diff options
Diffstat (limited to 'mm')
79 files changed, 4740 insertions, 2278 deletions
diff --git a/mm/Kconfig b/mm/Kconfig index f730605b8dcf..24c045b24b95 100644 --- a/mm/Kconfig +++ b/mm/Kconfig @@ -804,9 +804,6 @@ config DEVICE_PRIVATE config VMAP_PFN bool -config FRAME_VECTOR - bool - config ARCH_USES_HIGH_VMA_FLAGS bool config ARCH_HAS_PKEYS diff --git a/mm/Makefile b/mm/Makefile index b6cd2fffa492..72227b24a616 100644 --- a/mm/Makefile +++ b/mm/Makefile @@ -81,6 +81,7 @@ obj-$(CONFIG_PAGE_POISONING) += page_poison.o obj-$(CONFIG_SLAB) += slab.o obj-$(CONFIG_SLUB) += slub.o obj-$(CONFIG_KASAN) += kasan/ +obj-$(CONFIG_KFENCE) += kfence/ obj-$(CONFIG_FAILSLAB) += failslab.o obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o obj-$(CONFIG_MEMTEST) += memtest.o @@ -110,7 +111,6 @@ obj-$(CONFIG_PAGE_EXTENSION) += page_ext.o obj-$(CONFIG_CMA_DEBUGFS) += cma_debug.o obj-$(CONFIG_USERFAULTFD) += userfaultfd.o obj-$(CONFIG_IDLE_PAGE_TRACKING) += page_idle.o -obj-$(CONFIG_FRAME_VECTOR) += frame_vector.o obj-$(CONFIG_DEBUG_PAGE_REF) += debug_page_ref.o obj-$(CONFIG_HARDENED_USERCOPY) += usercopy.o obj-$(CONFIG_PERCPU_STATS) += percpu-stats.o diff --git a/mm/backing-dev.c b/mm/backing-dev.c index e33797579338..576220acd686 100644 --- a/mm/backing-dev.c +++ b/mm/backing-dev.c @@ -8,6 +8,7 @@ #include <linux/fs.h> #include <linux/pagemap.h> #include <linux/mm.h> +#include <linux/sched/mm.h> #include <linux/sched.h> #include <linux/module.h> #include <linux/writeback.h> @@ -32,6 +33,8 @@ LIST_HEAD(bdi_list); /* bdi_wq serves all asynchronous writeback tasks */ struct workqueue_struct *bdi_wq; +#define K(x) ((x) << (PAGE_SHIFT - 10)) + #ifdef CONFIG_DEBUG_FS #include <linux/debugfs.h> #include <linux/seq_file.h> @@ -69,7 +72,6 @@ static int bdi_debug_stats_show(struct seq_file *m, void *v) global_dirty_limits(&background_thresh, &dirty_thresh); wb_thresh = wb_calc_thresh(wb, dirty_thresh); -#define K(x) ((x) << (PAGE_SHIFT - 10)) seq_printf(m, "BdiWriteback: %10lu kB\n" "BdiReclaimable: %10lu kB\n" @@ -98,7 +100,6 @@ static int bdi_debug_stats_show(struct seq_file *m, void *v) nr_more_io, nr_dirty_time, !list_empty(&bdi->bdi_list), bdi->wb.state); -#undef K return 0; } @@ -146,8 +147,6 @@ static ssize_t read_ahead_kb_store(struct device *dev, return count; } -#define K(pages) ((pages) << (PAGE_SHIFT - 10)) - #define BDI_SHOW(name, expr) \ static ssize_t name##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ @@ -580,7 +579,7 @@ struct bdi_writeback *wb_get_create(struct backing_dev_info *bdi, { struct bdi_writeback *wb; - might_sleep_if(gfpflags_allow_blocking(gfp)); + might_alloc(gfp); if (!memcg_css->parent) return &bdi->wb; @@ -94,34 +94,29 @@ static void cma_clear_bitmap(struct cma *cma, unsigned long pfn, static void __init cma_activate_area(struct cma *cma) { - unsigned long base_pfn = cma->base_pfn, pfn = base_pfn; - unsigned i = cma->count >> pageblock_order; + unsigned long base_pfn = cma->base_pfn, pfn; struct zone *zone; cma->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma), GFP_KERNEL); if (!cma->bitmap) goto out_error; - WARN_ON_ONCE(!pfn_valid(pfn)); - zone = page_zone(pfn_to_page(pfn)); - - do { - unsigned j; - - base_pfn = pfn; - for (j = pageblock_nr_pages; j; --j, pfn++) { - WARN_ON_ONCE(!pfn_valid(pfn)); - /* - * alloc_contig_range requires the pfn range - * specified to be in the same zone. Make this - * simple by forcing the entire CMA resv range - * to be in the same zone. - */ - if (page_zone(pfn_to_page(pfn)) != zone) - goto not_in_zone; - } - init_cma_reserved_pageblock(pfn_to_page(base_pfn)); - } while (--i); + /* + * alloc_contig_range() requires the pfn range specified to be in the + * same zone. Simplify by forcing the entire CMA resv range to be in the + * same zone. + */ + WARN_ON_ONCE(!pfn_valid(base_pfn)); + zone = page_zone(pfn_to_page(base_pfn)); + for (pfn = base_pfn + 1; pfn < base_pfn + cma->count; pfn++) { + WARN_ON_ONCE(!pfn_valid(pfn)); + if (page_zone(pfn_to_page(pfn)) != zone) + goto not_in_zone; + } + + for (pfn = base_pfn; pfn < base_pfn + cma->count; + pfn += pageblock_nr_pages) + init_cma_reserved_pageblock(pfn_to_page(pfn)); mutex_init(&cma->lock); @@ -135,6 +130,10 @@ static void __init cma_activate_area(struct cma *cma) not_in_zone: bitmap_free(cma->bitmap); out_error: + /* Expose all pages to the buddy, they are useless for CMA. */ + for (pfn = base_pfn; pfn < base_pfn + cma->count; pfn++) + free_reserved_page(pfn_to_page(pfn)); + totalcma_pages -= cma->count; cma->count = 0; pr_err("CMA area %s could not be activated\n", cma->name); return; @@ -336,6 +335,23 @@ int __init cma_declare_contiguous_nid(phys_addr_t base, limit = highmem_start; } + /* + * If there is enough memory, try a bottom-up allocation first. + * It will place the new cma area close to the start of the node + * and guarantee that the compaction is moving pages out of the + * cma area and not into it. + * Avoid using first 4GB to not interfere with constrained zones + * like DMA/DMA32. + */ +#ifdef CONFIG_PHYS_ADDR_T_64BIT + if (!memblock_bottom_up() && memblock_end >= SZ_4G + size) { + memblock_set_bottom_up(true); + addr = memblock_alloc_range_nid(size, alignment, SZ_4G, + limit, nid, true); + memblock_set_bottom_up(false); + } +#endif + if (!addr) { addr = memblock_alloc_range_nid(size, alignment, base, limit, nid, true); @@ -484,8 +500,8 @@ struct page *cma_alloc(struct cma *cma, size_t count, unsigned int align, } if (ret && !no_warn) { - pr_err("%s: alloc failed, req-size: %zu pages, ret: %d\n", - __func__, count, ret); + pr_err("%s: %s: alloc failed, req-size: %zu pages, ret: %d\n", + __func__, cma->name, count, ret); cma_debug_show_areas(cma); } diff --git a/mm/compaction.c b/mm/compaction.c index 190ccdaa6c19..e04f4476e68e 100644 --- a/mm/compaction.c +++ b/mm/compaction.c @@ -137,7 +137,6 @@ EXPORT_SYMBOL(__SetPageMovable); void __ClearPageMovable(struct page *page) { - VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(!PageMovable(page), page); /* * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE @@ -988,14 +987,13 @@ isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, if (unlikely(!get_page_unless_zero(page))) goto isolate_fail; - if (__isolate_lru_page_prepare(page, isolate_mode) != 0) + if (!__isolate_lru_page_prepare(page, isolate_mode)) goto isolate_fail_put; /* Try isolate the page */ if (!TestClearPageLRU(page)) goto isolate_fail_put; - rcu_read_lock(); lruvec = mem_cgroup_page_lruvec(page, pgdat); /* If we already hold the lock, we can skip some rechecking */ @@ -1005,7 +1003,6 @@ isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, compact_lock_irqsave(&lruvec->lru_lock, &flags, cc); locked = lruvec; - rcu_read_unlock(); lruvec_memcg_debug(lruvec, page); @@ -1026,15 +1023,14 @@ isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn, SetPageLRU(page); goto isolate_fail_put; } - } else - rcu_read_unlock(); + } /* The whole page is taken off the LRU; skip the tail pages. */ if (PageCompound(page)) low_pfn += compound_nr(page) - 1; /* Successfully isolated */ - del_page_from_lru_list(page, lruvec, page_lru(page)); + del_page_from_lru_list(page, lruvec); mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page), thp_nr_pages(page)); @@ -1288,7 +1284,7 @@ static void fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated) { unsigned long start_pfn, end_pfn; - struct page *page = pfn_to_page(pfn); + struct page *page; /* Do not search around if there are enough pages already */ if (cc->nr_freepages >= cc->nr_migratepages) @@ -1299,8 +1295,12 @@ fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long return; /* Pageblock boundaries */ - start_pfn = pageblock_start_pfn(pfn); - end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1; + start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn); + end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)); + + page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone); + if (!page) + return; /* Scan before */ if (start_pfn != pfn) { @@ -1402,7 +1402,8 @@ fast_isolate_freepages(struct compact_control *cc) pfn = page_to_pfn(freepage); if (pfn >= highest) - highest = pageblock_start_pfn(pfn); + highest = max(pageblock_start_pfn(pfn), + cc->zone->zone_start_pfn); if (pfn >= low_pfn) { cc->fast_search_fail = 0; @@ -1472,7 +1473,8 @@ fast_isolate_freepages(struct compact_control *cc) } else { if (cc->direct_compaction && pfn_valid(min_pfn)) { page = pageblock_pfn_to_page(min_pfn, - pageblock_end_pfn(min_pfn), + min(pageblock_end_pfn(min_pfn), + zone_end_pfn(cc->zone)), cc->zone); cc->free_pfn = min_pfn; } @@ -1702,6 +1704,7 @@ static unsigned long fast_find_migrateblock(struct compact_control *cc) unsigned long pfn = cc->migrate_pfn; unsigned long high_pfn; int order; + bool found_block = false; /* Skip hints are relied on to avoid repeats on the fast search */ if (cc->ignore_skip_hint) @@ -1744,7 +1747,7 @@ static unsigned long fast_find_migrateblock(struct compact_control *cc) high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance); for (order = cc->order - 1; - order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit; + order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit; order--) { struct free_area *area = &cc->zone->free_area[order]; struct list_head *freelist; @@ -1759,7 +1762,11 @@ static unsigned long fast_find_migrateblock(struct compact_control *cc) list_for_each_entry(freepage, freelist, lru) { unsigned long free_pfn; - nr_scanned++; + if (nr_scanned++ >= limit) { + move_freelist_tail(freelist, freepage); + break; + } + free_pfn = page_to_pfn(freepage); if (free_pfn < high_pfn) { /* @@ -1768,12 +1775,8 @@ static unsigned long fast_find_migrateblock(struct compact_control *cc) * the list assumes an entry is deleted, not * reordered. */ - if (get_pageblock_skip(freepage)) { - if (list_is_last(freelist, &freepage->lru)) - break; - + if (get_pageblock_skip(freepage)) continue; - } /* Reorder to so a future search skips recent pages */ move_freelist_tail(freelist, freepage); @@ -1781,15 +1784,10 @@ static unsigned long fast_find_migrateblock(struct compact_control *cc) update_fast_start_pfn(cc, free_pfn); pfn = pageblock_start_pfn(free_pfn); cc->fast_search_fail = 0; + found_block = true; set_pageblock_skip(freepage); break; } - - if (nr_scanned >= limit) { - cc->fast_search_fail++; - move_freelist_tail(freelist, freepage); - break; - } } spin_unlock_irqrestore(&cc->zone->lock, flags); } @@ -1800,9 +1798,10 @@ static unsigned long fast_find_migrateblock(struct compact_control *cc) * If fast scanning failed then use a cached entry for a page block * that had free pages as the basis for starting a linear scan. */ - if (pfn == cc->migrate_pfn) + if (!found_block) { + cc->fast_search_fail++; pfn = reinit_migrate_pfn(cc); - + } return pfn; } @@ -1926,20 +1925,28 @@ static bool kswapd_is_running(pg_data_t *pgdat) /* * A zone's fragmentation score is the external fragmentation wrt to the - * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value - * in the range [0, 100]. + * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100]. + */ +static unsigned int fragmentation_score_zone(struct zone *zone) +{ + return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); +} + +/* + * A weighted zone's fragmentation score is the external fragmentation + * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It + * returns a value in the range [0, 100]. * * The scaling factor ensures that proactive compaction focuses on larger * zones like ZONE_NORMAL, rather than smaller, specialized zones like * ZONE_DMA32. For smaller zones, the score value remains close to zero, * and thus never exceeds the high threshold for proactive compaction. */ -static unsigned int fragmentation_score_zone(struct zone *zone) +static unsigned int fragmentation_score_zone_weighted(struct zone *zone) { unsigned long score; - score = zone->present_pages * - extfrag_for_order(zone, COMPACTION_HPAGE_ORDER); + score = zone->present_pages * fragmentation_score_zone(zone); return div64_ul(score, zone->zone_pgdat->node_present_pages + 1); } @@ -1959,7 +1966,7 @@ static unsigned int fragmentation_score_node(pg_data_t *pgdat) struct zone *zone; zone = &pgdat->node_zones[zoneid]; - score += fragmentation_score_zone(zone); + score += fragmentation_score_zone_weighted(zone); } return score; diff --git a/mm/debug.c b/mm/debug.c index 8a40b3fefbeb..0bdda8407f71 100644 --- a/mm/debug.c +++ b/mm/debug.c @@ -110,6 +110,11 @@ void __dump_page(struct page *page, const char *reason) head_compound_mapcount(head)); } } + +#ifdef CONFIG_MEMCG + if (head->memcg_data) + pr_warn("memcg:%lx\n", head->memcg_data); +#endif if (PageKsm(page)) type = "ksm "; else if (PageAnon(page)) @@ -180,11 +185,6 @@ hex_only: if (reason) pr_warn("page dumped because: %s\n", reason); - -#ifdef CONFIG_MEMCG - if (!page_poisoned && page->memcg_data) - pr_warn("pages's memcg:%lx\n", page->memcg_data); -#endif } void dump_page(struct page *page, const char *reason) diff --git a/mm/debug_vm_pgtable.c b/mm/debug_vm_pgtable.c index c05d9dcf7891..a9bd6ce1ba02 100644 --- a/mm/debug_vm_pgtable.c +++ b/mm/debug_vm_pgtable.c @@ -58,11 +58,23 @@ #define RANDOM_ORVALUE (GENMASK(BITS_PER_LONG - 1, 0) & ~ARCH_SKIP_MASK) #define RANDOM_NZVALUE GENMASK(7, 0) -static void __init pte_basic_tests(unsigned long pfn, pgprot_t prot) +static void __init pte_basic_tests(unsigned long pfn, int idx) { + pgprot_t prot = protection_map[idx]; pte_t pte = pfn_pte(pfn, prot); + unsigned long val = idx, *ptr = &val; + + pr_debug("Validating PTE basic (%pGv)\n", ptr); + + /* + * This test needs to be executed after the given page table entry + * is created with pfn_pte() to make sure that protection_map[idx] + * does not have the dirty bit enabled from the beginning. This is + * important for platforms like arm64 where (!PTE_RDONLY) indicate + * dirty bit being set. + */ + WARN_ON(pte_dirty(pte_wrprotect(pte))); - pr_debug("Validating PTE basic\n"); WARN_ON(!pte_same(pte, pte)); WARN_ON(!pte_young(pte_mkyoung(pte_mkold(pte)))); WARN_ON(!pte_dirty(pte_mkdirty(pte_mkclean(pte)))); @@ -70,6 +82,8 @@ static void __init pte_basic_tests(unsigned long pfn, pgprot_t prot) WARN_ON(pte_young(pte_mkold(pte_mkyoung(pte)))); WARN_ON(pte_dirty(pte_mkclean(pte_mkdirty(pte)))); WARN_ON(pte_write(pte_wrprotect(pte_mkwrite(pte)))); + WARN_ON(pte_dirty(pte_wrprotect(pte_mkclean(pte)))); + WARN_ON(!pte_dirty(pte_wrprotect(pte_mkdirty(pte)))); } static void __init pte_advanced_tests(struct mm_struct *mm, @@ -129,14 +143,27 @@ static void __init pte_savedwrite_tests(unsigned long pfn, pgprot_t prot) } #ifdef CONFIG_TRANSPARENT_HUGEPAGE -static void __init pmd_basic_tests(unsigned long pfn, pgprot_t prot) +static void __init pmd_basic_tests(unsigned long pfn, int idx) { + pgprot_t prot = protection_map[idx]; pmd_t pmd = pfn_pmd(pfn, prot); + unsigned long val = idx, *ptr = &val; if (!has_transparent_hugepage()) return; - pr_debug("Validating PMD basic\n"); + pr_debug("Validating PMD basic (%pGv)\n", ptr); + + /* + * This test needs to be executed after the given page table entry + * is