summaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/Makefile2
-rw-r--r--mm/filemap.c61
-rw-r--r--mm/swap.c2
-rw-r--r--mm/vmscan.c24
-rw-r--r--mm/vmstat.c2
-rw-r--r--mm/workingset.c253
6 files changed, 321 insertions, 23 deletions
diff --git a/mm/Makefile b/mm/Makefile
index 310c90a09264..cdd741519ee0 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -17,7 +17,7 @@ obj-y := filemap.o mempool.o oom_kill.o fadvise.o \
util.o mmzone.o vmstat.o backing-dev.o \
mm_init.o mmu_context.o percpu.o slab_common.o \
compaction.o balloon_compaction.o \
- interval_tree.o list_lru.o $(mmu-y)
+ interval_tree.o list_lru.o workingset.o $(mmu-y)
obj-y += init-mm.o
diff --git a/mm/filemap.c b/mm/filemap.c
index 05c44aa44188..a603c4d7d3c9 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -469,7 +469,7 @@ int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
EXPORT_SYMBOL_GPL(replace_page_cache_page);
static int page_cache_tree_insert(struct address_space *mapping,
- struct page *page)
+ struct page *page, void **shadowp)
{
void **slot;
int error;
@@ -484,6 +484,8 @@ static int page_cache_tree_insert(struct address_space *mapping,
radix_tree_replace_slot(slot, page);
mapping->nrshadows--;
mapping->nrpages++;
+ if (shadowp)
+ *shadowp = p;
return 0;
}
error = radix_tree_insert(&mapping->page_tree, page->index, page);
@@ -492,18 +494,10 @@ static int page_cache_tree_insert(struct address_space *mapping,
return error;
}
-/**
- * add_to_page_cache_locked - add a locked page to the pagecache
- * @page: page to add
- * @mapping: the page's address_space
- * @offset: page index
- * @gfp_mask: page allocation mode
- *
- * This function is used to add a page to the pagecache. It must be locked.
- * This function does not add the page to the LRU. The caller must do that.
- */
-int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
- pgoff_t offset, gfp_t gfp_mask)
+static int __add_to_page_cache_locked(struct page *page,
+ struct address_space *mapping,
+ pgoff_t offset, gfp_t gfp_mask,
+ void **shadowp)
{
int error;
@@ -526,7 +520,7 @@ int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
page->index = offset;
spin_lock_irq(&mapping->tree_lock);
- error = page_cache_tree_insert(mapping, page);
+ error = page_cache_tree_insert(mapping, page, shadowp);
radix_tree_preload_end();
if (unlikely(error))
goto err_insert;
@@ -542,16 +536,49 @@ err_insert:
page_cache_release(page);
return error;
}
+
+/**
+ * add_to_page_cache_locked - add a locked page to the pagecache
+ * @page: page to add
+ * @mapping: the page's address_space
+ * @offset: page index
+ * @gfp_mask: page allocation mode
+ *
+ * This function is used to add a page to the pagecache. It must be locked.
+ * This function does not add the page to the LRU. The caller must do that.
+ */
+int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
+ pgoff_t offset, gfp_t gfp_mask)
+{
+ return __add_to_page_cache_locked(page, mapping, offset,
+ gfp_mask, NULL);
+}
EXPORT_SYMBOL(add_to_page_cache_locked);
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask)
{
+ void *shadow = NULL;
int ret;
- ret = add_to_page_cache(page, mapping, offset, gfp_mask);
- if (ret == 0)
- lru_cache_add_file(page);
+ __set_page_locked(page);
+ ret = __add_to_page_cache_locked(page, mapping, offset,
+ gfp_mask, &shadow);
+ if (unlikely(ret))
+ __clear_page_locked(page);
+ else {
+ /*
+ * The page might have been evicted from cache only
+ * recently, in which case it should be activated like
+ * any other repeatedly accessed page.
