); - if (page_mapped(page)) { - struct address_space *mapping = page_mapping(page); - if (mapping) - ret = page_mkclean_file(mapping, page); - } + if (!page_mapped(page)) + return 0; - return ret; + mapping = page_mapping(page); + if (!mapping) + return 0; + + rmap_walk(page, &rwc); + + return cleaned; } EXPORT_SYMBOL_GPL(page_mkclean); @@ -961,9 +894,9 @@ void page_move_anon_rmap(struct page *page, { struct anon_vma *anon_vma = vma->anon_vma; - VM_BUG_ON(!PageLocked(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON(!anon_vma); - VM_BUG_ON(page->index != linear_page_index(vma, address)); + VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page); anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; page->mapping = (struct address_space *) anon_vma; @@ -1062,7 +995,7 @@ void do_page_add_anon_rmap(struct page *page, if (unlikely(PageKsm(page))) return; - VM_BUG_ON(!PageLocked(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); /* address might be in next vma when migration races vma_adjust */ if (first) __page_set_anon_rmap(page, vma, address, exclusive); @@ -1177,17 +1110,17 @@ out: } /* - * Subfunctions of try_to_unmap: try_to_unmap_one called - * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file. + * @arg: enum ttu_flags will be passed to this argument */ int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, - unsigned long address, enum ttu_flags flags) + unsigned long address, void *arg) { struct mm_struct *mm = vma->vm_mm; pte_t *pte; pte_t pteval; spinlock_t *ptl; int ret = SWAP_AGAIN; + enum ttu_flags flags = (enum ttu_flags)arg; pte = page_check_address(page, mm, address, &ptl, 0); if (!pte) @@ -1426,124 +1359,18 @@ static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, return ret; } -bool is_vma_temporary_stack(struct vm_area_struct *vma) -{ - int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); - - if (!maybe_stack) - return false; - - if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == - VM_STACK_INCOMPLETE_SETUP) - return true; - - return false; -} - -/** - * try_to_unmap_anon - unmap or unlock anonymous page using the object-based - * rmap method - * @page: the page to unmap/unlock - * @flags: action and flags - * - * Find all the mappings of a page using the mapping pointer and the vma chains - * contained in the anon_vma struct it points to. - * - * This function is only called from try_to_unmap/try_to_munlock for - * anonymous pages. - * When called from try_to_munlock(), the mmap_sem of the mm containing the vma - * where the page was found will be held for write. So, we won't recheck - * vm_flags for that VMA. That should be OK, because that vma shouldn't be - * 'LOCKED. - */ -static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) +static int try_to_unmap_nonlinear(struct page *page, + struct address_space *mapping, struct vm_area_struct *vma) { - struct anon_vma *anon_vma; - pgoff_t pgoff; - struct anon_vma_chain *avc; - int ret = SWAP_AGAIN; - - anon_vma = page_lock_anon_vma_read(page); - if (!anon_vma) - return ret; - - pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); - anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { - struct vm_area_struct *vma = avc->vma; - unsigned long address; - - /* - * During exec, a temporary VMA is setup and later moved. - * The VMA is moved under the anon_vma lock but not the - * page tables leading to a race where migration cannot - * find the migration ptes. Rather than increasing the - * locking requirements of exec(), migration skips - * temporary VMAs until after exec() completes. - */ - if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && - is_vma_temporary_stack(vma)) - continue; - - address = vma_address(page, vma); - ret = try_to_unmap_one(page, vma, address, flags); - if (ret != SWAP_AGAIN || !page_mapped(page)) - break; - } - - page_unlock_anon_vma_read(anon_vma); - return ret; -} - -/** - * try_to_unmap_file - unmap/unlock file page using the object-based rmap method - * @page: the page to unmap/unlock - * @flags: action and flags - * - * Find all the mappings of a page using the mapping pointer and the vma chains - * contained in the address_space struct it points to. - * - * This function is only called from try_to_unmap/try_to_munlock for - * object-based pages. - * When called from try_to_munlock(), the mmap_sem of the mm containing the vma - * where the page was found will be held for write. So, we won't recheck - * vm_flags for that VMA. That should be OK, because that vma shouldn't be - * 'LOCKED. - */ -static int try_to_unmap_file(struct page *page, enum ttu_flags flags) -{ - struct address_space *mapping = page->mapping; - pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); - struct vm_area_struct *vma; int ret = SWAP_AGAIN; unsigned long cursor; unsigned long max_nl_cursor = 0; unsigned long max_nl_size = 0; unsigned int mapcount; - if (PageHuge(page)) - pgoff = page->index << compound_order(page); + list_for_each_entry(vma, + &mapping->i_mmap_nonlinear, shared.nonlinear) { - mutex_lock(&mapping->i_mmap_mutex); - vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { - unsigned long address = vma_address(page, vma); - ret = try_to_unmap_one(page, vma, address, flags); - if (ret != SWAP_AGAIN || !page_mapped(page)) - goto out; - } - - if (list_empty(&mapping->i_mmap_nonlinear)) - goto out; - - /* - * We don't bother to try to find the munlocked page in nonlinears. - * It's costly. Instead, later, page reclaim logic may call - * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. - */ - if (TTU_ACTION(flags) == TTU_MUNLOCK) - goto out; - - list_for_each_entry(vma, &mapping->i_mmap_nonlinear, - shared.nonlinear) { cursor = (unsigned long) vma->vm_private_data; if (cursor > max_nl_cursor) max_nl_cursor = cursor; @@ -1553,8 +1380,7 @@ static int try_to_unmap_file(struct page *page, enum ttu_flags flags) } if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ - ret = SWAP_FAIL; - goto out; + return SWAP_FAIL; } /* @@ -1566,7 +1392,8 @@ static int try_to_unmap_file(struct page *page, enum ttu_flags flags) */ mapcount = page_mapcount(page); if (!mapcount) - goto out; + return ret; + cond_resched(); max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; @@ -1574,10 +1401,11 @@ static int try_to_unmap_file(struct page *page, enum ttu_flags flags) max_nl_cursor = CLUSTER_SIZE; do { - list_for_each_entry(vma, &mapping->i_mmap_nonlinear, - shared.nonlinear) { + list_for_each_entry(vma, + &mapping->i_mmap_nonlinear, shared.nonlinear) { + cursor = (unsigned long) vma->vm_private_data; - while ( cursor < max_nl_cursor && + while (cursor < max_nl_cursor && cursor < vma->vm_end - vma->vm_start) { if (try_to_unmap_cluster(cursor, &mapcount, vma, page) == SWAP_MLOCK) @@ -1585,7 +1413,7 @@ static int try_to_unmap_file(struct page *page, enum ttu_flags flags) cursor += CLUSTER_SIZE; vma->vm_private_data = (void *) cursor; if ((int)mapcount <= 0) - goto out; + return ret; } vma->vm_private_data = (void *) max_nl_cursor; } @@ -1600,11 +1428,34 @@ static int try_to_unmap_file(struct page *page, enum ttu_flags flags) */ list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear) vma->vm_private_data = NULL; -out: - mutex_unlock(&mapping->i_mmap_mutex); + return ret; } +bool is_vma_temporary_stack(struct vm_area_struct *vma) +{ + int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); + + if (!maybe_stack) + return false; + + if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == + VM_STACK_INCOMPLETE_SETUP) + return true; + + return false; +} + +static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) +{ + return is_vma_temporary_stack(vma); +} + +static int page_not_mapped(struct page *page) +{ + return !page_mapped(page); +}; + /** * try_to_unmap - try to remove all page table mappings to a page * @page: the page to get unmapped @@ -1622,16 +1473,29 @@ out: int try_to_unmap(struct page *page, enum ttu_flags flags) { int ret; + struct rmap_walk_control rwc = { + .rmap_one = try_to_unmap_one, + .arg = (void *)flags, + .done = page_not_mapped, + .file_nonlinear = try_to_unmap_nonlinear, + .anon_lock = page_lock_anon_vma_read, + }; - BUG_ON(!PageLocked(page)); - VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); + VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page); + + /* + * During exec, a temporary VMA is setup and later moved. + * The VMA is moved under the anon_vma lock but not the + * page tables leading to a race where migration cannot + * find the migration ptes. Rather than increasing the + * locking requirements of exec(), migration skips + * temporary VMAs until after exec() completes. + */ + if (flags & TTU_MIGRATION && !PageKsm(page) && PageAnon(page)) + rwc.invalid_vma = invalid_migration_vma; + + ret = rmap_walk(page, &rwc); - if (unlikely(PageKsm(page))) - ret = try_to_unmap_ksm(page, flags); - else if (PageAnon(page)) - ret = try_to_unmap_anon(page, flags); - else - ret = try_to_unmap_file(page, flags); if (ret != SWAP_MLOCK && !page_mapped(page)) ret = SWAP_SUCCESS; return ret; @@ -1654,14 +1518,25 @@ int try_to_unmap(struct page *page, enum ttu_flags flags) */ int try_to_munlock(struct page *page) { - VM_BUG_ON(!PageLocked(page) || PageLRU(page)); + int ret; + struct rmap_walk_control rwc = { + .rmap_one = try_to_unmap_one, + .arg = (void *)TTU_MUNLOCK, + .done = page_not_mapped, + /* + * We don't bother to try to find the munlocked page in + * nonlinears. It's costly. Instead, later, page reclaim logic + * may call try_to_unmap() and recover PG_mlocked lazily. + */ + .file_nonlinear = NULL, + .anon_lock = page_lock_anon_vma_read, - if (unlikely(PageKsm(page))) - return try_to_unmap_ksm(page, TTU_MUNLOCK); - else if (PageAnon(page)) - return try_to_unmap_anon(page, TTU_MUNLOCK); - else - return try_to_unmap_file(page, TTU_MUNLOCK); + }; + + VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); + + ret = rmap_walk(page, &rwc); + return ret; } void __put_anon_vma(struct anon_vma *anon_vma) @@ -1674,18 +1549,13 @@ void __put_anon_vma(struct anon_vma *anon_vma) anon_vma_free(anon_vma); } -#ifdef CONFIG_MIGRATION -/* - * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): - * Called by migrate.c to remove migration ptes, but might be used more later. - */ -static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, - struct vm_area_struct *, unsigned long, void *), void *arg) +static struct anon_vma *rmap_walk_anon_lock(struct page *page, + struct rmap_walk_control *rwc) { struct anon_vma *anon_vma; - pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); - struct anon_vma_chain *avc; - int ret = SWAP_AGAIN; + + if (rwc->anon_lock) + return rwc->anon_lock(page); /* * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() @@ -1695,58 +1565,120 @@ static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, */ anon_vma = page_anon_vma(page); if (!anon_vma) - return ret; + return NULL; + anon_vma_lock_read(anon_vma); + return anon_vma; +} + +/* + * rmap_walk_anon - do something to anonymous page using the object-based + * rmap method + * @page: the page to be handled + * @rwc: control variable according to each walk type + * + * Find all the mappings of a page using the mapping pointer and the vma chains + * contained in the anon_vma struct it points to. + * + * When called from try_to_munlock(), the mmap_sem of the mm containing the vma + * where the page was found will be held for write. So, we won't recheck + * vm_flags for that VMA. That should be OK, because that vma shouldn't be + * LOCKED. + */ +static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc) +{ + struct anon_vma *anon_vma; + pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); + struct anon_vma_chain *avc; + int ret = SWAP_AGAIN; + + anon_vma = rmap_walk_anon_lock(page, rwc); + if (!anon_vma) + return ret; + anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { struct vm_area_struct *vma = avc->vma; unsigned long address = vma_address(page, vma); - ret = rmap_one(page, vma, address, arg); + + if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) + continue; + + ret = rwc->rmap_one(page, vma, address, rwc->arg); if (ret != SWAP_AGAIN) break; + if (rwc->done && rwc->done(page)) + break; } anon_vma_unlock_read(anon_vma); return ret; } -static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, - struct vm_area_struct *, unsigned long, void *), void *arg) +/* + * rmap_walk_file - do something to file page using the object-based rmap method + * @page: the page to be handled + * @rwc: control variable according to each walk type + * + * Find all the mappings of a page using the mapping pointer and the vma chains + * contained in the address_space struct it points to. + * + * When called from