created with pfn_pmd() to make sure that protection_map[idx] + * does not have the dirty bit enabled from the beginning. This is + * important for platforms like arm64 where (!PTE_RDONLY) indicate + * dirty bit being set. + */ + WARN_ON(pmd_dirty(pmd_wrprotect(pmd))); + + WARN_ON(!pmd_same(pmd, pmd)); WARN_ON(!pmd_young(pmd_mkyoung(pmd_mkold(pmd)))); WARN_ON(!pmd_dirty(pmd_mkdirty(pmd_mkclean(pmd)))); @@ -144,6 +171,8 @@ static void __init pmd_basic_tests(unsigned long pfn, pgprot_t prot) WARN_ON(pmd_young(pmd_mkold(pmd_mkyoung(pmd)))); WARN_ON(pmd_dirty(pmd_mkclean(pmd_mkdirty(pmd)))); WARN_ON(pmd_write(pmd_wrprotect(pmd_mkwrite(pmd)))); + WARN_ON(pmd_dirty(pmd_wrprotect(pmd_mkclean(pmd)))); + WARN_ON(!pmd_dirty(pmd_wrprotect(pmd_mkdirty(pmd)))); /* * A huge page does not point to next level page table * entry. Hence this must qualify as pmd_bad(). @@ -249,19 +278,35 @@ static void __init pmd_savedwrite_tests(unsigned long pfn, pgprot_t prot) } #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD -static void __init pud_basic_tests(unsigned long pfn, pgprot_t prot) +static void __init pud_basic_tests(struct mm_struct *mm, unsigned long pfn, int idx) { + pgprot_t prot = protection_map[idx]; pud_t pud = pfn_pud(pfn, prot); + unsigned long val = idx, *ptr = &val; if (!has_transparent_hugepage()) return; - pr_debug("Validating PUD basic\n"); + pr_debug("Validating PUD basic (%pGv)\n", ptr); + + /* + * This test needs to be executed after the given page table entry + * is created with pfn_pud() to make sure that protection_map[idx] + * does not have the dirty bit enabled from the beginning. This is + * important for platforms like arm64 where (!PTE_RDONLY) indicate + * dirty bit being set. + */ + WARN_ON(pud_dirty(pud_wrprotect(pud))); + WARN_ON(!pud_same(pud, pud)); WARN_ON(!pud_young(pud_mkyoung(pud_mkold(pud)))); + WARN_ON(!pud_dirty(pud_mkdirty(pud_mkclean(pud)))); + WARN_ON(pud_dirty(pud_mkclean(pud_mkdirty(pud)))); WARN_ON(!pud_write(pud_mkwrite(pud_wrprotect(pud)))); WARN_ON(pud_write(pud_wrprotect(pud_mkwrite(pud)))); WARN_ON(pud_young(pud_mkold(pud_mkyoung(pud)))); + WARN_ON(pud_dirty(pud_wrprotect(pud_mkclean(pud)))); + WARN_ON(!pud_dirty(pud_wrprotect(pud_mkdirty(pud)))); if (mm_pmd_folded(mm)) return; @@ -359,7 +404,7 @@ static void __init pud_huge_tests(pud_t *pudp, unsigned long pfn, pgprot_t prot) #endif /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ #else /* !CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ -static void __init pud_basic_tests(unsigned long pfn, pgprot_t prot) { } +static void __init pud_basic_tests(struct mm_struct *mm, unsigned long pfn, int idx) { } static void __init pud_advanced_tests(struct mm_struct *mm, struct vm_area_struct *vma, pud_t *pudp, unsigned long pfn, unsigned long vaddr, @@ -372,8 +417,8 @@ static void __init pud_huge_tests(pud_t *pudp, unsigned long pfn, pgprot_t prot) } #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ -static void __init pmd_basic_tests(unsigned long pfn, pgprot_t prot) { } -static void __init pud_basic_tests(unsigned long pfn, pgprot_t prot) { } +static void __init pmd_basic_tests(unsigned long pfn, int idx) { } +static void __init pud_basic_tests(struct mm_struct *mm, unsigned long pfn, int idx) { } static void __init pmd_advanced_tests(struct mm_struct *mm, struct vm_area_struct *vma, pmd_t *pmdp, unsigned long pfn, unsigned long vaddr, @@ -899,6 +944,7 @@ static int __init debug_vm_pgtable(void) unsigned long vaddr, pte_aligned, pmd_aligned; unsigned long pud_aligned, p4d_aligned, pgd_aligned; spinlock_t *ptl = NULL; + int idx; pr_info("Validating architecture page table helpers\n"); prot = vm_get_page_prot(VMFLAGS); @@ -963,9 +1009,25 @@ static int __init debug_vm_pgtable(void) saved_pmdp = pmd_offset(pudp, 0UL); saved_ptep = pmd_pgtable(pmd); - pte_basic_tests(pte_aligned, prot); - pmd_basic_tests(pmd_aligned, prot); - pud_basic_tests(pud_aligned, prot); + /* + * Iterate over the protection_map[] to make sure that all + * the basic page table transformation validations just hold + * true irrespective of the starting protection value for a + * given page table entry. + */ + for (idx = 0; idx < ARRAY_SIZE(protection_map); idx++) { + pte_basic_tests(pte_aligned, idx); + pmd_basic_tests(pmd_aligned, idx); + pud_basic_tests(mm, pud_aligned, idx); + } + + /* + * Both P4D and PGD level tests are very basic which do not + * involve creating page table entries from the protection + * value and the given pfn. Hence just keep them out from + * the above iteration for now to save some test execution + * time. + */ p4d_basic_tests(p4d_aligned, prot); pgd_basic_tests(pgd_aligned, prot); diff --git a/mm/dmapool.c b/mm/dmapool.c index a97c97232337..f3791532fef2 100644 --- a/mm/dmapool.c +++ b/mm/dmapool.c @@ -28,6 +28,7 @@ #include <linux/mutex.h> #include <linux/poison.h> #include <linux/sched.h> +#include <linux/sched/mm.h> #include <linux/slab.h> #include <linux/stat.h> #include <linux/spinlock.h> @@ -319,7 +320,7 @@ void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, size_t offset; void *retval; - might_sleep_if(gfpflags_allow_blocking(mem_flags)); + might_alloc(mem_flags); spin_lock_irqsave(&pool->lock, flags); list_for_each_entry(page, &pool->page_list, page_list) { diff --git a/mm/early_ioremap.c b/mm/early_ioremap.c index a0018ad1a1f6..164607c7cdf1 100644 --- a/mm/early_ioremap.c +++ b/mm/early_ioremap.c @@ -181,17 +181,17 @@ void __init early_iounmap(void __iomem *addr, unsigned long size) } } - if (WARN(slot < 0, "early_iounmap(%p, %08lx) not found slot\n", - addr, size)) + if (WARN(slot < 0, "%s(%p, %08lx) not found slot\n", + __func__, addr, size)) return; if (WARN(prev_size[slot] != size, - "early_iounmap(%p, %08lx) [%d] size not consistent %08lx\n", - addr, size, slot, prev_size[slot])) + "%s(%p, %08lx) [%d] size not consistent %08lx\n", + __func__, addr, size, slot, prev_size[slot])) return; - WARN(early_ioremap_debug, "early_iounmap(%p, %08lx) [%d]\n", - addr, size, slot); + WARN(early_ioremap_debug, "%s(%p, %08lx) [%d]\n", + __func__, addr, size, slot); virt_addr = (unsigned long)addr; if (WARN_ON(virt_addr < fix_to_virt(FIX_BTMAP_BEGIN))) diff --git a/mm/filemap.c b/mm/filemap.c index 6ff2a3fb0dc7..43700480d897 100644 --- a/mm/filemap.c +++ b/mm/filemap.c @@ -206,9 +206,9 @@ static void unaccount_page_cache_page(struct address_space *mapping, if (PageSwapBacked(page)) { __mod_lruvec_page_state(page, NR_SHMEM, -nr); if (PageTransHuge(page)) - __dec_lruvec_page_state(page, NR_SHMEM_THPS); + __mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr); } else if (PageTransHuge(page)) { - __dec_lruvec_page_state(page, NR_FILE_THPS); + __mod_lruvec_page_state(page, NR_FILE_THPS, -nr); filemap_nr_thps_dec(mapping); } @@ -777,7 +777,6 @@ EXPORT_SYMBOL(file_write_and_wait_range); * replace_page_cache_page - replace a pagecache page with a new one * @old: page to be replaced * @new: page to replace with - * @gfp_mask: allocation mode * * This function replaces a page in the pagecache with a new one. On * success it acquires the pagecache reference for the new page and @@ -786,10 +785,8 @@ EXPORT_SYMBOL(file_write_and_wait_range); * caller must do that. * * The remove + add is atomic. This function cannot fail. - * - * Return: %0 */ -int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) +void replace_page_cache_page(struct page *old, struct page *new) { struct address_space *mapping = old->mapping; void (*freepage)(struct page *) = mapping->a_ops->freepage; @@ -824,8 +821,6 @@ int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) if (freepage) freepage(old); put_page(old); - - return 0; } EXPORT_SYMBOL_GPL(replace_page_cache_page); @@ -1348,61 +1343,26 @@ int wait_on_page_bit_killable(struct page *page, int bit_nr) } EXPORT_SYMBOL(wait_on_page_bit_killable); -static int __wait_on_page_locked_async(struct page *page, - struct wait_page_queue *wait, bool set) -{ - struct wait_queue_head *q = page_waitqueue(page); - int ret = 0; - - wait->page = page; - wait->bit_nr = PG_locked; - - spin_lock_irq(&q->lock); - __add_wait_queue_entry_tail(q, &wait->wait); - SetPageWaiters(page); - if (set) - ret = !trylock_page(page); - else - ret = PageLocked(page); - /* - * If we were successful now, we know we're still on the - * waitqueue as we're still under the lock. This means it's - * safe to remove and return success, we know the callback - * isn't going to trigger. - */ - if (!ret) - __remove_wait_queue(q, &wait->wait); - else - ret = -EIOCBQUEUED; - spin_unlock_irq(&q->lock); - return ret; -} - -static int wait_on_page_locked_async(struct page *page, - struct wait_page_queue *wait) -{ - if (!PageLocked(page)) - return 0; - return __wait_on_page_locked_async(compound_head(page), wait, false); -} - /** * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked * @page: The page to wait for. + * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). * * The caller should hold a reference on @page. They expect the page to * become unlocked relatively soon, but do not wish to hold up migration * (for example) by holding the reference while waiting for the page to * come unlocked. After this function returns, the caller should not * dereference @page. + * + * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal. */ -void put_and_wait_on_page_locked(struct page *page) +int put_and_wait_on_page_locked(struct page *page, int state) { wait_queue_head_t *q; page = compound_head(page); q = page_waitqueue(page); - wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); + return wait_on_page_bit_common(q, page, PG_locked, state, DROP); } /** @@ -1558,7 +1518,28 @@ EXPORT_SYMBOL_GPL(__lock_page_killable); int __lock_page_async(struct page *page, struct wait_page_queue *wait) { - return __wait_on_page_locked_async(page, wait, true); + struct wait_queue_head *q = page_waitqueue(page); + int ret = 0; + + wait->page = page; + wait->bit_nr = PG_locked; + + spin_lock_irq(&q->lock); + __add_wait_queue_entry_tail(q, &wait->wait); + SetPageWaiters(page); + ret = !trylock_page(page); + /* + * If we were successful now, we know we're still on the + * waitqueue as we're still under the lock. This means it's + * safe to remove and return success, we know the callback + * isn't going to trigger. + */ + if (!ret) + __remove_wait_queue(q, &wait->wait); + else + ret = -EIOCBQUEUED; + spin_unlock_irq(&q->lock); + return ret; } /* @@ -1677,8 +1658,8 @@ pgoff_t page_cache_prev_miss(struct address_space *mapping, } EXPORT_SYMBOL(page_cache_prev_miss); -/** - * find_get_entry - find and get a page cache entry +/* + * mapping_get_entry - Get a page cache entry. * @mapping: the address_space to search * @index: The page cache index. * @@ -1690,7 +1671,8 @@ EXPORT_SYMBOL(page_cache_prev_miss); * * Return: The head page or shadow entry, %NULL if nothing is found. */ -struct page *find_get_entry(struct address_space *mapping, pgoff_t index) +static struct page *mapping_get_entry(struct address_space *mapping, + pgoff_t index) { XA_STATE(xas, &mapping->i_pages, index); struct page *page; @@ -1727,39 +1709,6 @@ out: } /** - * find_lock_entry - Locate and lock a page cache entry. - * @mapping: The address_space to search. - * @index: The page cache index. - * - * Looks up the page at @mapping & @index. If there is a page in the - * cache, the head page is returned locked and with an increased refcount. - * - * If the slot holds a shadow entry of a previously evicted page, or a - * swap entry from shmem/tmpfs, it is returned. - * - * Context: May sleep. - * Return: The head page or shadow entry, %NULL if nothing is found. - */ -struct page *find_lock_entry(struct address_space *mapping, pgoff_t index) -{ - struct page *page; - -repeat: - page = find_get_entry(mapping, index); - if (page && !xa_is_value(page)) { - lock_page(page); - /* Has the page been truncated? */ - if (unlikely(page->mapping != mapping)) { - unlock_page(page); - put_page(page); - goto repeat; - } - VM_BUG_ON_PAGE(!thp_contains(page, index), page); - } - return page; -} - -/** * pagecache_get_page - Find and get a reference to a page. * @mapping: The address_space to search. * @index: The page index. @@ -1774,6 +1723,8 @@ repeat: * * %FGP_LOCK - The page is returned locked. * * %FGP_HEAD - If the page is present and a THP, return the head page * rather than the exact page specified by the index. + * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it + * instead of allocating a new page to replace it. * * %FGP_CREAT - If no page is present then a new page is allocated using * @gfp_mask and added to the page cache and the VM's LRU list. * The page is returned locked and with an increased refcount. @@ -1797,9 +1748,12 @@ struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, struct page *page; repeat: - page = find_get_entry(mapping, index); - if (xa_is_value(page)) + page = mapping_get_entry(mapping, index); + if (xa_is_value(page)) { + if (fgp_flags & FGP_ENTRY) + return page; page = NULL; + } if (!page) goto no_page; @@ -1871,18 +1825,53 @@ no_page: } EXPORT_SYMBOL(pagecache_get_page); +static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max, + xa_mark_t mark) +{ + struct page *page; + +retry: + if (mark == XA_PRESENT) + page = xas_find(xas, max); + else + page = xas_find_marked(xas, max, mark); + + if (xas_retry(xas, page)) + goto retry; + /* + * A shadow entry of a recently evicted page, a swap + * entry from shmem/tmpfs or a DAX entry. Return it + * without attempting to raise page count. + */ + if (!page || xa_is_value(page)) + return page; + + if (!page_cache_get_speculative(page)) + goto reset; + + /* Has the page moved or been split? */ + if (unlikely(page != xas_reload(xas))) { + put_page(page); + goto reset; + } + + return page; +reset: + xas_reset(xas); + goto retry; +} + /** * find_get_entries - gang pagecache lookup * @mapping: The address_space to search * @start: The starting page cache index - * @nr_entries: The maximum number of entries - * @entries: Where the resulting entries are placed + * @end: The final page index (inclusive). + * @pvec: Where the resulting entries are placed. * @indices: The cache indices corresponding to the entries in @entries * - * find_get_entries() will search for and return a group of up to - * @nr_entries entries in the mapping. The entries are placed at - * @entries. find_get_entries() takes a reference against any actual - * pages it returns. + * find_get_entries() will search for and return a batch of entries in + * the mapping. The entries are placed in @pvec. find_get_entries() + * takes a reference on any actual pages it returns. * * The search returns a group of mapping-contiguous page cache entries * with ascending indexes. There may be holes in the indices due to @@ -1898,60 +1887,97 @@ EXPORT_SYMBOL(pagecache_get_page); * * Return: the number of pages and shadow entries which were found. */ -unsigned find_get_entries(struct address_space *mapping, - pgoff_t start, unsigned int nr_entries, - struct page **entries, pgoff_t *indices) +unsigned find_get_entries(struct address_space *mapping, pgoff_t start, + pgoff_t