+ */
+ if (shadow && workingset_refault(shadow)) {
+ SetPageActive(page);
+ workingset_activation(page);
+ } else
+ ClearPageActive(page);
+ lru_cache_add(page);
+ }
return ret;
}
EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
diff --git a/mm/swap.c b/mm/swap.c
index c8048d71c642..9ce43ba4498b 100644
--- a/mm/swap.c
+++ b/mm/swap.c
@@ -574,6 +574,8 @@ void mark_page_accessed(struct page *page)
else
__lru_cache_activate_page(page);
ClearPageReferenced(page);
+ if (page_is_file_cache(page))
+ workingset_activation(page);
} else if (!PageReferenced(page)) {
SetPageReferenced(page);
}
diff --git a/mm/vmscan.c b/mm/vmscan.c
index 2a0bb8fdb259..1f56a80a7c41 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -523,7 +523,8 @@ static pageout_t pageout(struct page *page, struct address_space *mapping,
* Same as remove_mapping, but if the page is removed from the mapping, it
* gets returned with a refcount of 0.
*/
-static int __remove_mapping(struct address_space *mapping, struct page *page)
+static int __remove_mapping(struct address_space *mapping, struct page *page,
+ bool reclaimed)
{
BUG_ON(!PageLocked(page));
BUG_ON(mapping != page_mapping(page));
@@ -569,10 +570,23 @@ static int __remove_mapping(struct address_space *mapping, struct page *page)
swapcache_free(swap, page);
} else {
void (*freepage)(struct page *);
+ void *shadow = NULL;
freepage = mapping->a_ops->freepage;
-
- __delete_from_page_cache(page, NULL);
+ /*
+ * Remember a shadow entry for reclaimed file cache in
+ * order to detect refaults, thus thrashing, later on.
+ *
+ * But don't store shadows in an address space that is
+ * already exiting. This is not just an optizimation,
+ * inode reclaim needs to empty out the radix tree or
+ * the nodes are lost. Don't plant shadows behind its
+ * back.
+ */
+ if (reclaimed && page_is_file_cache(page) &&
+ !mapping_exiting(mapping))
+ shadow = workingset_eviction(mapping, page);
+ __delete_from_page_cache(page, shadow);
spin_unlock_irq(&mapping->tree_lock);
mem_cgroup_uncharge_cache_page(page);
@@ -595,7 +609,7 @@ cannot_free:
*/
int remove_mapping(struct address_space *mapping, struct page *page)
{
- if (__remove_mapping(mapping, page)) {
+ if (__remove_mapping(mapping, page, false)) {
/*
* Unfreezing the refcount with 1 rather than 2 effectively
* drops the pagecache ref for us without requiring another
@@ -1065,7 +1079,7 @@ static unsigned long shrink_page_list(struct list_head *page_list,
}
}
- if (!mapping || !__remove_mapping(mapping, page))
+ if (!mapping || !__remove_mapping(mapping, page, true))
goto keep_locked;
/*
diff --git a/mm/vmstat.c b/mm/vmstat.c
index def5dd2fbe61..843125a0e255 100644
--- a/mm/vmstat.c
+++ b/mm/vmstat.c
@@ -770,6 +770,8 @@ const char * const vmstat_text[] = {
"numa_local",
"numa_other",
#endif
+ "workingset_refault",
+ "workingset_activate",
"nr_anon_transparent_hugepages",
"nr_free_cma",
"nr_dirty_threshold",
diff --git a/mm/workingset.c b/mm/workingset.c
new file mode 100644
index 000000000000..8a6c7cff4923
--- /dev/null
+++ b/mm/workingset.c
@@ -0,0 +1,253 @@
+/*
+ * Workingset detection
+ *
+ * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
+ */
+
+#include <linux/memcontrol.h>
+#include <linux/writeback.h>
+#include <linux/pagemap.h>
+#include <linux/atomic.h>
+#include <linux/module.h>
+#include <linux/swap.h>
+#include <linux/fs.h>
+#include <linux/mm.h>
+
+/*
+ * Double CLOCK lists
+ *
+ * Per zone, two clock lists are maintained for file pages: the
+ * inactive and the active list. Freshly faulted pages start out at
+ * the head of the inactive list and page reclaim scans pages from the
+ * tail. Pages that are accessed multiple times on the inactive list
+ * are promoted to the active list, to protect them from reclaim,
+ * whereas active pages are demoted to the inactive list when the
+ * active list grows too big.