try_to_munlock(), the mmap_sem of the mm containing the vma + * where the page was found will be held for write. So, we won't recheck + * vm_flags for that VMA. That should be OK, because that vma shouldn't be + * LOCKED. + */ +static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc) { struct address_space *mapping = page->mapping; - pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); + pgoff_t pgoff = page->index << compound_order(page); struct vm_area_struct *vma; int ret = SWAP_AGAIN; + /* + * The page lock not only makes sure that page->mapping cannot + * suddenly be NULLified by truncation, it makes sure that the + * structure at mapping cannot be freed and reused yet, + * so we can safely take mapping->i_mmap_mutex. + */ + VM_BUG_ON(!PageLocked(page)); + if (!mapping) return ret; mutex_lock(&mapping->i_mmap_mutex); vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { unsigned long address = vma_address(page, vma); - ret = rmap_one(page, vma, address, arg); + + if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) + continue; + + ret = rwc->rmap_one(page, vma, address, rwc->arg); if (ret != SWAP_AGAIN) - break; + goto done; + if (rwc->done && rwc->done(page)) + goto done; } - /* - * No nonlinear handling: being always shared, nonlinear vmas - * never contain migration ptes. Decide what to do about this - * limitation to linear when we need rmap_walk() on nonlinear. - */ + + if (!rwc->file_nonlinear) + goto done; + + if (list_empty(&mapping->i_mmap_nonlinear)) + goto done; + + ret = rwc->file_nonlinear(page, mapping, vma); + +done: mutex_unlock(&mapping->i_mmap_mutex); return ret; } -int rmap_walk(struct page *page, int (*rmap_one)(struct page *, - struct vm_area_struct *, unsigned long, void *), void *arg) +int rmap_walk(struct page *page, struct rmap_walk_control *rwc) { - VM_BUG_ON(!PageLocked(page)); - if (unlikely(PageKsm(page))) - return rmap_walk_ksm(page, rmap_one, arg); + return rmap_walk_ksm(page, rwc); else if (PageAnon(page)) - return rmap_walk_anon(page, rmap_one, arg); + return rmap_walk_anon(page, rwc); else - return rmap_walk_file(page, rmap_one, arg); + return rmap_walk_file(page, rwc); } -#endif /* CONFIG_MIGRATION */ #ifdef CONFIG_HUGETLB_PAGE /* diff --git a/mm/shmem.c b/mm/shmem.c index 902a14842b74..8156f95ec0cf 100644 --- a/mm/shmem.c +++ b/mm/shmem.c @@ -285,8 +285,8 @@ static int shmem_add_to_page_cache(struct page *page, { int error; - VM_BUG_ON(!PageLocked(page)); - VM_BUG_ON(!PageSwapBacked(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); + VM_BUG_ON_PAGE(!PageSwapBacked(page), page); page_cache_get(page); page->mapping = mapping; @@ -491,7 +491,7 @@ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, continue; if (!unfalloc || !PageUptodate(page)) { if (page->mapping == mapping) { - VM_BUG_ON(PageWriteback(page)); + VM_BUG_ON_PAGE(PageWriteback(page), page); truncate_inode_page(mapping, page); } } @@ -568,7 +568,7 @@ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, lock_page(page); if (!unfalloc || !PageUptodate(page)) { if (page->mapping == mapping) { - VM_BUG_ON(PageWriteback(page)); + VM_BUG_ON_PAGE(PageWriteback(page), page); truncate_inode_page(mapping, page); } } diff --git a/mm/slab.h b/mm/slab.h index 0859c4241ba1..8184a7cde272 100644 --- a/mm/slab.h +++ b/mm/slab.h @@ -160,12 +160,36 @@ static inline const char *cache_name(struct kmem_cache *s) return s->name; } +/* + * Note, we protect with RCU only the memcg_caches array, not per-memcg caches. + * That said the caller must assure the memcg's cache won't go away. Since once + * created a memcg's cache is destroyed only along with the root cache, it is + * true if we are going to allocate from the cache or hold a reference to the + * root cache by other means. Otherwise, we should hold either the slab_mutex + * or the memcg's slab_caches_mutex while calling this function and accessing + * the returned value. + */ static inline struct kmem_cache * cache_from_memcg_idx(struct kmem_cache *s, int idx) { + struct kmem_cache *cachep; + struct memcg_cache_params *params; + if (!s->memcg_params) return NULL; - return s->memcg_params->memcg_caches[idx]; + + rcu_read_lock(); + params = rcu_dereference(s->memcg_params); + cachep = params->memcg_caches[idx]; + rcu_read_unlock(); + + /* + * Make sure we will access the up-to-date value. The code updating + * memcg_caches issues a write barrier to match this (see + * memcg_register_cache()). + */ + smp_read_barrier_depends(); + return cachep; } static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) diff --git a/mm/slab_common.c b/mm/slab_common.c index 0b7bb399b0e4..8e40321da091 100644 --- a/mm/slab_common.c +++ b/mm/slab_common.c @@ -171,13 +171,26 @@ kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size, struct kmem_cache *parent_cache) { struct kmem_cache *s = NULL; - int err = 0; + int err; get_online_cpus(); mutex_lock(&slab_mutex); - if (!kmem_cache_sanity_check(memcg, name, size) == 0) - goto out_locked; + err = kmem_cache_sanity_check(memcg, name, size); + if (err) + goto out_unlock; + + if (memcg) { + /* + * Since per-memcg caches are created asynchronously on first + * allocation (see memcg_kmem_get_cache()), several threads can + * try to create the same cache, but only one of them may + * succeed. Therefore if we get here and see the cache has + * already been created, we silently return NULL. + */ + if (cache_from_memcg_idx(parent_cache, memcg_cache_id(memcg))) + goto out_unlock; + } /* * Some allocators will constraint the set of valid flags to a subset @@ -189,45 +202,45 @@ kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size, s = __kmem_cache_alias(memcg, name, size, align, flags, ctor); if (s) - goto out_locked; + goto out_unlock; + err = -ENOMEM; s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); - if (s) { - s->object_size = s->size = size; - s->align = calculate_alignment(flags, align, size); - s->ctor = ctor; + if (!s) + goto out_unlock; - if (memcg_register_cache(memcg, s, parent_cache)) { - kmem_cache_free(kmem_cache, s); - err = -ENOMEM; - goto out_locked; - } + s->object_size = s->size = size; + s->align = calculate_alignment(flags, align, size); + s->ctor = ctor; - s->name = kstrdup(name, GFP_KERNEL); - if (!s->name) { - kmem_cache_free(kmem_cache, s); - err = -ENOMEM; - goto out_locked; - } + s->name = kstrdup(name, GFP_KERNEL); + if (!s->name) + goto out_free_cache; - err = __kmem_cache_create(s, flags); - if (!err) { - s->refcount = 1; - list_add(&s->list, &slab_caches); - memcg_cache_list_add(memcg, s); - } else { - kfree(s->name); - kmem_cache_free(kmem_cache, s); - } - } else - err = -ENOMEM; + err = memcg_alloc_cache_params(memcg, s, parent_cache); + if (err) + goto out_free_cache; + + err = __kmem_cache_create(s, flags); + if (err) + goto out_free_cache; -out_locked: + s->refcount = 1; + list_add(&s->list, &slab_caches); + memcg_register_cache(s); + +out_unlock: mutex_unlock(&slab_mutex); put_online_cpus(); - if (err) { - + /* + * There is no point in flooding logs with warnings or especially + * crashing the system if we fail to create a cache for a memcg. In + * this case we will be accounting the memcg allocation to the root + * cgroup until we succeed to create its own cache, but it isn't that + * critical. + */ + if (err && !memcg) { if (flags & SLAB_PANIC) panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", name, err); @@ -236,11 +249,15 @@ out_locked: name, err); dump_stack(); } - return NULL; } - return s; + +out_free_cache: + memcg_free_cache_params(s); + kfree(s->name); + kmem_cache_free(kmem_cache, s); + goto out_unlock; } struct kmem_cache * @@ -263,11 +280,12 @@ void kmem_cache_destroy(struct kmem_cache *s) list_del(&s->list); if (!__kmem_cache_shutdown(s)) { + memcg_unregister_cache(s); mutex_unlock(&slab_mutex); if (s->flags & SLAB_DESTROY_BY_RCU) rcu_barrier(); - memcg_release_cache(s); + memcg_free_cache_params(s); kfree(s->name); kmem_cache_free(kmem_cache, s); } else { diff --git a/mm/slub.c b/mm/slub.c index 545a170ebf9f..34bb8c65a2d8 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -1559,7 +1559,7 @@ static inline void *acquire_slab(struct kmem_cache *s, new.freelist = freelist; } - VM_BUG_ON(new.frozen); + VM_BUG_ON_PAGE(new.frozen, &new); new.frozen = 1; if (!__cmpxchg_double_slab(s, page, @@ -1812,7 +1812,7 @@ static void deactivate_slab(struct kmem_cache *s, struct page *page, set_freepointer(s, freelist, prior); new.counters = counters; new.inuse--; - VM_BUG_ON(!new.frozen); + VM_BUG_ON_PAGE(!new.frozen, &new); } while (!__cmpxchg_double_slab(s, page, prior, counters, @@ -1840,7 +1840,7 @@ redo: old.freelist = page->freelist; old.counters = page->counters; - VM_BUG_ON(!old.frozen); + VM_BUG_ON_PAGE(!old.frozen, &old); /* Determine target state of the slab */ new.counters = old.counters; @@ -1952,7 +1952,7 @@ static void unfreeze_partials(struct kmem_cache *s, old.freelist = page->freelist; old.counters = page->counters; - VM_BUG_ON(!old.frozen); + VM_BUG_ON_PAGE(!old.frozen, &old); new.counters = old.counters; new.freelist = old.freelist; @@ -2225,7 +2225,7 @@ static inline void *get_freelist(struct kmem_cache *s, struct page *page) counters = page->counters; new.counters = counters; - VM_BUG_ON(!new.frozen); + VM_BUG_ON_PAGE(!new.frozen, &new); new.inuse = page->objects; new.frozen = freelist != NULL; @@ -2319,7 +2319,7 @@ load_freelist: * page is pointing to the page from which the objects are obtained. * That page must be frozen for per cpu allocations to work. */ - VM_BUG_ON(!c->page->frozen); + VM_BUG_ON_PAGE(!c->page->frozen, c->page); c->freelist = get_freepointer(s, freelist); c->tid = next_tid(c->tid); local_irq_restore(flags); diff --git a/mm/sparse-vmemmap.c b/mm/sparse-vmemmap.c index 27eeab3be757..4cba9c2783a1 100644 --- a/mm/sparse-vmemmap.c +++ b/mm/sparse-vmemmap.c @@ -40,7 +40,8 @@ static void * __init_refok __earlyonly_bootmem_alloc(int node, unsigned long align, unsigned long goal) { - return __alloc_bootmem_node_high(NODE_DATA(node), size, align, goal); + return memblock_virt_alloc_try_nid(size, align, goal, + BOOTMEM_ALLOC_ACCESSIBLE, node); } static void *vmemmap_buf; @@ -226,7 +227,8 @@ void __init sparse_mem_maps_populate_node(struct page **map_map, if (vmemmap_buf_start) { /* need to free left buf */ - free_bootmem(__pa(vmemmap_buf), vmemmap_buf_end - vmemmap_buf); + memblock_free_early(__pa(vmemmap_buf), + vmemmap_buf_end - vmemmap_buf); vmemmap_buf = NULL; vmemmap_buf_end = NULL; } diff --git a/mm/sparse.c b/mm/sparse.c index 8cc7be0e9590..63c3ea5c119c 100644 --- a/mm/sparse.c +++ b/mm/sparse.c @@ -69,7 +69,7 @@ static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) else section = kzalloc(array_size, GFP_KERNEL); } else { - section = alloc_bootmem_node(NODE_DATA(nid), array_size); + section = memblock_virt_alloc_node(array_size, nid); } return section; @@ -279,8 +279,9 @@ sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, limit = goal + (1UL << PA_SECTION_SHIFT); nid = early_pfn_to_nid(goal >> PAGE_SHIFT); again: - p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size, - SMP_CACHE_BYTES, goal, limit); + p = memblock_virt_alloc_try_nid_nopanic(size, + SMP_CACHE_BYTES, goal, limit, + nid); if (!p && limit) { limit = 0; goto again; @@ -331,7 +332,7 @@ static unsigned long * __init sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, unsigned long size) { - return alloc_bootmem_node_nopanic(pgdat, size); + return memblock_virt_alloc_node_nopanic(size, pgdat->node_id); } static void __init check_usemap_section_nr(int nid, unsigned long *usemap) @@ -376,8 +377,9 @@ struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) return map; size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); - map = __alloc_bootmem_node_high(NODE_DATA(nid), size, - PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); + map = memblock_virt_alloc_try_nid(size, + PAGE_SIZE, __pa(MAX_DMA_ADDRESS), + BOOTMEM_ALLOC_ACCESSIBLE, nid); return map; } void __init sparse_mem_maps_populate_node(struct page **map_map, @@ -401,8 +403,9 @@ void __init sparse_mem_maps_populate_node(struct page **map_map, } size = PAGE_ALIGN(size); - map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count, - PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); + map = memblock_virt_alloc_try_nid(size * map_count, + PAGE_SIZE, __pa(MAX_DMA_ADDRESS), + BOOTMEM_ALLOC_ACCESSIBLE, nodeid); if (map) { for (pnum = pnum_begin; pnum < pnum_end; pnum++) { if (!present_section_nr(pnum)) @@ -545,7 +548,7 @@ void __init sparse_init(void) * sparse_early_mem_map_alloc, so allocate usemap_map at first. */ size = sizeof(unsigned long *) * NR_MEM_SECTIONS; - usemap_map = alloc_bootmem(size); + usemap_map = memblock_virt_alloc(size, 0); if (!usemap_map) panic("can not allocate usemap_map\n"); alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node, @@ -553,7 +556,7 @@ void __init sparse_init(void) #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER size2 = sizeof(struct page *) * NR_MEM_SECTIONS; - map_map = alloc_bootmem(size2); + map_map = memblock_virt_alloc(size2, 0); if (!map_map) panic("can not allocate map_map\n"); alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node, @@ -583,9 +586,9 @@ void __init sparse_init(void) vmemmap_populate_print_last(); #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER - free_bootmem(__pa(map_map), size2); + memblock_free_early(__pa(map_map), size2); #endif - free_bootmem(__pa(usemap_map), size); + memblock_free_early(__pa(usemap_map), size); } #ifdef CONFIG_MEMORY_HOTPLUG diff --git a/mm/swap.c b/mm/swap.c index 84b26aaabd03..b31ba67d440a 100644 --- a/mm/swap.c +++ b/mm/swap.c @@ -31,7 +31,6 @@ #include <linux/memcontrol.h> #include <linux/gfp.h> #include <linux/uio.h> -#include <linux/hugetlb.h> #include "internal.h" @@ -58,7 +57,7 @@ static void __page_cache_release(struct page *page) spin_lock_irqsave(&zone->lru_lock, flags); lruvec = mem_cgroup_page_lruvec(page, zone); - VM_BUG_ON(!PageLRU(page)); + VM_BUG_ON_PAGE(!PageLRU(page), page); __ClearPageLRU(page); del_page_from_lru_list(page, lruvec, page_off_lru(page)); spin_unlock_irqrestore(&zone->lru_lock, flags); @@ -82,118 +81,150 @@ static void __put_compound_page(struct page *page) static void put_compound_page(struct page *page) { - if (unlikely(PageTail(page))) { - /* __split_huge_page_refcount can run under us */ - struct page *page_head = compound_trans_head(page); - - if (likely(page != page_head && - get_page_unless_zero(page_head))) { - unsigned long flags; + struct page *page_head; + if (likely(!PageTail(page))) { + if (put_page_testzero(page)) { /* - * THP can not break up slab pages so avoid taking - * compound_lock(). Slab performs non-atomic bit ops - * on page->flags for better performance. In particular - * slab_unlock() in slub used to be a hot path. It is - * still hot on arches that do not support - * this_cpu_cmpxchg_double(). + * By the time all refcounts have been released + * split_huge_page cannot run anymore from under us. */ - if (PageSlab(page_head) || PageHeadHuge(page_head)) { - if (likely(PageTail(page))) { - /* - * __split_huge_page_refcount - * cannot race here. - */ - VM_BUG_ON(!PageHead(page_head)); - atomic_dec(&page->_mapcount); - if (put_page_testzero(page_head)) - VM_BUG_ON(1); - if (put_page_testzero(page_head)) - __put_compound_page(page_head); - return; - } else - /* - * __split_huge_page_refcount - * run before us, "page" was a - * THP tail. The split - * page_head has been freed - * and reallocated as slab or - * hugetlbfs page of smaller - * order (only possible if - * reallocated as slab on - * x86). - */ - goto skip_lock; - } + if (PageHead(page)) + __put_compound_page(page); + else + __put_single_page(page); + } + return; + } + + /* __split_huge_page_refcount can run under us */ + page_head = compound_trans_head(page); + + /* + * THP can not break up slab pages so avoid taking + * compound_lock() and skip the tail page refcounting (in + * _mapcount) too. Slab performs non-atomic bit ops on + * page->flags for better performance. In particular + * slab_unlock() in slub used to be a hot path. It is still + * hot on arches that do not support + * this_cpu_cmpxchg_double(). + * + * If "page" is part of a slab or hugetlbfs page it cannot be + * splitted and the head page cannot change from under us. And + * if "page" is part of a THP page under splitting, if the + * head page pointed by the THP tail isn't a THP head anymore, + * we'll find PageTail clear after smp_rmb() and we'll treat + * it as a single page. + */ + if (!__compound_tail_refcounted(page_head)) { + /* + * If "page" is a THP tail, we must read the tail page + * flags after the head page flags. The + * split_huge_page side enforces write memory barriers + * between clearing PageTail and before the head page + * can be freed and reallocated. + */ + smp_rmb(); + if (likely(PageTail(page))) { /* - * page_head wasn't a dangling pointer but it - * may not be a head page anymore by the time - * we obtain the lock. That is ok as long as it - * can't be freed from under us. + * __split_huge_page_refcount cannot race + * here. */ - flags = compound_lock_irqsave(page_head); - if (unlikely(!PageTail(page))) { - /* __split_huge_page_refcount run before us */ - compound_unlock_irqrestore(page_head, flags); -skip_lock: - if (put_page_testzero(page_head)) { - /* - * The head page may have been - * freed and reallocated as a - * compound page of smaller - * order and then freed again. - * All we know is that it - * cannot have become: a THP - * page, a compound page of - * higher order, a tail page. - * That is because we still - * hold the refcount of the - * split THP tail and - * page_head was the THP head - * before the split. - */ - if (PageHead(page_head)) - __put_compound_page(page_head); - else - __put_single_page(page_head); - } -out_put_single: - if (put_page_testzero(page)) - __put_single_page(page); - return; + VM_BUG_ON_PAGE(!PageHead(page_head), page_head); + VM_BUG_ON_PAGE(page_mapcount(page) != 0, page); + if (put_page_testzero(page_head)) { + /* + * If this is the tail of a slab + * compound page, the tail pin must + * not be the last reference held on + * the page, because the PG_slab + * cannot be cleared before all tail + * pins (which skips the _mapcount + * tail refcounting) have been + * released. For hugetlbfs the tail + * pin may be the last reference on + * the page instead, because + * PageHeadHuge will not go away until + * the compound page enters the buddy + * allocator. + */ + VM_BUG_ON_PAGE(PageSlab(page_head), page_head); + __put_compound_page(page_head); } - VM_BUG_ON(page_head != page->first_page); + return; + } else /* - * We can release the refcount taken by - * get_page_unless_zero() now that - * __split_huge_page_refcount() is blocked on - * the compound_lock. + * __split_huge_page_refcount run before us, + * "page" was a THP tail. The split page_head + * has been freed and reallocated as slab or + * hugetlbfs page of smaller order (only + * possible if reallocated as slab on