end, struct pagevec *pvec, pgoff_t *indices) { XA_STATE(xas, &mapping->i_pages, start); struct page *page; unsigned int ret = 0; - - if (!nr_entries) - return 0; + unsigned nr_entries = PAGEVEC_SIZE; rcu_read_lock(); - xas_for_each(&xas, page, ULONG_MAX) { - if (xas_retry(&xas, page)) - continue; - /* - * A shadow entry of a recently evicted page, a swap - * entry from shmem/tmpfs or a DAX entry. Return it - * without attempting to raise page count. - */ - if (xa_is_value(page)) - goto export; - - if (!page_cache_get_speculative(page)) - goto retry; - - /* Has the page moved or been split? */ - if (unlikely(page != xas_reload(&xas))) - goto put_page; - + while ((page = find_get_entry(&xas, end, XA_PRESENT))) { /* * Terminate early on finding a THP, to allow the caller to * handle it all at once; but continue if this is hugetlbfs. */ - if (PageTransHuge(page) && !PageHuge(page)) { + if (!xa_is_value(page) && PageTransHuge(page) && + !PageHuge(page)) { page = find_subpage(page, xas.xa_index); nr_entries = ret + 1; } -export: + indices[ret] = xas.xa_index; - entries[ret] = page; + pvec->pages[ret] = page; if (++ret == nr_entries) break; - continue; -put_page: - put_page(page); -retry: - xas_reset(&xas); } rcu_read_unlock(); + + pvec->nr = ret; return ret; } /** + * find_lock_entries - Find a batch of pagecache entries. + * @mapping: The address_space to search. + * @start: The starting page cache index. + * @end: The final page index (inclusive). + * @pvec: Where the resulting entries are placed. + * @indices: The cache indices of the entries in @pvec. + * + * find_lock_entries() will return a batch of entries from @mapping. + * Swap, shadow and DAX entries are included. Pages are returned + * locked and with an incremented refcount. Pages which are locked by + * somebody else or under writeback are skipped. Only the head page of + * a THP is returned. Pages which are partially outside the range are + * not returned. + * + * The entries have ascending indexes. The indices may not be consecutive + * due to not-present entries, THP pages, pages which could not be locked + * or pages under writeback. + * + * Return: The number of entries which were found. + */ +unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, + pgoff_t end, struct pagevec *pvec, pgoff_t *indices) +{ + XA_STATE(xas, &mapping->i_pages, start); + struct page *page; + + rcu_read_lock(); + while ((page = find_get_entry(&xas, end, XA_PRESENT))) { + if (!xa_is_value(page)) { + if (page->index < start) + goto put; + VM_BUG_ON_PAGE(page->index != xas.xa_index, page); + if (page->index + thp_nr_pages(page) - 1 > end) + goto put; + if (!trylock_page(page)) + goto put; + if (page->mapping != mapping || PageWriteback(page)) + goto unlock; + VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index), + page); + } + indices[pvec->nr] = xas.xa_index; + if (!pagevec_add(pvec, page)) + break; + goto next; +unlock: + unlock_page(page); +put: + put_page(page); +next: + if (!xa_is_value(page) && PageTransHuge(page)) + xas_set(&xas, page->index + thp_nr_pages(page)); + } + rcu_read_unlock(); + + return pagevec_count(pvec); +} + +/** * find_get_pages_range - gang pagecache lookup * @mapping: The address_space to search * @start: The starting page index @@ -1984,30 +2010,16 @@ unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, return 0; rcu_read_lock(); - xas_for_each(&xas, page, end) { - if (xas_retry(&xas, page)) - continue; + while ((page = find_get_entry(&xas, end, XA_PRESENT))) { /* Skip over shadow, swap and DAX entries */ if (xa_is_value(page)) continue; - if (!page_cache_get_speculative(page)) - goto retry; - - /* Has the page moved or been split? */ - if (unlikely(page != xas_reload(&xas))) - goto put_page; - pages[ret] = find_subpage(page, xas.xa_index); if (++ret == nr_pages) { *start = xas.xa_index + 1; goto out; } - continue; -put_page: - put_page(page); -retry: - xas_reset(&xas); } /* @@ -2081,7 +2093,7 @@ retry: EXPORT_SYMBOL(find_get_pages_contig); /** - * find_get_pages_range_tag - find and return pages in given range matching @tag + * find_get_pages_range_tag - Find and return head pages matching @tag. * @mapping: the address_space to search * @index: the starting page index * @end: The final page index (inclusive) @@ -2089,8 +2101,9 @@ EXPORT_SYMBOL(find_get_pages_contig); * @nr_pages: the maximum number of pages * @pages: where the resulting pages are placed * - * Like find_get_pages, except we only return pages which are tagged with - * @tag. We update @index to index the next page for the traversal. + * Like find_get_pages(), except we only return head pages which are tagged + * with @tag. @index is updated to the index immediately after the last + * page we return, ready for the next iteration. * * Return: the number of pages which were found. */ @@ -2106,9 +2119,7 @@ unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, return 0; rcu_read_lock(); - xas_for_each_marked(&xas, page, end, tag) { - if (xas_retry(&xas, page)) - continue; + while ((page = find_get_entry(&xas, end, tag))) { /* * Shadow entries should never be tagged, but this iteration * is lockless so there is a window for page reclaim to evict @@ -2117,23 +2128,11 @@ unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, if (xa_is_value(page)) continue; - if (!page_cache_get_speculative(page)) - goto retry; - - /* Has the page moved or been split? */ - if (unlikely(page != xas_reload(&xas))) - goto put_page; - - pages[ret] = find_subpage(page, xas.xa_index); + pages[ret] = page; if (++ret == nr_pages) { - *index = xas.xa_index + 1; + *index = page->index + thp_nr_pages(page); goto out; } - continue; -put_page: - put_page(page); -retry: - xas_reset(&xas); } /* @@ -2173,287 +2172,267 @@ static void shrink_readahead_size_eio(struct file_ra_state *ra) ra->ra_pages /= 4; } -static int lock_page_for_iocb(struct kiocb *iocb, struct page *page) +/* + * filemap_get_read_batch - Get a batch of pages for read + * + * Get a batch of pages which represent a contiguous range of bytes + * in the file. No tail pages will be returned. If @index is in the + * middle of a THP, the entire THP will be returned. The last page in + * the batch may have Readahead set or be not Uptodate so that the + * caller can take the appropriate action. + */ +static void filemap_get_read_batch(struct address_space *mapping, + pgoff_t index, pgoff_t max, struct pagevec *pvec) { - if (iocb->ki_flags & IOCB_WAITQ) - return lock_page_async(page, iocb->ki_waitq); - else if (iocb->ki_flags & IOCB_NOWAIT) - return trylock_page(page) ? 0 : -EAGAIN; - else - return lock_page_killable(page); + XA_STATE(xas, &mapping->i_pages, index); + struct page *head; + + rcu_read_lock(); + for (head = xas_load(&xas); head; head = xas_next(&xas)) { + if (xas_retry(&xas, head)) + continue; + if (xas.xa_index > max || xa_is_value(head)) + break; + if (!page_cache_get_speculative(head)) + goto retry; + + /* Has the page moved or been split? */ + if (unlikely(head != xas_reload(&xas))) + goto put_page; + + if (!pagevec_add(pvec, head)) + break; + if (!PageUptodate(head)) + break; + if (PageReadahead(head)) + break; + xas.xa_index = head->index + thp_nr_pages(head) - 1; + xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK; + continue; +put_page: + put_page(head); +retry: + xas_reset(&xas); + } + rcu_read_unlock(); } -static struct page * -generic_file_buffered_read_readpage(struct kiocb *iocb, - struct file *filp, - struct address_space *mapping, - struct page *page) +static int filemap_read_page(struct file *file, struct address_space *mapping, + struct page *page) { - struct file_ra_state *ra = &filp->f_ra; int error; - if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) { - unlock_page(page); - put_page(page); - return ERR_PTR(-EAGAIN); - } - /* - * A previous I/O error may have been due to temporary - * failures, eg. multipath errors. - * PG_error will be set again if readpage fails. + * A previous I/O error may have been due to temporary failures, + * eg. multipath errors. PG_error will be set again if readpage + * fails. */ ClearPageError(page); /* Start the actual read. The read will unlock the page. */ - error = mapping->a_ops->readpage(filp, page); + error = mapping->a_ops->readpage(file, page); + if (error) + return error; - if (unlikely(error)) { - put_page(page); - return error != AOP_TRUNCATED_PAGE ? ERR_PTR(error) : NULL; - } + error = wait_on_page_locked_killable(page); + if (error) + return error; + if (PageUptodate(page)) + return 0; + if (!page->mapping) /* page truncated */ + return AOP_TRUNCATED_PAGE; + shrink_readahead_size_eio(&file->f_ra); + return -EIO; +} - if (!PageUptodate(page)) { - error = lock_page_for_iocb(iocb, page); - if (unlikely(error)) { - put_page(page); - return ERR_PTR(error); - } - if (!PageUptodate(page)) { - if (page->mapping == NULL) { - /* - * invalidate_mapping_pages got it - */ - unlock_page(page); - put_page(page); - return NULL; - } - unlock_page(page); - shrink_readahead_size_eio(ra); - put_page(page); - return ERR_PTR(-EIO); - } - unlock_page(page); +static bool filemap_range_uptodate(struct address_space *mapping, + loff_t pos, struct iov_iter *iter, struct page *page) +{ + int count; + + if (PageUptodate(page)) + return true; + /* pipes can't handle partially uptodate pages */ + if (iov_iter_is_pipe(iter)) + return false; + if (!mapping->a_ops->is_partially_uptodate) + return false; + if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page))) + return false; + + count = iter->count; + if (page_offset(page) > pos) { + count -= page_offset(page) - pos; + pos = 0; + } else { + pos -= page_offset(page); } - return page; + return mapping->a_ops->is_partially_uptodate(page, pos, count); } -static struct page * -generic_file_buffered_read_pagenotuptodate(struct kiocb *iocb, - struct file *filp, - struct iov_iter *iter, - struct page *page, - loff_t pos, loff_t count) +static int filemap_update_page(struct kiocb *iocb, + struct address_space *mapping, struct iov_iter *iter, + struct page *page) { - struct address_space *mapping = filp->f_mapping; - struct inode *inode = mapping->host; int error; - /* - * See comment in do_read_cache_page on why - * wait_on_page_locked is used to avoid unnecessarily - * serialisations and why it's safe. - */ - if (iocb->ki_flags & IOCB_WAITQ) { - error = wait_on_page_locked_async(page, - iocb->ki_waitq); - } else { - error = wait_on_page_locked_killable(page); - } - if (unlikely(error)) { - put_page(page); - return ERR_PTR(error); + if (!trylock_page(page)) { + if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) + return -EAGAIN; + if (!(iocb->ki_flags & IOCB_WAITQ)) { + put_and_wait_on_page_locked(page, TASK_KILLABLE); + return AOP_TRUNCATED_PAGE; + } + error = __lock_page_async(page, iocb->ki_waitq); + if (error) + return error; } - if (PageUptodate(page)) - return page; - if (inode->i_blkbits == PAGE_SHIFT || - !mapping->a_ops->is_partially_uptodate) - goto page_not_up_to_date; - /* pipes can't handle partially uptodate pages */ - if (unlikely(iov_iter_is_pipe(iter))) - goto page_not_up_to_date; - if (!trylock_page(page)) - goto page_not_up_to_date; - /* Did it get truncated before we got the lock? */ if (!page->mapping) - goto page_not_up_to_date_locked; - if (!mapping->a_ops->is_partially_uptodate(page, - pos & ~PAGE_MASK, count)) - goto page_not_up_to_date_locked; - unlock_page(page); - return page; - -page_not_up_to_date: - /* Get exclusive access to the page ... */ - error = lock_page_for_iocb(iocb, page); - if (unlikely(error)) { - put_page(page); - return ERR_PTR(error); - } + goto truncated; -page_not_up_to_date_locked: - /* Did it get truncated before we got the lock? */ - if (!page->mapping) { - unlock_page(page); - put_page(page); - return NULL; - } + error = 0; + if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page)) + goto unlock; - /* Did somebody else fill it already? */ - if (PageUptodate(page)) { - unlock_page(page); - return page; - } + error = -EAGAIN; + if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) + goto unlock; - return generic_file_buffered_read_readpage(iocb, filp, mapping, page); + error = filemap_read_page(iocb->ki_filp, mapping, page); + if (error == AOP_TRUNCATED_PAGE) + put_page(page); + return error; +truncated: + unlock_page(page); + put_page(page); + return AOP_TRUNCATED_PAGE; +unlock: + unlock_page(page); + return error; } -static struct page * -generic_file_buffered_read_no_cached_page(struct kiocb *iocb, - struct iov_iter *iter) +static int filemap_create_page(struct file *file, + struct address_space *mapping, pgoff_t index, + struct pagevec *pvec) { - struct file *filp = iocb->ki_filp; - struct address_space *mapping = filp->f_mapping; - pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; struct page *page; int error; - if (iocb->ki_flags & IOCB_NOIO) - return ERR_PTR(-EAGAIN); - - /* - * Ok, it wasn't cached, so we need to create a new - * page.. - */ page = page_cache_alloc(mapping); if (!page) - return ERR_PTR(-ENOMEM); + return -ENOMEM; error = add_to_page_cache_lru(page, mapping, index, - mapping_gfp_constraint(mapping, GFP_KERNEL)); - if (error) { - put_page(page); - return error != -EEXIST ? ERR_PTR(error) : NULL; - } + mapping_gfp_constraint(mapping, GFP_KERNEL)); + if (error == -EEXIST) + error = AOP_TRUNCATED_PAGE; + if (error) + goto error; + + error = filemap_read_page(file, mapping, page); + if (error) + goto error; - return generic_file_buffered_read_readpage(iocb, filp, mapping, page); + pagevec_add(pvec, page); + return 0; +error: + put_page(page); + return error; +} + +static int filemap_readahead(struct kiocb *iocb, struct file *file, + struct address_space *mapping, struct page *page, + pgoff_t last_index) +{ + if (iocb->ki_flags & IOCB_NOIO) + return -EAGAIN; + page_cache_async_readahead(mapping, &file->f_ra, file, page, + page->index, last_index - page->index); + return 0; } -static int generic_file_buffered_read_get_pages(struct kiocb *iocb, - struct iov_iter *iter, - struct page **pages, - unsigned int nr) +static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, + struct pagevec *pvec) { struct file *filp = iocb->ki_filp; struct address_space *mapping = filp->f_mapping; struct file_ra_state *ra = &filp->f_ra; pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; - pgoff_t last_index = (iocb->ki_pos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; - int i, j, nr_got, err = 0; + pgoff_t last_index; + struct page *page; + int err = 0; - nr = min_t(unsigned long, last_index - index, nr); -find_page: + last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); +retry: if (fatal_signal_pending(current)) return -EINTR; - nr_got = find_get_pages_contig(mapping, index, nr, pages); - if (nr_got) - goto got_pages; - - if (iocb->ki_flags & IOCB_NOIO) - return -EAGAIN; - - page_cache_sync_readahead(mapping, ra, filp, index, last_index - index); - - nr_got = find_get_pages_contig(mapping, index, nr, pages); - if (nr_got) - goto got_pages; - - pages[0] = generic_file_buffered_read_no_cached_page(iocb, iter); - err = PTR_ERR_OR_ZERO(pages[0]); - if (!IS_ERR_OR_NULL(pages[0])) - nr_got = 1; -got_pages: - for (i = 0; i < nr_got; i++) { - struct page *page = pages[i]; - pgoff_t pg_index = index + i; - loff_t pg_pos = max(iocb->ki_pos, - (loff_t) pg_index << PAGE_SHIFT); - loff_t pg_count = iocb->ki_pos + iter->count - pg_pos; - - if (PageReadahead(page)) { - if (iocb->ki_flags & IOCB_NOIO) { - for (j = i; j < nr_got; j++) - put_page(pages[j]); - nr_got = i; - err = -EAGAIN; - break; - } - page_cache_async_readahead(mapping, ra, filp, page, - pg_index, last_index - pg_index); - } - - if (!PageUptodate(page)) { - if ((iocb->ki_flags & IOCB_NOWAIT) || - ((iocb->ki_flags & IOCB_WAITQ) && i)) { - for (j = i; j < nr_got; j++) - put_page(pages[j]); - nr_got = i; - err = -EAGAIN; - break; - } + filemap_get_read_batch(mapping, index, last_index, pvec); + if (!pagevec_count(pvec)) { + if (iocb->ki_flags & IOCB_NOIO) + return -EAGAIN; + page_cache_sync_readahead(mapping, ra, filp, index, + last_index - index); + filemap_get_read_batch(mapping, index, last_index, pvec); + } + if (!pagevec_count(pvec)) { + if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) + return -EAGAIN; + err = filemap_create_page(filp, mapping, + iocb->ki_pos >> PAGE_SHIFT, pvec); + if (err == AOP_TRUNCATED_PAGE) + goto retry; + return err; + } - page = generic_file_buffered_read_pagenotuptodate(iocb, - filp, iter, page, pg_pos, pg_count); - if (IS_ERR_OR_NULL(page)) { - for (j = i + 1; j < nr_got; j++) - put_page(pages[j]); - nr_got = i; - err = PTR_ERR_OR_ZERO(page); - break; - } - } + page = pvec->pages[pagevec_count(pvec) - 1]; + if (PageReadahead(page)) { + err = filemap_readahead(iocb, filp, mapping, page, last_index); + if (err) + goto err; + } + if (!PageUptodate(page)) { + if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1) + iocb->ki_flags |= IOCB_NOWAIT; + err = filemap_update_page(iocb, mapping, iter, page); + if (err) + goto err; } - if (likely(nr_got)) - return nr_got; - if (err) - return err; - /* - * No pages and no error means we raced and should retry: - */ - goto find_page; + return 0; +err: + if (err < 0) + put_page(page); + if (likely(--pvec->nr)) + return 0; + if (err == AOP_TRUNCATED_PAGE) + goto retry; + return err; } /** - * generic_file_buffered_read - generic file read routine - * @iocb: the iocb to read - * @iter: data destination - * @written: already copied - * - * This is a generic file read routine, and uses the - * mapping->a_ops->readpage() function for the actual low-level stuff. + * filemap_read - Read data from the page cache. + * @iocb: The iocb to read. + * @iter: Destination for the data. + * @already_read: Number of bytes already read by the caller. * - * This is really ugly. But the goto's actually try to clarify some - * of the logic when it comes to error handling etc. + * Copies data from the page cache. If the data is not currently present, + * uses the readahead and readpage address_space operations to fetch it. * - * Return: - * * total number of bytes copied, including those the were already @written - * * negative error code if nothing was copied + * Return: Total number of bytes copied, including those already read by + * the caller. If an error happens before any bytes are copied, returns + * a negative error number. */ -ssize_t generic_file_buffered_read(struct kiocb *iocb, - struct iov_iter *iter, ssize_t written) +ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, + ssize_t already_read) { struct file *filp = iocb->ki_filp; struct file_ra_state *ra = &filp->f_ra; struct address_space *mapping = filp->f_mapping; struct inode *inode = mapping->host; - struct page *pages_onstack[PAGEVEC_SIZE], **pages = NULL; - unsigned int nr_pages = min_t(unsigned int, 512, - ((iocb->ki_pos + iter->count + PAGE_SIZE - 1) >> PAGE_SHIFT) - - (iocb->ki_pos >> PAGE_SHIFT)); - int i, pg_nr, error = 0; + struct pagevec pvec; + int i, error = 0; bool writably_mapped; loff_t isize, end_offset; @@ -2463,14 +2442,7 @@ ssize_t generic_file_buffered_read(struct kiocb *iocb, return 0; iov_iter_truncate(iter, inode->i_sb->s_maxbytes); - - if (nr_pages > ARRAY_SIZE(pages_onstack)) - pages = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL); - - if (!pages) { - pages = pages_onstack; - nr_pages = min_t(unsigned int, nr_pages, ARRAY_SIZE(pages_onstack)); - } + pagevec_init(&pvec); do { cond_resched(); @@ -2480,16 +2452,12 @@ ssize_t generic_file_buffered_read(struct kiocb *iocb, * can no longer safely return -EIOCBQUEUED. Hence mark * an async read NOWAIT at that point. */ - if ((iocb->ki_flags & IOCB_WAITQ) && written) + if ((iocb->ki_flags & IOCB_WAITQ) && already_read) iocb->ki_flags |= IOCB_NOWAIT; - i = 0; - pg_nr = generic_file_buffered_read_get_pages(iocb, iter, - pages, nr_pages); - if (pg_nr < 0) { - error = pg_nr; + error = filemap_get_pages(iocb, iter, &pvec); + if (error < 0) break; - } /* * i_size must be checked after we know the pages are Uptodate. @@ -2502,13 +2470,8 @@ ssize_t generic_file_buffered_read(struct kiocb *iocb, isize = i_size_read(inode); if (unlikely(iocb->ki_pos >= isize)) goto put_pages; - end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); - while ((iocb->ki_pos >> PAGE_SHIFT) + pg_nr > - (end_offset + PAGE_SIZE - 1) >> PAGE_SHIFT) - put_page(pages[--pg_nr]); - /* * Once we start copying data, we don't want to be touching any * cachelines that might be contended: @@ -2521,27 +2484,35 @@ ssize_t generic_file_buffered_read(struct kiocb *iocb, */ if (iocb->ki_pos >> PAGE_SHIFT != ra->prev_pos >> PAGE_SHIFT) - mark_page_accessed(pages[0]); - for (i = 1; i < pg_nr; i++) - mark_page_accessed(pages[i]); + mark_page_accessed(pvec.pages[0]); - for (i = 0; i < pg_nr; i++) { - unsigned int offset = iocb->ki_pos & ~PAGE_MASK; - unsigned int bytes = min_t(loff_t, end_offset - iocb->ki_pos, - PAGE_SIZE - offset); - unsigned int copied; + for (i = 0; i < pagevec_count(&pvec); i++) { + struct page *page = pvec.pages[i]; + size_t page_size = thp_size(page); + size_t offset = iocb->ki_pos & (page_size - 1); + size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, + page_size - offset); + size_t copied; + if (end_offset < page_offset(page)) + break; + if (i > 0) + mark_page_accessed(page); /* * If users can be writing to this page using arbitrary * virtual addresses, take care about potential aliasing * before reading the page on the kernel side. */ - if (writably_mapped) - flush_dcache_page(pages[i]); + if (writably_mapped) { + int j; + + for (j = 0; j < thp_nr_pages(page); j++) + flush_dcache_page(page + j); + } - copied = copy_page_to_iter(pages[i], offset, bytes, iter); + copied = copy_page_to_iter(page, offset, bytes, iter); - written += copied; + already_read += copied; iocb->ki_pos += copied; ra->prev_pos = iocb->ki_pos; @@ -2551,18 +2522,16 @@ ssize_t generic_file_buffered_read(struct kiocb *iocb, } } put_pages: - for (i = 0; i < pg_nr; i++) - put_page(pages[i]); + for (i = 0; i < pagevec_count(&pvec); i++) + put_page(pvec.pages[i]); + pagevec_reinit(&pvec); } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); file_accessed(filp); - if (pages != pages_onstack) - kfree(pages); - - return written ? written : error; + return already_read ? already_read : error; } -EXPORT_SYMBOL_GPL(generic_file_buffered_read); +EXPORT_SYMBOL_GPL(filemap_read); /** * generic_file_read_iter - generic filesystem read routine @@ -2592,7 +2561,7 @@ generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) ssize_t retval = 0; if (!count) - goto out; /* skip atime */ + return 0; /* skip atime */ if (iocb->ki_flags & IOCB_DIRECT) { struct file *file = iocb->ki_filp; @@ -2610,7 +2579,7 @@ generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) iocb->ki_pos, iocb->ki_pos + count - 1); if (retval < 0) - goto out; + return retval; } file_accessed(file); @@ -2620,7 +2589,8 @@ generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) iocb->ki_pos += retval; count -= retval; } - iov_iter_revert(iter, count - iov_iter_count(iter)); + if (retval != -EIOCBQUEUED) + iov_iter_revert(iter, count - iov_iter_count(iter)); /* * Btrfs can have a short DIO read if we encounter @@ -2633,15 +2603,116 @@ generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) */ if (retval < 0 || !count || iocb->ki_pos >= size || IS_DAX(inode)) - goto out; + return retval; } - retval = generic_file_buffered_read(iocb, iter, retval); -out: - return retval; + return filemap_read(iocb, iter, retval); } EXPORT_SYMBOL(generic_file_read_iter); +static inline loff_t page_seek_hole_data(struct xa_state *xas, + struct address_space *mapping, struct page *page, + loff_t start, loff_t end, bool seek_data) +{ + const struct address_space_operations *ops = mapping->a_ops; + size_t offset, bsz = i_blocksize(mapping->host); + + if (xa_is_value(page) || PageUptodate(page)) + return seek_data ? start : end; + if (!ops->is_partially_uptodate) + return seek_data ? end : start; + + xas_pause(xas); + rcu_read_unlock(); + lock_page(page); + if (unlikely(page->mapping != mapping)) + goto unlock; + + offset = offset_in_thp(page, start) & ~(bsz - 1); + + do { + if (ops->is_partially_uptodate(page, offset, bsz) == seek_data) + break; + start = (start + bsz) & ~(bsz - 1); + offset += bsz; + } while (offset < thp_size(page)); +unlock: + unlock_page(page); + rcu_read_lock(); + return start; +} + +static inline +unsigned int seek_page_size(struct xa_state *xas, struct page *page) +{ + if (xa_is_value(page)) + return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); + return thp_size(page); +} + +/** + * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. + * @mapping: Address space to search. + * @start: First byte to consider. + * @end: Limit of search (exclusive). + * @whence: Either SEEK_HOLE or SEEK_DATA. + * + * If the page cache knows which blocks contain holes and which blocks + * contain data, your filesystem can use this function to implement + * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are + * entirely memory-based such as tmpfs, and filesystems which support + * unwritten extents. + * + * Return: The requested offset on successs, or -ENXIO if @whence specifies + * SEEK_DATA and there is no data after @start. There is an implicit hole + * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start + * and @end contain data. + */ +loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, + loff_t end, int whence) +{ + XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); + pgoff_t max = (end - 1) / PAGE_SIZE; + bool seek_data = (whence == SEEK_DATA); + struct page *page; + + if (end <= start) + return -ENXIO; + + rcu_read_lock(); + while ((page = find_get_entry(&xas, max, XA_PRESENT))) { + loff_t pos = xas.xa_index * PAGE_SIZE; + + if (start < pos) { + if (!seek_data) + goto unlock; + start = pos; + } + + pos += seek_page_size(&xas, page); + start = page_seek_hole_data(&xas, mapping, page, start, pos, + seek_data); + if (start < pos) + goto unlock; + if (!xa_is_value(page)) + put_page(page); + } + rcu_read_unlock(); + + if (seek_data) + return -ENXIO; + goto out; + +unlock: + rcu_read_unlock(); + if (!xa_is_value(page)) + put_page(page); +out: + if (start > end) + return end; + return start; +} + #ifdef CONFIG_MMU #define MMAP_LOTSAMISS (100) /* @@ -3431,7 +3502,8 @@ generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) } iocb->ki_pos = pos; } - iov_iter_revert(from, write_len - iov_iter_count(from)); + if (written != -EIOCBQUEUED) + iov_iter_revert(from, write_len - iov_iter_count(from)); out: return written; } diff --git a/mm/frame_vector.c b/mm/frame_vector.c deleted file mode 100644 index 10f82d5643b6..000000000000 --- a/mm/frame_vector.c +++ /dev/null @@ -1,240 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -#include <linux/kernel.h> -#include <linux/errno.h> -#include <linux/err.h> -#include <linux/mm.h> -#include <linux/slab.h> -#include <linux/vmalloc.h> -#include <linux/pagemap.h> -#include <linux/sched.h> - -/** - * get_vaddr_frames() - map virtual addresses to pfns - * @start: starting user address - * @nr_frames: number of pages / pfns from start to map - * @gup_flags: flags modifying lookup behaviour - * @vec: structure which receives pages / pfns of the addresses mapped. - * It should have space for at least nr_frames entries. - * - * This function maps virtual addresses from @start and fills @vec structure - * with page frame numbers or page pointers to corresponding pages (choice - * depends on the type of the vma underlying the virtual address). If @start - * belongs to a normal vma, the function grabs reference to each of the pages - * to pin them in memory. If @start belongs to VM_IO | VM_PFNMAP vma, we don't - * touch page structures and the caller must make sure pfns aren't reused for - * anything else while he is using them. - * - * The function returns number of pages mapped which may be less than - * @nr_frames. In particular we stop mapping if there are more vmas of - * different type underlying the specified range of virtual addresses. - * When the function isn't able to map a single page, it returns error. - * - * This function takes care of grabbing mmap_lock as necessary. - */ -int get_vaddr_frames(unsigned long start, unsigned int nr_frames, - unsigned int gup_flags, struct frame_vector *vec) -{ - struct mm_struct *mm = current->mm; - struct vm_area_struct *vma; - int ret = 0; - int err; - int locked; - - if (nr_frames == 0) - return 0; - - if (WARN_ON_ONCE(nr_frames > vec->nr_allocated)) - nr_frames = vec->nr_allocated; - - start = untagged_addr(start); - - mmap_read_lock(mm); - locked = 1; - vma = find_vma_intersection(mm, start, start + 1); - if (!vma) { - ret = -EFAULT; - goto out; - } - - /* - * While get_vaddr_frames() could be used for transient (kernel - * controlled lifetime) pinning of memory pages all current - * users establish long term (userspace controlled lifetime) - * page pinning. Treat get_vaddr_frames() like - * get_user_pages_longterm() and disallow it for filesystem-dax - * mappings. - */ - if (vma_is_fsdax(vma)) { - ret = -EOPNOTSUPP; - goto out; - } - - if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) { - vec->got_ref = true; - vec->is_pfns = false; - ret = pin_user_pages_locked(start, nr_frames, - gup_flags, (struct page **)(vec->ptrs), &locked); - goto out; - } - - vec->got_ref = false; - vec->is_pfns = true; - do { - unsigned long *nums = frame_vector_pfns(vec); - - while (ret < nr_frames && start + PAGE_SIZE <= vma->vm_end) { - err = follow_pfn(vma, start, &nums[ret]); - if (err) { - if (ret == 0) - ret = err; - goto out; - } - start += PAGE_SIZE; - ret++; - } - /* - * We stop if we have enough pages or if VMA doesn't completely - * cover the tail page. - */ - if (ret >= nr_frames || start < vma->vm_end) - break; - vma = find_vma_intersection(mm, start, start + 1); - } while (vma && vma->vm_flags & (VM_IO | VM_PFNMAP)); -out: - if (locked) - mmap_read_unlock(mm); - if (!ret) - ret = -EFAULT; - if (ret > 0) - vec->nr_frames = ret; - return ret; -} -EXPORT_SYMBOL(get_vaddr_frames); - -/** - * put_vaddr_frames() - drop references to pages if get_vaddr_frames() acquired - * them - * @vec: frame vector to put - * - * Drop references to pages if get_vaddr_frames() acquired them. We also - * invalidate the frame vector so that it is prepared for the next call into - * get_vaddr_frames(). - */ -void put_vaddr_frames(struct frame_vector *vec) -{ - struct page **pages; - - if (!vec->got_ref) - goto out; - pages = frame_vector_pages(vec); - /* - * frame_vector_pages() might needed to do a conversion when - * get_vaddr_frames() got pages but vec was later converted to pfns. - * But it shouldn't really fail to convert pfns back... - */ - if (WARN_ON(IS_ERR(pages))) - goto out; - - unpin_user_pages(pages, vec->nr_frames); - vec->got_ref = false; -out: - vec->nr_frames = 0; -} -EXPORT_SYMBOL(put_vaddr_frames); - -/** - * frame_vector_to_pages - convert frame vector to contain page pointers - * @vec: frame vector to convert - * - * Convert @vec to contain array of page pointers. If the conversion is - * successful, return 0. Otherwise return an error. Note that we do not grab - * page references for the page structures. - */ -int frame_vector_to_pages(struct frame_vector *vec) -{ - int i; - unsigned long *nums; - struct page **pages; - - if (!vec->is_pfns) - return 0; - nums = frame_vector_pfns(vec); - for (i = 0; i < vec->nr_frames; i++) - if (!pfn_valid(nums[i])) - return -EINVAL; - pages = (struct page **)nums; - for (i = 0; i < vec->nr_frames; i++) - pages[i] = pfn_to_page(nums[i]); - vec->is_pfns = false; - return 0; -} -EXPORT_SYMBOL(frame_vector_to_pages); - -/** - * frame_vector_to_pfns - convert frame vector to contain pfns - * @vec: frame vector to convert - * - * Convert @vec to contain array of pfns. - */ -void frame_vector_to_pfns(struct frame_vector *vec) -{ - int i; - unsigned long *nums; - struct page **pages; - - if (vec->is_pfns) - return; - pages = (struct page **)(vec->ptrs); - nums = (unsigned long *)pages; - for (i = 0; i < vec->nr_frames; i++) - nums[i] = page_to_pfn(pages[i]); - vec->is_pfns = true; -} -EXPORT_SYMBOL(frame_vector_to_pfns); - -/** - * frame_vector_create() - allocate & initialize structure for pinned pfns - * @nr_frames: number of pfns slots we should reserve - * - * Allocate and initialize struct pinned_pfns to be able to hold @nr_pfns - * pfns. - */ -struct frame_vector *frame_vector_create(unsigned int nr_frames) -{ - struct frame_vector *vec; - int size = sizeof(struct frame_vector) + sizeof(void *) * nr_frames; - - if (WARN_ON_ONCE(nr_frames == 0)) - return NULL; - /* - * This is absurdly high. It's here just to avoid strange effects when - * arithmetics overflows. - */ - if (WARN_ON_ONCE(nr_frames > INT_MAX / sizeof(void *) / 2)) - return NULL; - /* - * Avoid higher order allocations, use vmalloc instead. It should - * be rare anyway. - */ - vec = kvmalloc(size, GFP_KERNEL); - if (!vec) - return NULL; - vec->nr_allocated = nr_frames; - vec->nr_frames = 0; - return vec; -} -EXPORT_SYMBOL(frame_vector_create); - -/** - * frame_vector_destroy() - free memory allocated to carry frame vector - * @vec: Frame vector to free - * - * Free structure allocated by frame_vector_create() to carry frames. - */ -void frame_vector_destroy(struct frame_vector *vec) -{ - /* Make sure put_vaddr_frames() got called properly... */ - VM_BUG_ON(vec->nr_frames > 0); - kvfree(vec); -} -EXPORT_SYMBOL(frame_vector_destroy); @@ -78,9 +78,8 @@ static inline struct page *try_get_compound_head(struct page *page, int refs) * considered failure, and furthermore, a likely bug in the caller, so a warning * is also emitted. */ -static __maybe_unused struct page *try_grab_compound_head(struct page *page, - int refs, - unsigned int flags) +__maybe_unused struct page *try_grab_compound_head(struct page *page, + int refs, unsigned int flags) { if (flags & FOLL_GET) return try_get_compound_head(page, refs); diff --git a/mm/highmem.c b/mm/highmem.c index 874b732b120c..6ef8f5e05e7e 100644 --- a/mm/highmem.c +++ b/mm/highmem.c @@ -368,20 +368,24 @@ void zero_user_segments(struct page *page, unsigned start1, unsigned end1, BUG_ON(end1 > page_size(page) || end2 > page_size(page)); + if (start1 >= end1) + start1 = end1 = 0; + if (start2 >= end2) + start2 = end2 = 0; + for (i = 0; i < compound_nr(page); i++) { void *kaddr = NULL; - if (start1 < PAGE_SIZE || start2 < PAGE_SIZE) - kaddr = kmap_atomic(page + i); - if (start1 >= PAGE_SIZE) { start1 -= PAGE_SIZE; end1 -= PAGE_SIZE; } else { unsigned this_end = min_t(unsigned, end1, PAGE_SIZE); - if (end1 > start1) + if (end1 > start1) { + kaddr = kmap_atomic(page + i); memset(kaddr + start1, 0, this_end - start1); + } end1 -= this_end; start1 = 0; } @@ -392,8 +396,11 @@ void zero_user_segments(struct page *page, unsigned start1, unsigned end1, } else { unsigned this_end = min_t(unsigned, end2, PAGE_SIZE); - if (end2 > start2) + if (end2 > start2) { + if (!kaddr) + kaddr = kmap_atomic(page + i); memset(kaddr + start2, 0, this_end - start2); + } end2 -= this_end; start2 = 0; } @@ -611,7 +618,7 @@ void __kmap_local_sched_out(void) int idx; /* With debug all even slots are unmapped and act as guard */ - if (IS_ENABLED(CONFIG_DEBUG_HIGHMEM) && !(i & 0x01)) { + if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) { WARN_ON_ONCE(!pte_none(pteval)); continue; } @@ -647,7 +654,7 @@ void __kmap_local_sched_in(void) int idx; /* With debug all even slots are unmapped and act as guard */ - if (IS_ENABLED(CONFIG_DEBUG_HIGHMEM) && !(i & 0x01)) { + if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) { WARN_ON_ONCE(!pte_none(pteval)); continue; } diff --git a/mm/huge_memory.c b/mm/huge_memory.c index 91ca9b103ee5..ae907a9c2050 100644 --- a/mm/huge_memory.c +++ b/mm/huge_memory.c @@ -386,7 +386,11 @@ static int __init hugepage_init(void) struct kobject *hugepage_kobj; if (!has_transparent_hugepage()) { - transparent_hugepage_flags = 0; + /* + * Hardware doesn't support hugepages, hence disable + * DAX PMD support. + */ + transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX; return -EINVAL; } @@ -636,6 +640,7 @@ static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, lru_cache_add_inactive_or_unevictable(page, vma); pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); + update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); mm_inc_nr_ptes(vma->vm_mm); spin_unlock(vmf->ptl); @@ -663,9 +668,9 @@ release: * available * never: never stall for any thp allocation */ -static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) +gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) { - const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); + const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); /* Always do synchronous compaction */ if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) @@ -690,20 +695,19 @@ static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) } /* Caller must hold page table lock. */ -static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, +static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, struct page *zero_page) { pmd_t entry; if (!pmd_none(*pmd)) - return false; + return; entry = mk_pmd(zero_page, vma->vm_page_prot); entry = pmd_mkhuge(entry); if (pgtable) pgtable_trans_huge_deposit(mm, pmd, pgtable); set_pmd_at(mm, haddr, pmd, entry); mm_inc_nr_ptes(mm); - return true; } vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) @@ -749,6 +753,7 @@ vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) } else { set_huge_zero_page(pgtable, vma->vm_mm, vma, haddr, vmf->pmd, zero_page); + update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); spin_unlock(vmf->ptl); } } else { @@ -757,7 +762,7 @@ vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) } return ret; } - gfp = alloc_hugepage_direct_gfpmask(vma); + gfp = vma_thp_gfp_mask(vma); page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); if (unlikely(!page)) { count_vm_event(THP_FAULT_FALLBACK); @@ -1095,9 +1100,7 @@ int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, * best effort that the pinned pages won't be replaced by another * random page during the coming copy-on-write. */ - if (unlikely(is_cow_mapping(vma->vm_flags) && - atomic_read(&src_mm->has_pinned) && - page_maybe_dma_pinned(src_page))) { + if (unlikely(page_needs_cow_for_dma(vma, src_page))) { pte_free(dst_mm, pgtable); spin_unlock(src_ptl); spin_unlock(dst_ptl); @@ -1209,9 +1212,7 @@ int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, } /* Please refer to comments in copy_huge_pmd() */ - if (unlikely(is_cow_mapping(vma->vm_flags) && - atomic_read(&src_mm->has_pinned) && - page_maybe_dma_pinned(pud_page(pud)))) { + if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) { spin_unlock(src_ptl); spin_unlock(dst_ptl); __split_huge_pud(vma, src_pud, addr); @@ -1439,7 +1440,7 @@ vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) if (!get_page_unless_zero(page)) goto out_unlock; spin_unlock(vmf->ptl); - put_and_wait_on_page_locked(page); + put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); goto out; } @@ -1475,7 +1476,7 @@ vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) if (!get_page_unless_zero(page)) goto out_unlock; spin_unlock(vmf->ptl); - put_and_wait_on_page_locked(page); + put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); goto out; } @@ -2176,7 +2177,8 @@ static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, lock_page_memcg(page); if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { /* Last compound_mapcount is gone. */ - __dec_lruvec_page_state(page, NR_ANON_THPS); + __mod_lruvec_page_state(page, NR_ANON_THPS, + -HPAGE_PMD_NR); if (TestClearPageDoubleMap(page)) { /* No need in mapcount reference anymore */ for (i = 0; i < HPAGE_PMD_NR; i++) @@ -2465,7 +2467,7 @@ static void __split_huge_page(struct page *page, struct list_head *list, int i; /* complete memcg works before add pages to LRU */ - mem_cgroup_split_huge_fixup(head); + split_page_memcg(head, nr); if (PageAnon(head) && PageSwapCache(head)) { swp_entry_t entry = { .val = page_private(head) }; @@ -2751,10 +2753,14 @@ int split_huge_page_to_list(struct page *page, struct list_head *list) } spin_unlock(&ds_queue->split_queue_lock); if (mapping) { + int nr = thp_nr_pages(head); + if (PageSwapBacked(head)) - __dec_lruvec_page_state(head, NR_SHMEM_THPS); + __mod_lruvec_page_state(head, NR_SHMEM_THPS, + -nr); else - __dec_lruvec_page_state(head, NR_FILE_THPS); + __mod_lruvec_page_state(head, NR_FILE_THPS, + -nr); } __split_huge_page(page, list, end); diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 905a7d549b00..a86a58ef132d 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -79,34 +79,29 @@ DEFINE_SPINLOCK(hugetlb_lock); static int num_fault_mutexes; struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp; -static inline bool PageHugeFreed(struct page *head) -{ - return page_private(head + 4) == -1UL; -} +/* Forward declaration */ +static int hugetlb_acct_memory(struct hstate *h, long delta); -static inline void SetPageHugeFreed(struct page *head) +static inline bool subpool_is_free(struct hugepage_subpool *spool) { - set_page_private(head + 4, -1UL); -} + if (spool->count) + return false; + if (spool->max_hpages != -1) + return spool->used_hpages == 0; + if (spool->min_hpages != -1) + return spool->rsv_hpages == spool->min_hpages; -static inline void ClearPageHugeFreed(struct page *head) -{ - set_page_private(head + 4, 0); + return true; } -/* Forward declaration */ -static int hugetlb_acct_memory(struct hstate *h, long delta); - static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) { - bool free = (spool->count == 0) && (spool->used_hpages == 0); - spin_unlock(&spool->lock); /* If no pages are used, and no other handles to the subpool * remain, give up any reservations based on minimum size and * free the subpool */ - if (free) { + if (subpool_is_free(spool)) { if (spool->min_hpages != -1) hugetlb_acct_memory(spool->hstate, -spool->min_hpages); @@ -285,6 +280,17 @@ static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, nrg->reservation_counter = &h_cg->rsvd_hugepage[hstate_index(h)]; nrg->css = &h_cg->css; + /* + * The caller will hold exactly one h_cg->css reference for the + * whole contiguous reservation region. But this area might be + * scattered when there are already some file_regions reside in + * it. As a result, many file_regions may share only one css + * reference. In order to ensure that one file_region must hold + * exactly one h_cg->css reference, we should do css_get for + * each file_region and leave the reference held by caller + * untouched. + */ + css_get(&h_cg->css); if (!resv->pages_per_hpage) resv->pages_per_hpage = pages_per_huge_page(h); /* pages_per_hpage should be the same for all entries in @@ -298,6 +304,14 @@ static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, #endif } +static void put_uncharge_info(struct file_region *rg) +{ +#ifdef CONFIG_CGROUP_HUGETLB + if (rg->css) + css_put(rg->css); +#endif +} + static bool has_same_uncharge_info(struct file_region *rg, struct file_region *org) { @@ -321,6 +335,7 @@ static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) prg->to = rg->to; list_del(&rg->link); + put_uncharge_info(rg); kfree(rg); rg = prg; @@ -332,10 +347,29 @@ static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) nrg->from = rg->from; list_del(&rg->link); + put_uncharge_info(rg); kfree(rg); } } +static inline long +hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from, + long to, struct hstate *h, struct hugetlb_cgroup *cg, + long *regions_needed) +{ + struct file_region *nrg; + + if (!regions_needed) { + nrg = get_file_region_entry_from_cache(map, from, to); + record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); + list_add(&nrg->link, rg->link.prev); + coalesce_file_region(map, nrg); + } else + *regions_needed += 1; + + return to - from; +} + /* * Must be called with resv->lock held. * @@ -351,7 +385,7 @@ static long add_reservation_in_range(struct resv_map *resv, long f, long t, long add = 0; struct list_head *head = &resv->regions; long last_accounted_offset = f; - struct file_region *rg = NULL, *trg = NULL, *nrg = NULL; + struct file_region *rg = NULL, *trg = NULL; if (regions_needed) *regions_needed = 0; @@ -374,24 +408,17 @@ static long add_reservation_in_range(struct resv_map *resv, long f, long t, /* When we find a region that starts beyond our range, we've * finished. */ - if (rg->from > t) + if (rg->from >= t) break; /* Add an entry for last_accounted_offset -> rg->from, and * update last_accounted_offset. */ - if (rg->from > last_accounted_offset) { - add += rg->from - last_accounted_offset; - if (!regions_needed) { - nrg = get_file_region_entry_from_cache( - resv, last_accounted_offset, rg->from); - record_hugetlb_cgroup_uncharge_info(h_cg, h, - resv, nrg); - list_add(&nrg->link, rg->link.prev); - coalesce_file_region(resv, nrg); - } else - *regions_needed += 1; - } + if (rg->from > last_accounted_offset) + add += hugetlb_resv_map_add(resv, rg, + last_accounted_offset, + rg->from, h, h_cg, + regions_needed); last_accounted_offset = rg->to; } @@ -399,17 +426,9 @@ static long add_reservation_in_range(struct resv_map *resv, long