+ *
+ * fault ------------------------+
+ * |
+ * +--------------+ | +-------------+
+ * reclaim <- | inactive | <-+-- demotion | active | <--+
+ * +--------------+ +-------------+ |
+ * | |
+ * +-------------- promotion ------------------+
+ *
+ *
+ * Access frequency and refault distance
+ *
+ * A workload is thrashing when its pages are frequently used but they
+ * are evicted from the inactive list every time before another access
+ * would have promoted them to the active list.
+ *
+ * In cases where the average access distance between thrashing pages
+ * is bigger than the size of memory there is nothing that can be
+ * done - the thrashing set could never fit into memory under any
+ * circumstance.
+ *
+ * However, the average access distance could be bigger than the
+ * inactive list, yet smaller than the size of memory. In this case,
+ * the set could fit into memory if it weren't for the currently
+ * active pages - which may be used more, hopefully less frequently:
+ *
+ * +-memory available to cache-+
+ * | |
+ * +-inactive------+-active----+
+ * a b | c d e f g h i | J K L M N |
+ * +---------------+-----------+
+ *
+ * It is prohibitively expensive to accurately track access frequency
+ * of pages. But a reasonable approximation can be made to measure
+ * thrashing on the inactive list, after which refaulting pages can be
+ * activated optimistically to compete with the existing active pages.
+ *
+ * Approximating inactive page access frequency - Observations:
+ *
+ * 1. When a page is accessed for the first time, it is added to the
+ * head of the inactive list, slides every existing inactive page
+ * towards the tail by one slot, and pushes the current tail page
+ * out of memory.
+ *
+ * 2. When a page is accessed for the second time, it is promoted to
+ * the active list, shrinking the inactive list by one slot. This
+ * also slides all inactive pages that were faulted into the cache
+ * more recently than the activated page towards the tail of the
+ * inactive list.
+ *
+ * Thus:
+ *
+ * 1. The sum of evictions and activations between any two points in
+ * time indicate the minimum number of inactive pages accessed in
+ * between.
+ *
+ * 2. Moving one inactive page N page slots towards the tail of the
+ * list requires at least N inactive page accesses.
+ *
+ * Combining these:
+ *
+ * 1. When a page is finally evicted from memory, the number of
+ * inactive pages accessed while the page was in cache is at least
+ * the number of page slots on the inactive list.
+ *
+ * 2. In addition, measuring the sum of evictions and activations (E)
+ * at the time of a page's eviction, and comparing it to another
+ * reading (R) at the time the page faults back into memory tells
+ * the minimum number of accesses while the page was not cached.
+ * This is called the refault distance.
+ *
+ * Because the first access of the page was the fault and the second
+ * access the refault, we combine the in-cache distance with the
+ * out-of-cache distance to get the complete minimum access distance
+ * of this page:
+ *
+ * NR_inactive + (R - E)
+ *
+ * And knowing the minimum access distance of a page, we can easily
+ * tell if the page would be able to stay in cache assuming all page
+ * slots in the cache were available:
+ *
+ * NR_inactive + (R - E) <= NR_inactive + NR_active
+ *
+ * which can be further simplified to
+ *
+ * (R - E) <= NR_active
+ *
+ * Put into words, the refault distance (out-of-cache) can be seen as
+ * a deficit in inactive list space (in-cache). If the inactive list
+ * had (R - E) more page slots, the page would not have been evicted
+ * in between accesses, but activated instead. And on a full system,
+ * the only thing eating into inactive list space is active pages.
+ *
+ *
+ * Activating refaulting pages
+ *
+ * All that is known about the active list is that the pages have been
+ * accessed more than once in the past. This means that at any given
+ * time there is actually a good chance that pages on the active list
+ * are no longer in active use.
+ *
+ * So when a refault distance of (R - E) is observed and there are at
+ * least (R - E) active pages, the refaulting page is activated
+ * optimistically in the hope that (R - E) active pages are actually
+ * used less frequently than the refaulting page - or even not used at
+ * all anymore.
+ *
+ * If this is wrong and demotion kicks in, the pages which are truly
+ * used more frequently will be reactivated while the less frequently
+ * used once will be evicted from memory.
+ *
+ * But if this is right, the stale pages will be pushed out of memory
+ * and the used pages get to stay in cache.