x86). */ - if (put_page_testzero(page_head)) - VM_BUG_ON(1); - /* __split_huge_page_refcount will wait now */ - VM_BUG_ON(page_mapcount(page) <= 0); - atomic_dec(&page->_mapcount); - VM_BUG_ON(atomic_read(&page_head->_count) <= 0); - VM_BUG_ON(atomic_read(&page->_count) != 0); - compound_unlock_irqrestore(page_head, flags); + goto out_put_single; + } + if (likely(page != page_head && get_page_unless_zero(page_head))) { + unsigned long flags; + + /* + * page_head wasn't a dangling pointer but it may not + * be a head page anymore by the time we obtain the + * lock. That is ok as long as it can't be freed from + * under us. + */ + flags = compound_lock_irqsave(page_head); + if (unlikely(!PageTail(page))) { + /* __split_huge_page_refcount run before us */ + compound_unlock_irqrestore(page_head, flags); if (put_page_testzero(page_head)) { + /* + * The head page may have been freed + * and reallocated as a compound page + * of smaller order and then freed + * again. All we know is that it + * cannot have become: a THP page, a + * compound page of higher order, a + * tail page. That is because we + * still hold the refcount of the + * split THP tail and page_head was + * the THP head before the split. + */ if (PageHead(page_head)) __put_compound_page(page_head); else __put_single_page(page_head); } - } else { - /* page_head is a dangling pointer */ - VM_BUG_ON(PageTail(page)); - goto out_put_single; +out_put_single: + if (put_page_testzero(page)) + __put_single_page(page); + return; } - } else if (put_page_testzero(page)) { - if (PageHead(page)) - __put_compound_page(page); - else - __put_single_page(page); + VM_BUG_ON_PAGE(page_head != page->first_page, page); + /* + * We can release the refcount taken by + * get_page_unless_zero() now that + * __split_huge_page_refcount() is blocked on the + * compound_lock. + */ + if (put_page_testzero(page_head)) + VM_BUG_ON_PAGE(1, page_head); + /* __split_huge_page_refcount will wait now */ + VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page); + atomic_dec(&page->_mapcount); + VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head); + VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); + compound_unlock_irqrestore(page_head, flags); + + if (put_page_testzero(page_head)) { + if (PageHead(page_head)) + __put_compound_page(page_head); + else + __put_single_page(page_head); + } + } else { + /* page_head is a dangling pointer */ + VM_BUG_ON_PAGE(PageTail(page), page); + goto out_put_single; } } @@ -221,36 +252,37 @@ bool __get_page_tail(struct page *page) * split_huge_page(). */ unsigned long flags; - bool got = false; + bool got; struct page *page_head = compound_trans_head(page); - if (likely(page != page_head && get_page_unless_zero(page_head))) { - /* Ref to put_compound_page() comment. */ - if (PageSlab(page_head) || PageHeadHuge(page_head)) { - if (likely(PageTail(page))) { - /* - * This is a hugetlbfs page or a slab - * page. __split_huge_page_refcount - * cannot race here. - */ - VM_BUG_ON(!PageHead(page_head)); - __get_page_tail_foll(page, false); - return true; - } else { - /* - * __split_huge_page_refcount run - * before us, "page" was a THP - * tail. The split page_head has been - * freed and reallocated as slab or - * hugetlbfs page of smaller order - * (only possible if reallocated as - * slab on x86). - */ - put_page(page_head); - return false; - } + /* Ref to put_compound_page() comment. */ + if (!__compound_tail_refcounted(page_head)) { + smp_rmb(); + if (likely(PageTail(page))) { + /* + * This is a hugetlbfs page or a slab + * page. __split_huge_page_refcount + * cannot race here. + */ + VM_BUG_ON_PAGE(!PageHead(page_head), page_head); + __get_page_tail_foll(page, true); + return true; + } else { + /* + * __split_huge_page_refcount run + * before us, "page" was a THP + * tail. The split page_head has been + * freed and reallocated as slab or + * hugetlbfs page of smaller order + * (only possible if reallocated as + * slab on x86). + */ + return false; } + } + got = false; + if (likely(page != page_head && get_page_unless_zero(page_head))) { /* * page_head wasn't a dangling pointer but it * may not be a head page anymore by the time @@ -572,8 +604,8 @@ EXPORT_SYMBOL(__lru_cache_add); */ void lru_cache_add(struct page *page) { - VM_BUG_ON(PageActive(page) && PageUnevictable(page)); - VM_BUG_ON(PageLRU(page)); + VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page); + VM_BUG_ON_PAGE(PageLRU(page), page); __lru_cache_add(page); } @@ -814,7 +846,7 @@ void release_pages(struct page **pages, int nr, int cold) } lruvec = mem_cgroup_page_lruvec(page, zone); - VM_BUG_ON(!PageLRU(page)); + VM_BUG_ON_PAGE(!PageLRU(page), page); __ClearPageLRU(page); del_page_from_lru_list(page, lruvec, page_off_lru(page)); } @@ -856,9 +888,9 @@ void lru_add_page_tail(struct page *page, struct page *page_tail, { const int file = 0; - VM_BUG_ON(!PageHead(page)); - VM_BUG_ON(PageCompound(page_tail)); - VM_BUG_ON(PageLRU(page_tail)); + VM_BUG_ON_PAGE(!PageHead(page), page); + VM_BUG_ON_PAGE(PageCompound(page_tail), page); + VM_BUG_ON_PAGE(PageLRU(page_tail), page); VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&lruvec_zone(lruvec)->lru_lock)); @@ -897,7 +929,7 @@ static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, int active = PageActive(page); enum lru_list lru = page_lru(page); - VM_BUG_ON(PageLRU(page)); + VM_BUG_ON_PAGE(PageLRU(page), page); SetPageLRU(page); add_page_to_lru_list(page, lruvec, lru); diff --git a/mm/swap_state.c b/mm/swap_state.c index e6f15f8ca2af..98e85e9c2b2d 100644 --- a/mm/swap_state.c +++ b/mm/swap_state.c @@ -83,9 +83,9 @@ int __add_to_swap_cache(struct page *page, swp_entry_t entry) int error; struct address_space *address_space; - VM_BUG_ON(!PageLocked(page)); - VM_BUG_ON(PageSwapCache(page)); - VM_BUG_ON(!PageSwapBacked(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); + VM_BUG_ON_PAGE(PageSwapCache(page), page); + VM_BUG_ON_PAGE(!PageSwapBacked(page), page); page_cache_get(page); SetPageSwapCache(page); @@ -139,9 +139,9 @@ void __delete_from_swap_cache(struct page *page) swp_entry_t entry; struct address_space *address_space; - VM_BUG_ON(!PageLocked(page)); - VM_BUG_ON(!PageSwapCache(page)); - VM_BUG_ON(PageWriteback(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); + VM_BUG_ON_PAGE(!PageSwapCache(page), page); + VM_BUG_ON_PAGE(PageWriteback(page), page); entry.val = page_private(page); address_space = swap_address_space(entry); @@ -165,8 +165,8 @@ int add_to_swap(struct page *page, struct list_head *list) swp_entry_t entry; int err; - VM_BUG_ON(!PageLocked(page)); - VM_BUG_ON(!PageUptodate(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); + VM_BUG_ON_PAGE(!PageUptodate(page), page); entry = get_swap_page(); if (!entry.val) diff --git a/mm/swapfile.c b/mm/swapfile.c index 612a7c9795f6..c6c13b050a58 100644 --- a/mm/swapfile.c +++ b/mm/swapfile.c @@ -616,7 +616,7 @@ scan: } } offset = si->lowest_bit; - while (++offset < scan_base) { + while (offset < scan_base) { if (!si->swap_map[offset]) { spin_lock(&si->lock); goto checks; @@ -629,6 +629,7 @@ scan: cond_resched(); latency_ration = LATENCY_LIMIT; } + offset++; } spin_lock(&si->lock); @@ -906,7 +907,7 @@ int reuse_swap_page(struct page *page) { int count; - VM_BUG_ON(!PageLocked(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); if (unlikely(PageKsm(page))) return 0; count = page_mapcount(page); @@ -926,7 +927,7 @@ int reuse_swap_page(struct page *page) */ int try_to_free_swap(struct page *page) { - VM_BUG_ON(!PageLocked(page)); + VM_BUG_ON_PAGE(!PageLocked(page), page); if (!PageSwapCache(page)) return 0; @@ -2714,7 +2715,7 @@ struct swap_info_struct *page_swap_info(struct page *page) */ struct address_space *__page_file_mapping(struct page *page) { - VM_BUG_ON(!PageSwapCache(page)); + VM_BUG_ON_PAGE(!PageSwapCache(page), page); return page_swap_info(page)->swap_file->f_mapping; } EXPORT_SYMBOL_GPL(__page_file_mapping); @@ -2722,7 +2723,7 @@ EXPORT_SYMBOL_GPL(__page_file_mapping); pgoff_t __page_file_index(struct page *page) { swp_entry_t swap = { .val = page_private(page) }; - VM_BUG_ON(!PageSwapCache(page)); + VM_BUG_ON_PAGE(!PageSwapCache(page), page); return swp_offset(swap); } EXPORT_SYMBOL_GPL(__page_file_index); diff --git a/mm/util.c b/mm/util.c index f7bc2096071c..a24aa22f2473 100644 --- a/mm/util.c +++ b/mm/util.c @@ -390,7 +390,10 @@ struct address_space *page_mapping(struct page *page) { struct address_space *mapping = page->mapping; - VM_BUG_ON(PageSlab(page)); + /* This happens if someone calls flush_dcache_page on slab page */ + if (unlikely(PageSlab(page))) + return NULL; + if (unlikely(PageSwapCache(page))) { swp_entry_t entry; @@ -401,13 +404,45 @@ struct address_space *page_mapping(struct page *page) return mapping; } +int overcommit_ratio_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *lenp, + loff_t *ppos) +{ + int ret; + + ret = proc_dointvec(table, write, buffer, lenp, ppos); + if (ret == 0 && write) + sysctl_overcommit_kbytes = 0; + return ret; +} + +int overcommit_kbytes_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *lenp, + loff_t *ppos) +{ + int ret; + + ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); + if (ret == 0 && write) + sysctl_overcommit_ratio = 0; + return ret; +} + /* * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used */ unsigned long vm_commit_limit(void) { - return ((totalram_pages - hugetlb_total_pages()) - * sysctl_overcommit_ratio / 100) + total_swap_pages; + unsigned long allowed; + + if (sysctl_overcommit_kbytes) + allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); + else + allowed = ((totalram_pages - hugetlb_total_pages()) + * sysctl_overcommit_ratio / 100); + allowed += total_swap_pages; + + return allowed; } diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 0fdf96803c5b..e4f0db2a3eae 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -220,12 +220,12 @@ int is_vmalloc_or_module_addr(const void *x) } /* - * Walk a vmap address to the struct page it maps. + * Walk a vmap address to the physical pfn it maps to. */ -struct page *vmalloc_to_page(const void *vmalloc_addr) +unsigned long vmalloc_to_pfn(const void *vmalloc_addr) { unsigned long addr = (unsigned long) vmalloc_addr; - struct page *page = NULL; + unsigned long pfn = 0; pgd_t *pgd = pgd_offset_k(addr); /* @@ -244,23 +244,23 @@ struct page *vmalloc_to_page(const void *vmalloc_addr) ptep = pte_offset_map(pmd, addr); pte = *ptep; if (pte_present(pte)) - page = pte_page(pte); + pfn = pte_pfn(pte); pte_unmap(ptep); } } } - return page; + return pfn; } -EXPORT_SYMBOL(vmalloc_to_page); +EXPORT_SYMBOL(vmalloc_to_pfn); /* - * Map a vmalloc()-space virtual address to the physical page frame number. + * Map a vmalloc()-space virtual address to the struct page. */ -unsigned long vmalloc_to_pfn(const void *vmalloc_addr) +struct page *vmalloc_to_page(const void *vmalloc_addr) { - return page_to_pfn(vmalloc_to_page(vmalloc_addr)); + return pfn_to_page(vmalloc_to_pfn(vmalloc_addr)); } -EXPORT_SYMBOL(vmalloc_to_pfn); +EXPORT_SYMBOL(vmalloc_to_page); /*** Global kva allocator ***/ diff --git a/mm/vmpressure.c b/mm/vmpressure.c index e0f62837c3f4..196970a4541f 100644 --- a/mm/vmpressure.c +++ b/mm/vmpressure.c @@ -278,8 +278,7 @@ void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio) /** * vmpressure_register_event() - Bind vmpressure notifications to an eventfd - * @css: css that is interested in vmpressure notifications - * @cft: cgroup control files handle + * @memcg: memcg that is interested in vmpressure notifications * @eventfd: eventfd context to link notifications with * @args: event arguments (used to set up a pressure level threshold) * @@ -289,15 +288,12 @@ void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio) * threshold (one of vmpressure_str_levels, i.e. "low", "medium", or * "critical"). * - * This function should not be used directly, just pass it to (struct - * cftype).register_event, and then cgroup core will handle everything by - * itself. + * To be used as memcg event method. */ -int vmpressure_register_event(struct cgroup_subsys_state *css, - struct cftype *cft, struct eventfd_ctx *eventfd, - const char *args) +int vmpressure_register_event(struct mem_cgroup *memcg, + struct eventfd_ctx *eventfd, const char *args) { - struct vmpressure *vmpr = css_to_vmpressure(css); + struct vmpressure *vmpr = memcg_to_vmpressure(memcg); struct vmpressure_event *ev; int level; @@ -325,23 +321,19 @@ int vmpressure_register_event(struct cgroup_subsys_state *css, /** * vmpressure_unregister_event() - Unbind eventfd from vmpressure - * @css: css handle - * @cft: cgroup control files handle + * @memcg: memcg handle * @eventfd: eventfd context