f, long t, /* Handle the case where our range extends beyond * last_accounted_offset. */ - if (last_accounted_offset < t) { - add += t - last_accounted_offset; - if (!regions_needed) { - nrg = get_file_region_entry_from_cache( - resv, last_accounted_offset, t); - record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg); - list_add(&nrg->link, rg->link.prev); - coalesce_file_region(resv, nrg); - } else - *regions_needed += 1; - } + if (last_accounted_offset < t) + add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, + t, h, h_cg, regions_needed); VM_BUG_ON(add < 0); return add; @@ -664,7 +683,7 @@ retry: del += t - f; hugetlb_cgroup_uncharge_file_region( - resv, rg, t - f); + resv, rg, t - f, false); /* New entry for end of split region */ nrg->from = t; @@ -685,7 +704,7 @@ retry: if (f <= rg->from && t >= rg->to) { /* Remove entire region */ del += rg->to - rg->from; hugetlb_cgroup_uncharge_file_region(resv, rg, - rg->to - rg->from); + rg->to - rg->from, true); list_del(&rg->link); kfree(rg); continue; @@ -693,13 +712,13 @@ retry: if (f <= rg->from) { /* Trim beginning of region */ hugetlb_cgroup_uncharge_file_region(resv, rg, - t - rg->from); + t - rg->from, false); del += t - rg->from; rg->from = t; } else { /* Trim end of region */ hugetlb_cgroup_uncharge_file_region(resv, rg, - rg->to - f); + rg->to - f, false); del += rg->to - f; rg->to = f; @@ -1043,7 +1062,7 @@ static void enqueue_huge_page(struct hstate *h, struct page *page) list_move(&page->lru, &h->hugepage_freelists[nid]); h->free_huge_pages++; h->free_huge_pages_node[nid]++; - SetPageHugeFreed(page); + SetHPageFreed(page); } static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) @@ -1060,7 +1079,7 @@ static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid) list_move(&page->lru, &h->hugepage_activelist); set_page_refcounted(page); - ClearPageHugeFreed(page); + ClearHPageFreed(page); h->free_huge_pages--; h->free_huge_pages_node[nid]--; return page; @@ -1133,7 +1152,7 @@ static struct page *dequeue_huge_page_vma(struct hstate *h, nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask); if (page && !avoid_reserve && vma_has_reserves(vma, chg)) { - SetPagePrivate(page); + SetHPageRestoreReserve(page); h->resv_huge_pages--; } @@ -1224,8 +1243,7 @@ static void destroy_compound_gigantic_page(struct page *page, struct page *p = page + 1; atomic_set(compound_mapcount_ptr(page), 0); - if (hpage_pincount_available(page)) - atomic_set(compound_pincount_ptr(page), 0); + atomic_set(compound_pincount_ptr(page), 0); for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { clear_compound_head(p); @@ -1312,14 +1330,16 @@ static inline void destroy_compound_gigantic_page(struct page *page, static void update_and_free_page(struct hstate *h, struct page *page) { int i; + struct page *subpage = page; if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) return; h->nr_huge_pages--; h->nr_huge_pages_node[page_to_nid(page)]--; - for (i = 0; i < pages_per_huge_page(h); i++) { - page[i].flags &= ~(1 << PG_locked | 1 << PG_error | + for (i = 0; i < pages_per_huge_page(h); + i++, subpage = mem_map_next(subpage, page, i)) { + subpage->flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 1 << PG_dirty | 1 << PG_active | 1 << PG_private | 1 << PG_writeback); @@ -1353,52 +1373,6 @@ struct hstate *size_to_hstate(unsigned long size) return NULL; } -/* - * Test to determine whether the hugepage is "active/in-use" (i.e. being linked - * to hstate->hugepage_activelist.) - * - * This function can be called for tail pages, but never returns true for them. - */ -bool page_huge_active(struct page *page) -{ - return PageHeadHuge(page) && PagePrivate(&page[1]); -} - -/* never called for tail page */ -void set_page_huge_active(struct page *page) -{ - VM_BUG_ON_PAGE(!PageHeadHuge(page), page); - SetPagePrivate(&page[1]); -} - -static void clear_page_huge_active(struct page *page) -{ - VM_BUG_ON_PAGE(!PageHeadHuge(page), page); - ClearPagePrivate(&page[1]); -} - -/* - * Internal hugetlb specific page flag. Do not use outside of the hugetlb - * code - */ -static inline bool PageHugeTemporary(struct page *page) -{ - if (!PageHuge(page)) - return false; - - return (unsigned long)page[2].mapping == -1U; -} - -static inline void SetPageHugeTemporary(struct page *page) -{ - page[2].mapping = (void *)-1U; -} - -static inline void ClearPageHugeTemporary(struct page *page) -{ - page[2].mapping = NULL; -} - static void __free_huge_page(struct page *page) { /* @@ -1407,24 +1381,23 @@ static void __free_huge_page(struct page *page) */ struct hstate *h = page_hstate(page); int nid = page_to_nid(page); - struct hugepage_subpool *spool = - (struct hugepage_subpool *)page_private(page); + struct hugepage_subpool *spool = hugetlb_page_subpool(page); bool restore_reserve; VM_BUG_ON_PAGE(page_count(page), page); VM_BUG_ON_PAGE(page_mapcount(page), page); - set_page_private(page, 0); + hugetlb_set_page_subpool(page, NULL); page->mapping = NULL; - restore_reserve = PagePrivate(page); - ClearPagePrivate(page); + restore_reserve = HPageRestoreReserve(page); + ClearHPageRestoreReserve(page); /* - * If PagePrivate() was set on page, page allocation consumed a + * If HPageRestoreReserve was set on page, page allocation consumed a * reservation. If the page was associated with a subpool, there * would have been a page reserved in the subpool before allocation * via hugepage_subpool_get_pages(). Since we are 'restoring' the - * reservtion, do not call hugepage_subpool_put_pages() as this will + * reservation, do not call hugepage_subpool_put_pages() as this will * remove the reserved page from the subpool. */ if (!restore_reserve) { @@ -1439,7 +1412,7 @@ static void __free_huge_page(struct page *page) } spin_lock(&hugetlb_lock); - clear_page_huge_active(page); + ClearHPageMigratable(page); hugetlb_cgroup_uncharge_page(hstate_index(h), pages_per_huge_page(h), page); hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h), @@ -1447,9 +1420,9 @@ static void __free_huge_page(struct page *page) if (restore_reserve) h->resv_huge_pages++; - if (PageHugeTemporary(page)) { + if (HPageTemporary(page)) { list_del(&page->lru); - ClearPageHugeTemporary(page); + ClearHPageTemporary(page); update_and_free_page(h, page); } else if (h->surplus_huge_pages_node[nid]) { /* remove the page from active list */ @@ -1516,12 +1489,13 @@ static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) { INIT_LIST_HEAD(&page->lru); set_compound_page_dtor(page, HUGETLB_PAGE_DTOR); + hugetlb_set_page_subpool(page, NULL); set_hugetlb_cgroup(page, NULL); set_hugetlb_cgroup_rsvd(page, NULL); spin_lock(&hugetlb_lock); h->nr_huge_pages++; h->nr_huge_pages_node[nid]++; - ClearPageHugeFreed(page); + ClearHPageFreed(page); spin_unlock(&hugetlb_lock); } @@ -1553,9 +1527,7 @@ static void prep_compound_gigantic_page(struct page *page, unsigned int order) set_compound_head(p, page); } atomic_set(compound_mapcount_ptr(page), -1); - - if (hpage_pincount_available(page)) - atomic_set(compound_pincount_ptr(page), 0); + atomic_set(compound_pincount_ptr(page), 0); } /* @@ -1794,7 +1766,7 @@ retry: * We should make sure that the page is already on the free list * when it is dissolved. */ - if (unlikely(!PageHugeFreed(head))) { + if (unlikely(!HPageFreed(head))) { spin_unlock(&hugetlb_lock); cond_resched(); @@ -1885,7 +1857,7 @@ static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask, * codeflow */ if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { - SetPageHugeTemporary(page); + SetHPageTemporary(page); spin_unlock(&hugetlb_lock); put_page(page); return NULL; @@ -1916,7 +1888,7 @@ static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask, * We do not account these pages as surplus because they are only * temporary and will be released properly on the last reference */ - SetPageHugeTemporary(page); + SetHPageTemporary(page); return page; } @@ -2254,24 +2226,24 @@ static long vma_add_reservation(struct hstate *h, * This routine is called to restore a reservation on error paths. In the * specific error paths, a huge page was allocated (via alloc_huge_page) * and is about to be freed. If a reservation for the page existed, - * alloc_huge_page would have consumed the reservation and set PagePrivate - * in the newly allocated page. When the page is freed via free_huge_page, - * the global reservation count will be incremented if PagePrivate is set. - * However, free_huge_page can not adjust the reserve map. Adjust the - * reserve map here to be consistent with global reserve count adjustments - * to be made by free_huge_page. + * alloc_huge_page would have consumed the reservation and set + * HPageRestoreReserve in the newly allocated page. When the page is freed + * via free_huge_page, the global reservation count will be incremented if + * HPageRestoreReserve is set. However, free_huge_page can not adjust the + * reserve map. Adjust the reserve map here to be consistent with global + * reserve count adjustments to be made by free_huge_page. */ static void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, unsigned long address, struct page *page) { - if (unlikely(PagePrivate(page))) { + if (unlikely(HPageRestoreReserve(page))) { long rc = vma_needs_reservation(h, vma, address); if (unlikely(rc < 0)) { /* * Rare out of memory condition in reserve map - * manipulation. Clear PagePrivate so that + * manipulation. Clear HPageRestoreReserve so that * global reserve count will not be incremented * by free_huge_page. This will make it appear * as though the reservation for this page was @@ -2280,7 +2252,7 @@ static void restore_reserve_on_error(struct hstate *h, * is better than inconsistent global huge page * accounting of reserve counts. */ - ClearPagePrivate(page); + ClearHPageRestoreReserve(page); } else if (rc) { rc = vma_add_reservation(h, vma, address); if (unlikely(rc < 0)) @@ -2288,7 +2260,7 @@ static void restore_reserve_on_error(struct hstate *h, * See above comment about rare out of * memory condition. */ - ClearPagePrivate(page); + ClearHPageRestoreReserve(page); } else vma_end_reservation(h, vma, address); } @@ -2369,7 +2341,7 @@ struct page *alloc_huge_page(struct vm_area_struct *vma, if (!page) goto out_uncharge_cgroup; if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) { - SetPagePrivate(page); + SetHPageRestoreReserve(page); h->resv_huge_pages--; } spin_lock(&hugetlb_lock); @@ -2387,7 +2359,7 @@ struct page *alloc_huge_page(struct vm_area_struct *vma, spin_unlock(&hugetlb_lock); - set_page_private(page, (unsigned long)spool); + hugetlb_set_page_subpool(page, spool); map_commit = vma_commit_reservation(h, vma, addr); if (unlikely(map_chg > map_commit)) { @@ -2476,7 +2448,7 @@ static void __init gather_bootmem_prealloc(void) struct hstate *h = m->hstate; WARN_ON(page_count(page) != 1); - prep_compound_huge_page(page, h->order); + prep_compound_huge_page(page, huge_page_order(h)); WARN_ON(PageReserved(page)); prep_new_huge_page(h, page, page_to_nid(page)); put_page(page); /* free it into the hugepage allocator */ @@ -2488,7 +2460,7 @@ static void __init gather_bootmem_prealloc(void) * side-effects, like CommitLimit going negative. */ if (hstate_is_gigantic(h)) - adjust_managed_page_count(page, 1 << h->order); + adjust_managed_page_count(page, pages_per_huge_page(h)); cond_resched(); } } @@ -2520,7 +2492,7 @@ static void __init hugetlb_hstate_alloc_pages(struct hstate *h) if (hstate_is_gigantic(h)) { if (hugetlb_cma_size) { pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); - break; + goto free; } if (!alloc_bootmem_huge_page(h)) break; @@ -2538,7 +2510,7 @@ static void __init hugetlb_hstate_alloc_pages(struct hstate *h) h->max_huge_pages, buf, i); h->max_huge_pages = i; } - +free: kfree(node_alloc_noretry); } @@ -2988,8 +2960,10 @@ static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, return -ENOMEM; retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); - if (retval) + if (retval) { kobject_put(hstate_kobjs[hi]); + hstate_kobjs[hi] = NULL; + } return retval; } @@ -3159,6 +3133,9 @@ static int __init hugetlb_init(void) { int i; + BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < + __NR_HPAGEFLAGS); + if (!hugepages_supported()) { if (hugetlb_max_hstate || default_hstate_max_huge_pages) pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); @@ -3239,7 +3216,7 @@ void __init hugetlb_add_hstate(unsigned int order) BUG_ON(order == 0); h = &hstates[hugetlb_max_hstate++]; h->order = order; - h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); + h->mask = ~(huge_page_size(h) - 1); for (i = 0; i < MAX_NUMNODES; ++i) INIT_LIST_HEAD(&h->hugepage_freelists[i]); INIT_LIST_HEAD(&h->hugepage_activelist); @@ -3408,8 +3385,7 @@ static unsigned int allowed_mems_nr(struct hstate *h) mpol_allowed = policy_nodemask_current(gfp_mask); for_each_node_mask(node, cpuset_current_mems_allowed) { - if (!mpol_allowed || - (mpol_allowed && node_isset(node, *mpol_allowed))) + if (!mpol_allowed || node_isset(node, *mpol_allowed)) nr += array[node]; } @@ -3515,7 +3491,7 @@ void hugetlb_report_meminfo(struct seq_file *m) for_each_hstate(h) { unsigned long count = h->nr_huge_pages; - total += (PAGE_SIZE << huge_page_order(h)) * count; + total += huge_page_size(h) * count; if (h == &default_hstate) seq_printf(m, @@ -3528,10 +3504,10 @@ void hugetlb_report_meminfo(struct seq_file *m) h->free_huge_pages, h->resv_huge_pages, h->surplus_huge_pages, - (PAGE_SIZE << huge_page_order(h)) / 1024); + huge_page_size(h) / SZ_1K); } - seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024); + seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); } int hugetlb_report_node_meminfo(char *buf, int len, int nid) @@ -3565,7 +3541,7 @@ void hugetlb_show_meminfo(void) h->nr_huge_pages_node[nid], h->free_huge_pages_node[nid], h->surplus_huge_pages_node[nid], - 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); + huge_page_size(h) / SZ_1K); } void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) @@ -3589,6 +3565,9 @@ static int hugetlb_acct_memory(struct hstate *h, long delta) { int ret = -ENOMEM; + if (!delta) + return 0; + spin_lock(&hugetlb_lock); /* * When cpuset is configured, it breaks the strict hugetlb page @@ -3685,15 +3664,13 @@ static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) { - struct hstate *hstate = hstate_vma(vma); - - return 1UL << huge_page_shift(hstate); + return huge_page_size(hstate_vma(vma)); } /* * We cannot handle pagefaults against hugetlb pages at all. They cause * handle_mm_fault() to try to instantiate regular-sized pages in the - * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get + * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get * this far. */ static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) @@ -3772,21 +3749,32 @@ static bool is_hugetlb_entry_hwpoisoned(pte_t pte) return false; } +static void +hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, + struct page *new_page) +{ + __SetPageUptodate(new_page); + set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1)); + hugepage_add_new_anon_rmap(new_page, vma, addr); + hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); + ClearHPageRestoreReserve(new_page); + SetHPageMigratable(new_page); +} + int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma) { pte_t *src_pte, *dst_pte, entry, dst_entry; struct page *ptepage; unsigned long addr; - int cow; + bool cow = is_cow_mapping(vma->vm_flags); struct hstate *h = hstate_vma(vma); unsigned long sz = huge_page_size(h); + unsigned long npages = pages_per_huge_page(h); struct address_space *mapping = vma->vm_file->f_mapping; struct mmu_notifier_range range; int ret = 0; - cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; - if (cow) { mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src, vma->vm_start, @@ -3831,6 +3819,7 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); entry = huge_ptep_get(src_pte); dst_entry = huge_ptep_get(dst_pte); +again: if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) { /* * Skip if src entry none. Also, skip in the @@ -3854,6 +3843,52 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, } set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz); } else { + entry = huge_ptep_get(src_pte); + ptepage = pte_page(entry); + get_page(ptepage); + + /* + * This is a rare case where we see pinned hugetlb + * pages while they're prone to COW. We need to do the + * COW earlier during fork. + * + * When pre-allocating the page or copying data, we + * need to be without the pgtable locks since we could + * sleep during the process. + */ + if (unlikely(page_needs_cow_for_dma(vma, ptepage))) { + pte_t src_pte_old = entry; + struct page *new; + + spin_unlock(src_ptl); + spin_unlock(dst_ptl); + /* Do not use reserve as it's private owned */ + new = alloc_huge_page(vma, addr, 1); + if (IS_ERR(new)) { + put_page(ptepage); + ret = PTR_ERR(new); + break; + } + copy_user_huge_page(new, ptepage, addr, vma, + npages); + put_page(ptepage); + + /* Install the new huge page if src pte stable */ + dst_ptl = huge_pte_lock(h, dst, dst_pte); + src_ptl = huge_pte_lockptr(h, src, src_pte); + spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); + entry = huge_ptep_get(src_pte); + if (!pte_same(src_pte_old, entry)) { + put_page(new); + /* dst_entry won't change as in child */ + goto again; + } + hugetlb_install_page(vma, dst_pte, addr, new); + spin_unlock(src_ptl); + spin_unlock(dst_ptl); + continue; + } + if (cow) { /* * No need to notify as we are downgrading page @@ -3864,12 +3899,10 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, */ huge_ptep_set_wrprotect(src, addr, src_pte); } - entry = huge_ptep_get(src_pte); - ptepage = pte_page(entry); - get_page(ptepage); + page_dup_rmap(ptepage, true); set_huge_pte_at(dst, addr, dst_pte, entry); - hugetlb_count_add(pages_per_huge_page(h), dst); + hugetlb_count_add(npages, dst); } spin_unlock(src_ptl); spin_unlock(dst_ptl); @@ -4017,7 +4050,7 @@ void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, /* * This is called when the original mapper is failing to COW a MAP_PRIVATE - * mappping it owns the reserve page for. The intention is to unmap the page + * mapping it owns the reserve page for. The intention is to unmap the page * from other VMAs and let the children be SIGKILLed if they are faulting the * same region. */ @@ -4196,7 +4229,7 @@ retry_avoidcopy: spin_lock(ptl); ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { - ClearPagePrivate(new_page); + ClearHPageRestoreReserve(new_page); /* Break COW */ huge_ptep_clear_flush(vma, haddr, ptep); @@ -4205,7 +4238,7 @@ retry_avoidcopy: make_huge_pte(vma, new_page, 1)); page_remove_rmap(old_page, true); hugepage_add_new_anon_rmap(new_page, vma, haddr); - set_page_huge_active(new_page); + SetHPageMigratable(new_page); /* Make the old page be freed below */ new_page = old_page; } @@ -4263,7 +4296,7 @@ int huge_add_to_page_cache(struct page *page, struct address_space *mapping, if (err) return err; - ClearPagePrivate(page); + ClearHPageRestoreReserve(page); /* * set page dirty so that it will not be removed from cache/file @@ -4425,7 +4458,7 @@ retry: goto backout; if (anon_rmap) { - ClearPagePrivate(page); + ClearHPageRestoreReserve(page); hugepage_add_new_anon_rmap(page, vma, haddr); } else page_dup_rmap(page, true); @@ -4442,12 +4475,12 @@ retry: spin_unlock(ptl); /* - * Only make newly allocated pages active. Existing pages found - * in the pagecache could be !page_huge_active() if they have been - * isolated for migration. + * Only set HPageMigratable in newly allocated pages. Existing pages + * found in the pagecache may not have HPageMigratableset if they have + * been isolated for migration. */ if (new_page) - set_page_huge_active(page); + SetHPageMigratable(page); unlock_page(page); out: @@ -4477,7 +4510,7 @@ u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) } #else /* - * For uniprocesor systems we always use a single mutex, so just + * For uniprocessor systems we always use a single mutex, so just * return 0 and avoid the hashing overhead. */ u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) @@ -4739,7 +4772,7 @@ int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, if (vm_shared) { page_dup_rmap(page, true); } else { - ClearPagePrivate(page); + ClearHPageRestoreReserve(page); hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); } @@ -4758,7 +4791,7 @@ int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, update_mmu_cache(dst_vma, dst_addr, dst_pte); spin_unlock(ptl); - set_page_huge_active(page); + SetHPageMigratable(page); if (vm_shared) unlock_page(page); ret = 0; @@ -4773,6 +4806,20 @@ out_release_nounlock: goto out; } +static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma, + int refs, struct page **pages, + struct vm_area_struct **vmas) +{ + int nr; + + for (nr = 0; nr < refs; nr++) { + if (likely(pages)) + pages[nr] = mem_map_offset(page, nr); + if (vmas) + vmas[nr] = vma; + } +} + long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, struct page **pages, struct vm_area_struct **vmas, unsigned long *position, unsigned long *nr_pages, @@ -4782,7 +4829,7 @@ long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long vaddr = *position; unsigned long remainder = *nr_pages; struct hstate *h = hstate_vma(vma); - int err = -EFAULT; + int err = -EFAULT, refs; while (vaddr < vma->vm_end && remainder) { pte_t *pte; @@ -4902,20 +4949,29 @@ long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, continue; } -same_page: + refs = min3(pages_per_huge_page(h) - pfn_offset, + (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder); + + if (pages || vmas) + record_subpages_vmas(mem_map_offset(page, pfn_offset), + vma, refs, + likely(pages) ? pages + i : NULL, + vmas ? vmas + i : NULL); + if (pages) { - pages[i] = mem_map_offset(page, pfn_offset); /* - * try_grab_page() should always succeed here, because: - * a) we hold the ptl lock, and b) we've just checked - * that the huge page is present in the page tables. If - * the huge page is present, then the tail pages must - * also be present. The ptl prevents the head page and - * tail pages from being rearranged in any way. So this - * page must be available at this point, unless the page - * refcount overflowed: + * try_grab_compound_head() should always succeed here, + * because: a) we hold the ptl lock, and b) we've just + * checked that the huge page is present in the page + * tables. If the huge page is present, then the tail + * pages must also be present. The ptl prevents the + * head page and tail pages from being rearranged in + * any way. So this page must be available at this + * point, unless the page refcount overflowed: */ - if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) { + if (WARN_ON_ONCE(!try_grab_compound_head(pages[i], + refs, + flags))) { spin_unlock(ptl); remainder = 0; err = -ENOMEM; @@ -4923,21 +4979,10 @@ same_page: } } - if (vmas) - vmas[i] = vma; - - vaddr += PAGE_SIZE; - ++pfn_offset; - --remainder; - ++i; - if (vaddr < vma->vm_end && remainder && - pfn_offset < pages_per_huge_page(h)) { - /* - * We use pfn_offset to avoid touching the pageframes - * of this compound page. - */ - goto same_page; - } + vaddr += (refs << PAGE_SHIFT); + remainder -= refs; + i += refs; + spin_unlock(ptl); } *nr_pages = remainder; @@ -5051,12 +5096,13 @@ unsigned long hugetlb_change_protection(struct vm_area_struct *vma, return pages << h->order; } -int hugetlb_reserve_pages(struct inode *inode, +/* Return true if reservation was successful, false otherwise. */ +bool hugetlb_reserve_pages(struct inode *inode, long from, long to, struct vm_area_struct *vma, vm_flags_t vm_flags) { - long ret, chg, add = -1; + long chg, add = -1; struct hstate *h = hstate_inode(inode); struct hugepage_subpool *spool = subpool_inode(inode); struct resv_map *resv_map; @@ -5066,7 +5112,7 @@ int hugetlb_reserve_pages(struct inode *inode, /* This should never happen */ if (from > to) { VM_WARN(1, "%s called with a negative range\n", __func__); - return -EINVAL; + return false; } /* @@ -5075,7 +5121,7 @@ int hugetlb_reserve_pages(struct inode *inode, * without using reserves */ if (vm_flags & VM_NORESERVE) - return 0; + return true; /* * Shared mappings base their reservation on the number of pages that @@ -5097,7 +5143,7 @@ int hugetlb_reserve_pages(struct inode *inode, /* Private mapping. */ resv_map = resv_map_alloc(); if (!resv_map) - return -ENOMEM; + return false; chg = to - from; @@ -5105,18 +5151,12 @@ int hugetlb_reserve_pages(struct inode *inode, set_vma_resv_flags(vma, HPAGE_RESV_OWNER); } - if (chg < 0) { - ret = chg; + if (chg < 0) goto out_err; - } - ret = hugetlb_cgroup_charge_cgroup_rsvd( - hstate_index(h), chg * pages_per_huge_page(h), &h_cg); - - if (ret < 0) { - ret = -ENOMEM; + if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), + chg * pages_per_huge_page(h), &h_cg) < 0) goto out_err; - } if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) { /* For private mappings, the hugetlb_cgroup uncharge info hangs @@ -5131,19 +5171,15 @@ int hugetlb_reserve_pages(struct inode *inode, * reservations already in place (gbl_reserve). */ gbl_reserve = hugepage_subpool_get_pages(spool, chg); - if (gbl_reserve < 0) { - ret = -ENOSPC; + if (gbl_reserve < 0) goto out_uncharge_cgroup; - } /* * Check enough hugepages are available for the reservation. * Hand the pages back to the subpool if there are not */ - ret = hugetlb_acct_memory(h, gbl_reserve); - if (ret < 0) { + if (hugetlb_acct_memory(h, gbl_reserve) < 0) goto out_put_pages; - } /* * Account for the reservations made. Shared mappings record regions @@ -5161,7 +5197,6 @@ int hugetlb_reserve_pages(struct inode *inode, if (unlikely(add < 0)) { hugetlb_acct_memory(h, -gbl_reserve); - ret = add; goto out_put_pages; } else if (unlikely(chg > add)) { /* @@ -5173,6 +5208,10 @@ int hugetlb_reserve_pages(struct inode *inode, */ long rsv_adjust; + /* + * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the + * reference to h_cg->css. See comment below for detail. + */ hugetlb_cgroup_uncharge_cgroup_rsvd( hstate_index(h), (chg - add) * pages_per_huge_page(h), h_cg); @@ -5180,9 +5219,18 @@ int hugetlb_reserve_pages(struct inode *inode, rsv_adjust = hugepage_subpool_put_pages(spool, chg - add); hugetlb_acct_memory(h, -rsv_adjust); + } else if (h_cg) { + /* + * The file_regions will hold their own reference to + * h_cg->css. So we should release the reference held + * via hugetlb_cgroup_charge_cgroup_rsvd() when we are + * done. + */ + hugetlb_cgroup_put_rsvd_cgroup(h_cg); } } - return 0; + return true; + out_put_pages: /* put back original number of pages, chg */ (void)hugepage_subpool_put_pages(spool, chg); @@ -5198,7 +5246,7 @@ out_err: region_abort(resv_map, from, to, regions_needed); if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) kref_put(&resv_map->refs, resv_map_release); - return ret; + return false; } long hugetlb_unreserve_pages(struct inode *inode, long start, long end, @@ -5259,7 +5307,7 @@ static unsigned long page_table_shareable(struct vm_area_struct *svma, */ if (pmd_index(addr) != pmd_index(saddr) || vm_flags != svm_flags || - sbase < svma->vm_start || svma->vm_end < s_end) + !range_in_vma(svma, sbase, s_end)) return 0; return saddr; @@ -5286,21 +5334,23 @@ static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr) void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, unsigned long *start, unsigned long *end) { - unsigned long a_start, a_end; + unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), + v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); - if (!(vma->vm_flags & VM_MAYSHARE)) + /* + * vma need span at least one aligned PUD size and the start,end range + * must at least partialy within it. + */ + if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || + (*end <= v_start) || (*start >= v_end)) return; /* Extend the range to be PUD aligned for a worst case scenario */ - a_start = ALIGN_DOWN(*start, PUD_SIZE); - a_end = ALIGN(*end, PUD_SIZE); + if (*start > v_start) + *start = ALIGN_DOWN(*start, PUD_SIZE); - /* - * Intersect the range with the vma range, since pmd sharing won't be - * across vma after all - */ - *start = max(vma->vm_start, a_start); - *end = min(vma->vm_end, a_end); + if (*end < v_end) + *end = ALIGN(*end, PUD_SIZE); } /* @@ -5583,12 +5633,13 @@ bool isolate_huge_page(struct page *page, struct list_head *list) bool ret = true; spin_lock(&hugetlb_lock); - if (!PageHeadHuge(page) || !page_huge_active(page) || + if (!PageHeadHuge(page) || + !HPageMigratable(page) || !get_page_unless_zero(page)) { ret = false; goto unlock; } - clear_page_huge_active(page); + ClearHPageMigratable(page); list_move_tail(&page->lru, list); unlock: spin_unlock(&hugetlb_lock); @@ -5597,9 +5648,8 @@ unlock: void putback_active_hugepage(struct page *page) { - VM_BUG_ON_PAGE(!PageHead(page), page); spin_lock(&hugetlb_lock); - set_page_huge_active(page); + SetHPageMigratable(page); list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); spin_unlock(&hugetlb_lock); put_page(page); @@ -5622,12 +5672,12 @@ void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason) * here as well otherwise the global surplus count will not match * the per-node's. */ - if (PageHugeTemporary(newpage)) { + if (HPageTemporary(newpage)) { int old_nid = page_to_nid(oldpage); int new_nid = page_to_nid(newpage); - SetPageHugeTemporary(oldpage); - ClearPageHugeTemporary(newpage); + SetHPageTemporary(oldpage); + ClearHPageTemporary(newpage); spin_lock(&hugetlb_lock); if (h->surplus_huge_pages_node[old_nid]) { diff --git a/mm/hugetlb_cgroup.c b/mm/hugetlb_cgroup.c index 9182848dda3e..603a131e262d 100644 --- a/mm/hugetlb_cgroup.c +++ b/mm/hugetlb_cgroup.c @@ -113,7 +113,7 @@ static void hugetlb_cgroup_init(struct hugetlb_cgroup *h_cgroup, rsvd_parent); limit = round_down(PAGE_COUNTER_MAX, - 1 << huge_page_order(&hstates[idx])); + pages_per_huge_page(&hstates[idx])); ret = page_counter_set_max( hugetlb_cgroup_counter_from_cgroup(h_cgroup, idx), @@ -391,7 +391,8 @@ void hugetlb_cgroup_uncharge_counter(struct resv_map *resv, unsigned long start, void hugetlb_cgroup_uncharge_file_region(struct resv_map *resv, struct file_region *rg, - unsigned