+ *
+ *
+ * Implementation
+ *
+ * For each zone's file LRU lists, a counter for inactive evictions
+ * and activations is maintained (zone->inactive_age).
+ *
+ * On eviction, a snapshot of this counter (along with some bits to
+ * identify the zone) is stored in the now empty page cache radix tree
+ * slot of the evicted page. This is called a shadow entry.
+ *
+ * On cache misses for which there are shadow entries, an eligible
+ * refault distance will immediately activate the refaulting page.
+ */
+
+static void *pack_shadow(unsigned long eviction, struct zone *zone)
+{
+ eviction = (eviction << NODES_SHIFT) | zone_to_nid(zone);
+ eviction = (eviction << ZONES_SHIFT) | zone_idx(zone);
+ eviction = (eviction << RADIX_TREE_EXCEPTIONAL_SHIFT);
+
+ return (void *)(eviction | RADIX_TREE_EXCEPTIONAL_ENTRY);
+}
+
+static void unpack_shadow(void *shadow,
+ struct zone **zone,
+ unsigned long *distance)
+{
+ unsigned long entry = (unsigned long)shadow;
+ unsigned long eviction;
+ unsigned long refault;
+ unsigned long mask;
+ int zid, nid;
+
+ entry >>= RADIX_TREE_EXCEPTIONAL_SHIFT;
+ zid = entry & ((1UL << ZONES_SHIFT) - 1);
+ entry >>= ZONES_SHIFT;
+ nid = entry & ((1UL << NODES_SHIFT) - 1);
+ entry >>= NODES_SHIFT;
+ eviction = entry;
+
+ *zone = NODE_DATA(nid)->node_zones + zid;
+
+ refault = atomic_long_read(&(*zone)->inactive_age);
+ mask = ~0UL >> (NODES_SHIFT + ZONES_SHIFT +
+ RADIX_TREE_EXCEPTIONAL_SHIFT);
+ /*
+ * The unsigned subtraction here gives an accurate distance
+ * across inactive_age overflows in most cases.
+ *
+ * There is a special case: usually, shadow entries have a
+ * short lifetime and are either refaulted or reclaimed along
+ * with the inode before they get too old. But it is not
+ * impossible for the inactive_age to lap a shadow entry in
+ * the field, which can then can result in a false small
+ * refault distance, leading to a false activation should this
+ * old entry actually refault again. However, earlier kernels
+ * used to deactivate unconditionally with *every* reclaim
+ * invocation for the longest time, so the occasional
+ * inappropriate activation leading to pressure on the active
+ * list is not a problem.
+ */
+ *distance = (refault - eviction) & mask;
+}
+
+/**
+ * workingset_eviction - note the eviction of a page from memory
+ * @mapping: address space the page was backing
+ * @page: the page being evicted
+ *
+ * Returns a shadow entry to be stored in @mapping->page_tree in place
+ * of the evicted @page so that a later refault can be detected.
+ */
+void *workingset_eviction(struct address_space *mapping, struct page *page)
+{
+ struct zone *zone = page_zone(page);
+ unsigned long eviction;
+
+ eviction = atomic_long_inc_return(&zone->inactive_age);
+ return pack_shadow(eviction, zone);
+}
+
+/**
+ * workingset_refault - evaluate the refault of a previously evicted page
+ * @shadow: shadow entry of the evicted page
+ *
+ * Calculates and evaluates the refault distance of the previously
+ * evicted page in the context of the zone it was allocated in.
+ *
+ * Returns %true if the page should be activated, %false otherwise.
+ */
+bool workingset_refault(void *shadow)
+{
+ unsigned long refault_distance;
+ struct zone *zone;
+
+ unpack_shadow(shadow, &zone, &refault_distance);
+ inc_zone_state(zone, WORKINGSET_REFAULT);
+
+ if (refault_distance <= zone_page_state(zone, NR_ACTIVE_FILE)) {
+ inc_zone_state(zone, WORKINGSET_ACTIVATE);
+ return true;
+ }
+ return false;
+}
+
+/**
+ * workingset_activation - note a page activation
+ * @page: page that is being activated
+ */
+void workingset_activation(struct page *page)
+{
+ atomic_long_inc(&page_zone(page)->inactive_age);
+}