that was used to link vmpressure with the @cg * * This function does internal manipulations to detach the @eventfd from * the vmpressure notifications, and then frees internal resources * associated with the @eventfd (but the @eventfd itself is not freed). * - * This function should not be used directly, just pass it to (struct - * cftype).unregister_event, and then cgroup core will handle everything - * by itself. + * To be used as memcg event method. */ -void vmpressure_unregister_event(struct cgroup_subsys_state *css, - struct cftype *cft, +void vmpressure_unregister_event(struct mem_cgroup *memcg, struct eventfd_ctx *eventfd) { - struct vmpressure *vmpr = css_to_vmpressure(css); + struct vmpressure *vmpr = memcg_to_vmpressure(memcg); struct vmpressure_event *ev; mutex_lock(&vmpr->events_lock); diff --git a/mm/vmscan.c b/mm/vmscan.c index eea668d9cff6..90c4075d8d75 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -281,17 +281,34 @@ shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker, nr_pages_scanned, lru_pages, max_pass, delta, total_scan); - while (total_scan >= batch_size) { + /* + * Normally, we should not scan less than batch_size objects in one + * pass to avoid too frequent shrinker calls, but if the slab has less + * than batch_size objects in total and we are really tight on memory, + * we will try to reclaim all available objects, otherwise we can end + * up failing allocations although there are plenty of reclaimable + * objects spread over several slabs with usage less than the + * batch_size. + * + * We detect the "tight on memory" situations by looking at the total + * number of objects we want to scan (total_scan). If it is greater + * than the total number of objects on slab (max_pass), we must be + * scanning at high prio and therefore should try to reclaim as much as + * possible. + */ + while (total_scan >= batch_size || + total_scan >= max_pass) { unsigned long ret; + unsigned long nr_to_scan = min(batch_size, total_scan); - shrinkctl->nr_to_scan = batch_size; + shrinkctl->nr_to_scan = nr_to_scan; ret = shrinker->scan_objects(shrinker, shrinkctl); if (ret == SHRINK_STOP) break; freed += ret; - count_vm_events(SLABS_SCANNED, batch_size); - total_scan -= batch_size; + count_vm_events(SLABS_SCANNED, nr_to_scan); + total_scan -= nr_to_scan; cond_resched(); } @@ -352,16 +369,17 @@ unsigned long shrink_slab(struct shrink_control *shrinkctl, } list_for_each_entry(shrinker, &shrinker_list, list) { - for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) { - if (!node_online(shrinkctl->nid)) - continue; - - if (!(shrinker->flags & SHRINKER_NUMA_AWARE) && - (shrinkctl->nid != 0)) - break; - + if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) { + shrinkctl->nid = 0; freed += shrink_slab_node(shrinkctl, shrinker, - nr_pages_scanned, lru_pages); + nr_pages_scanned, lru_pages); + continue; + } + + for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) { + if (node_online(shrinkctl->nid)) + freed += shrink_slab_node(shrinkctl, shrinker, + nr_pages_scanned, lru_pages); } } @@ -603,7 +621,7 @@ void putback_lru_page(struct page *page) bool is_unevictable; int was_unevictable = PageUnevictable(page); - VM_BUG_ON(PageLRU(page)); + VM_BUG_ON_PAGE(PageLRU(page), page); redo: ClearPageUnevictable(page); @@ -794,8 +812,8 @@ static unsigned long shrink_page_list(struct list_head *page_list, if (!trylock_page(page)) goto keep; - VM_BUG_ON(PageActive(page)); - VM_BUG_ON(page_zone(page) != zone); + VM_BUG_ON_PAGE(PageActive(page), page); + VM_BUG_ON_PAGE(page_zone(page) != zone, page); sc->nr_scanned++; @@ -1079,14 +1097,14 @@ activate_locked: /* Not a candidate for swapping, so reclaim swap space. */ if (PageSwapCache(page) && vm_swap_full()) try_to_free_swap(page); - VM_BUG_ON(PageActive(page)); + VM_BUG_ON_PAGE(PageActive(page), page); SetPageActive(page); pgactivate++; keep_locked: unlock_page(page); keep: list_add(&page->lru, &ret_pages); - VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); + VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); } free_hot_cold_page_list(&free_pages, 1); @@ -1240,7 +1258,7 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, page = lru_to_page(src); prefetchw_prev_lru_page(page, src, flags); - VM_BUG_ON(!PageLRU(page)); + VM_BUG_ON_PAGE(!PageLRU(page), page); switch (__isolate_lru_page(page, mode)) { case 0: @@ -1295,7 +1313,7 @@ int isolate_lru_page(struct page *page) { int ret = -EBUSY; - VM_BUG_ON(!page_count(page)); + VM_BUG_ON_PAGE(!page_count(page), page); if (PageLRU(page)) { struct zone *zone = page_zone(page); @@ -1366,7 +1384,7 @@ putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) struct page *page = lru_to_page(page_list); int lru; - VM_BUG_ON(PageLRU(page)); + VM_BUG_ON_PAGE(PageLRU(page), page); list_del(&page->lru); if (unlikely(!page_evictable(page))) { spin_unlock_irq(&zone->lru_lock); @@ -1586,7 +1604,7 @@ static void move_active_pages_to_lru(struct lruvec *lruvec, page = lru_to_page(list); lruvec = mem_cgroup_page_lruvec(page, zone); - VM_BUG_ON(PageLRU(page)); + VM_BUG_ON_PAGE(PageLRU(page), page); SetPageLRU(page); nr_pages = hpage_nr_pages(page); @@ -3701,7 +3719,7 @@ void check_move_unevictable_pages(struct page **pages, int nr_pages) if (page_evictable(page)) { enum lru_list lru = page_lru_base_type(page); - VM_BUG_ON(PageActive(page)); + VM_BUG_ON_PAGE(PageActive(page), page); ClearPageUnevictable(page); del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); add_page_to_lru_list(page, lruvec, lru); diff --git a/mm/zswap.c b/mm/zswap.c index 5a63f78a5601..e55bab9dc41f 100644 --- a/mm/zswap.c +++ b/mm/zswap.c @@ -77,12 +77,12 @@ static u64 zswap_duplicate_entry; **********************************/ /* Enable/disable zswap (disabled by default, fixed at boot for now) */ static bool zswap_enabled __read_mostly; -module_param_named(enabled, zswap_enabled, bool, 0); +module_param_named(enabled, zswap_enabled, bool, 0444); /* Compressor to be used by zswap (fixed at boot for now) */ #define ZSWAP_COMPRESSOR_DEFAULT "lzo" static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT; -module_param_named(compressor, zswap_compressor, charp, 0); +module_param_named(compressor, zswap_compressor, charp, 0444); /* The maximum percentage of memory that the compressed pool can occupy */ static unsigned int zswap_max_pool_percent = 20; |