long nr_pages) + unsigned long nr_pages, + bool region_del) { if (hugetlb_cgroup_disabled() || !resv || !rg || !nr_pages) return; @@ -400,7 +401,12 @@ void hugetlb_cgroup_uncharge_file_region(struct resv_map *resv, !resv->reservation_counter) { page_counter_uncharge(rg->reservation_counter, nr_pages * resv->pages_per_hpage); - css_put(rg->css); + /* + * Only do css_put(rg->css) when we delete the entire region + * because one file_region must hold exactly one css reference. + */ + if (region_del) + css_put(rg->css); } } @@ -460,7 +466,7 @@ static int hugetlb_cgroup_read_u64_max(struct seq_file *seq, void *v) counter = &h_cg->hugepage[idx]; limit = round_down(PAGE_COUNTER_MAX, - 1 << huge_page_order(&hstates[idx])); + pages_per_huge_page(&hstates[idx])); switch (MEMFILE_ATTR(cft->private)) { case RES_RSVD_USAGE: @@ -507,7 +513,7 @@ static ssize_t hugetlb_cgroup_write(struct kernfs_open_file *of, return ret; idx = MEMFILE_IDX(of_cft(of)->private); - nr_pages = round_down(nr_pages, 1 << huge_page_order(&hstates[idx])); + nr_pages = round_down(nr_pages, pages_per_huge_page(&hstates[idx])); switch (MEMFILE_ATTR(of_cft(of)->private)) { case RES_RSVD_LIMIT: diff --git a/mm/internal.h b/mm/internal.h index 25d2b2439f19..1432feec62df 100644 --- a/mm/internal.h +++ b/mm/internal.h @@ -60,8 +60,8 @@ static inline void force_page_cache_readahead(struct address_space *mapping, force_page_cache_ra(&ractl, &file->f_ra, nr_to_read); } -struct page *find_get_entry(struct address_space *mapping, pgoff_t index); -struct page *find_lock_entry(struct address_space *mapping, pgoff_t index); +unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, + pgoff_t end, struct pagevec *pvec, pgoff_t *indices); /** * page_evictable - test whether a page is evictable @@ -296,11 +296,6 @@ static inline unsigned int buddy_order(struct page *page) */ #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) -static inline bool is_cow_mapping(vm_flags_t flags) -{ - return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; -} - /* * These three helpers classifies VMAs for virtual memory accounting. */ diff --git a/mm/kasan/common.c b/mm/kasan/common.c index b25167664ead..b5e08d4cefec 100644 --- a/mm/kasan/common.c +++ b/mm/kasan/common.c @@ -60,7 +60,7 @@ void kasan_disable_current(void) void __kasan_unpoison_range(const void *address, size_t size) { - unpoison_range(address, size); + kasan_unpoison(address, size); } #if CONFIG_KASAN_STACK @@ -69,7 +69,7 @@ void kasan_unpoison_task_stack(struct task_struct *task) { void *base = task_stack_page(task); - unpoison_range(base, THREAD_SIZE); + kasan_unpoison(base, THREAD_SIZE); } /* Unpoison the stack for the current task beyond a watermark sp value. */ @@ -82,7 +82,7 @@ asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) */ void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); - unpoison_range(base, watermark - base); + kasan_unpoison(base, watermark - base); } #endif /* CONFIG_KASAN_STACK */ @@ -105,18 +105,17 @@ void __kasan_alloc_pages(struct page *page, unsigned int order) if (unlikely(PageHighMem(page))) return; - tag = random_tag(); + tag = kasan_random_tag(); for (i = 0; i < (1 << order); i++) page_kasan_tag_set(page + i, tag); - unpoison_range(page_address(page), PAGE_SIZE << order); + kasan_unpoison(page_address(page), PAGE_SIZE << order); } void __kasan_free_pages(struct page *page, unsigned int order) { if (likely(!PageHighMem(page))) - poison_range(page_address(page), - PAGE_SIZE << order, - KASAN_FREE_PAGE); + kasan_poison(page_address(page), PAGE_SIZE << order, + KASAN_FREE_PAGE); } /* @@ -211,6 +210,11 @@ void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size, *size = optimal_size; } +void __kasan_cache_create_kmalloc(struct kmem_cache *cache) +{ + cache->kasan_info.is_kmalloc = true; +} + size_t __kasan_metadata_size(struct kmem_cache *cache) { if (!kasan_stack_collection_enabled()) @@ -246,18 +250,19 @@ void __kasan_poison_slab(struct page *page) for (i = 0; i < compound_nr(page); i++) page_kasan_tag_reset(page + i); - poison_range(page_address(page), page_size(page), + kasan_poison(page_address(page), page_size(page), KASAN_KMALLOC_REDZONE); } void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object) { - unpoison_range(object, cache->object_size); + kasan_unpoison(object, cache->object_size); } void __kasan_poison_object_data(struct kmem_cache *cache, void *object) { - poison_range(object, cache->object_size, KASAN_KMALLOC_REDZONE); + kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), + KASAN_KMALLOC_REDZONE); } /* @@ -274,27 +279,18 @@ void __kasan_poison_object_data(struct kmem_cache *cache, void *object) * based on objects indexes, so that objects that are next to each other * get different tags. */ -static u8 assign_tag(struct kmem_cache *cache, const void *object, - bool init, bool keep_tag) +static inline u8 assign_tag(struct kmem_cache *cache, + const void *object, bool init) { if (IS_ENABLED(CONFIG_KASAN_GENERIC)) return 0xff; /* - * 1. When an object is kmalloc()'ed, two hooks are called: - * kasan_slab_alloc() and kasan_kmalloc(). We assign the - * tag only in the first one. - * 2. We reuse the same tag for krealloc'ed objects. - */ - if (keep_tag) - return get_tag(object); - - /* * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU * set, assign a tag when the object is being allocated (init == false). */ if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) - return init ? KASAN_TAG_KERNEL : random_tag(); + return init ? KASAN_TAG_KERNEL : kasan_random_tag(); /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ #ifdef CONFIG_SLAB @@ -305,7 +301,7 @@ static u8 assign_tag(struct kmem_cache *cache, const void *object, * For SLUB assign a random tag during slab creation, otherwise reuse * the already assigned tag. */ - return init ? random_tag() : get_tag(object); + return init ? kasan_random_tag() : get_tag(object); #endif } @@ -321,13 +317,13 @@ void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache, } /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */ - object = set_tag(object, assign_tag(cache, object, true, false)); + object = set_tag(object, assign_tag(cache, object, true)); return (void *)object; } -static bool ____kasan_slab_free(struct kmem_cache *cache, void *object, - unsigned long ip, bool quarantine) +static inline bool ____kasan_slab_free(struct kmem_cache *cache, + void *object, unsigned long ip, bool quarantine) { u8 tag; void *tagged_object; @@ -336,6 +332,9 @@ static bool ____kasan_slab_free(struct kmem_cache *cache, void *object, tagged_object = object; object = kasan_reset_tag(object); + if (is_kfence_address(object)) + return false; + if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != object)) { kasan_report_invalid_free(tagged_object, ip); @@ -346,22 +345,21 @@ static bool ____kasan_slab_free(struct kmem_cache *cache, void *object, if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) return false; - if (check_invalid_free(tagged_object)) { + if (!kasan_byte_accessible(tagged_object)) { kasan_report_invalid_free(tagged_object, ip); return true; } - poison_range(object, cache->object_size, KASAN_KMALLOC_FREE); - - if (!kasan_stack_collection_enabled()) - return false; + kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), + KASAN_KMALLOC_FREE); if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine)) return false; - kasan_set_free_info(cache, object, tag); + if (kasan_stack_collection_enabled()) + kasan_set_free_info(cache, object, tag); - return quarantine_put(cache, object); + return kasan_quarantine_put(cache, object); } bool __kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) @@ -369,6 +367,31 @@ bool __kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip) return ____kasan_slab_free(cache, object, ip, true); } +static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip) +{ + if (ptr != page_address(virt_to_head_page(ptr))) { + kasan_report_invalid_free(ptr, ip); + return true; + } + + if (!kasan_byte_accessible(ptr)) { + kasan_report_invalid_free(ptr, ip); + return true; + } + + /* + * The object will be poisoned by kasan_free_pages() or + * kasan_slab_free_mempool(). + */ + + return false; +} + +void __kasan_kfree_large(void *ptr, unsigned long ip) +{ + ____kasan_kfree_large(ptr, ip); +} + void __kasan_slab_free_mempool(void *ptr, unsigned long ip) { struct page *page; @@ -382,88 +405,147 @@ void __kasan_slab_free_mempool(void *ptr, unsigned long ip) * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc. */ if (unlikely(!PageSlab(page))) { - if (ptr != page_address(page)) { - kasan_report_invalid_free(ptr, ip); + if (____kasan_kfree_large(ptr, ip)) return; - } - poison_range(ptr, page_size(page), KASAN_FREE_PAGE); + kasan_poison(ptr, page_size(page), KASAN_FREE_PAGE); } else { ____kasan_slab_free(page->slab_cache, ptr, ip, false); } } -static void set_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags) +static void set_alloc_info(struct kmem_cache *cache, void *object, + gfp_t flags, bool is_kmalloc) { struct kasan_alloc_meta *alloc_meta; + /* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */ + if (cache->kasan_info.is_kmalloc && !is_kmalloc) + return; + alloc_meta = kasan_get_alloc_meta(cache, object); if (alloc_meta) kasan_set_track(&alloc_meta->alloc_track, flags); } -static void *____kasan_kmalloc(struct kmem_cache *cache, const void *object, - size_t size, gfp_t flags, bool keep_tag) +void * __must_check __kasan_slab_alloc(struct kmem_cache *cache, + void *object, gfp_t flags) { - unsigned long redzone_start; - unsigned long redzone_end; u8 tag; + void *tagged_object; if (gfpflags_allow_blocking(flags)) - quarantine_reduce(); + kasan_quarantine_reduce(); if (unlikely(object == NULL)) return NULL; - redzone_start = round_up((unsigned long)(object + size), - KASAN_GRANULE_SIZE); - redzone_end = round_up((unsigned long)object + cache->object_size, - KASAN_GRANULE_SIZE); - tag = assign_tag(cache, object, false, keep_tag); + if (is_kfence_address(object)) + return (void *)object; - /* Tag is ignored in set_tag without CONFIG_KASAN_SW/HW_TAGS */ - unpoison_range(set_tag(object, tag), size); - poison_range((void *)redzone_start, redzone_end - redzone_start, - KASAN_KMALLOC_REDZONE); + /* + * Generate and assign random tag for tag-based modes. + * Tag is ignored in set_tag() for the generic mode. + */ + tag = assign_tag(cache, object, false); + tagged_object = set_tag(object, tag); + + /* + * Unpoison the whole object. + * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning. + */ + kasan_unpoison(tagged_object, cache->object_size); + /* Save alloc info (if possible) for non-kmalloc() allocations. */ if (kasan_stack_collection_enabled()) - set_alloc_info(cache, (void *)object, flags); + set_alloc_info(cache, (void *)object, flags, false); - return set_tag(object, tag); + return tagged_object; } -void * __must_check __kasan_slab_alloc(struct kmem_cache *cache, - void *object, gfp_t flags) +static inline void *____kasan_kmalloc(struct kmem_cache *cache, + const void *object, size_t size, gfp_t flags) { - return ____kasan_kmalloc(cache, object, cache->object_size, flags, false); + unsigned long redzone_start; + unsigned long redzone_end; + + if (gfpflags_allow_blocking(flags)) + kasan_quarantine_reduce(); + + if (unlikely(object == NULL)) + return NULL; + + if (is_kfence_address(kasan_reset_tag(object))) + return (void *)object; + + /* + * The object has already been unpoisoned by kasan_slab_alloc() for + * kmalloc() or by kasan_krealloc() for krealloc(). + */ + + /* + * The redzone has byte-level precision for the generic mode. + * Partially poison the last object granule to cover the unaligned + * part of the redzone. + */ + if (IS_ENABLED(CONFIG_KASAN_GENERIC)) + kasan_poison_last_granule((void *)object, size); + + /* Poison the aligned part of the redzone. */ + redzone_start = round_up((unsigned long)(object + size), + KASAN_GRANULE_SIZE); + redzone_end = round_up((unsigned long)(object + cache->object_size), + KASAN_GRANULE_SIZE); + kasan_poison((void *)redzone_start, redzone_end - redzone_start, + KASAN_KMALLOC_REDZONE); + + /* + * Save alloc info (if possible) for kmalloc() allocations. + * This also rewrites the alloc info when called from kasan_krealloc(). + */ + if (kasan_stack_collection_enabled()) + set_alloc_info(cache, (void *)object, flags, true); + + /* Keep the tag that was set by kasan_slab_alloc(). */ + return (void *)object; } void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size, gfp_t flags) { - return ____kasan_kmalloc(cache, object, size, flags, true); + return ____kasan_kmalloc(cache, object, size, flags); } EXPORT_SYMBOL(__kasan_kmalloc); void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags) { - struct page *page; unsigned long redzone_start; unsigned long redzone_end; if (gfpflags_allow_blocking(flags)) - quarantine_reduce(); + kasan_quarantine_reduce(); if (unlikely(ptr == NULL)) return NULL; - page = virt_to_page(ptr); + /* + * The object has already been unpoisoned by kasan_alloc_pages() for + * alloc_pages() or by kasan_krealloc() for krealloc(). + */ + + /* + * The redzone has byte-level precision for the generic mode. + * Partially poison the last object granule to cover the unaligned + * part of the redzone. + */ + if (IS_ENABLED(CONFIG_KASAN_GENERIC)) + kasan_poison_last_granule(ptr, size); + + /* Poison the aligned part of the redzone. */ redzone_start = round_up((unsigned long)(ptr + size), KASAN_GRANULE_SIZE); - redzone_end = (unsigned long)ptr + page_size(page); - - unpoison_range(ptr, size); - poison_range((void *)redzone_start, redzone_end - redzone_start, + redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr)); + kasan_poison((void *)redzone_start, redzone_end - redzone_start, KASAN_PAGE_REDZONE); return (void *)ptr; @@ -476,18 +558,27 @@ void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flag if (unlikely(object == ZERO_SIZE_PTR)) return (void *)object; + /* + * Unpoison the object's data. + * Part of it might already have been unpoisoned, but it's unknown + * how big that part is. + */ + kasan_unpoison(object, size); + page = virt_to_head_page(object); + /* Piggy-back on kmalloc() instrumentation to poison the redzone. */ if (unlikely(!PageSlab(page))) return __kasan_kmalloc_large(object, size, flags); else - return ____kasan_kmalloc(page->slab_cache, object, size, - flags, true); + return ____kasan_kmalloc(page->slab_cache, object, size, flags); } -void __kasan_kfree_large(void *ptr, unsigned long ip) +bool __kasan_check_byte(const void *address, unsigned long ip) { - if (ptr != page_address(virt_to_head_page(ptr))) - kasan_report_invalid_free(ptr, ip); - /* The object will be poisoned by kasan_free_pages(). */ + if (!kasan_byte_accessible(address)) { + kasan_report((unsigned long)address, 1, false, ip); + return false; + } + return true; } diff --git a/mm/kasan/generic.c b/mm/kasan/generic.c index 5106b84b07d4..2e55e0f82f39 100644 --- a/mm/kasan/generic.c +++ b/mm/kasan/generic.c @@ -14,6 +14,7 @@ #include <linux/init.h> #include <linux/kasan.h> #include <linux/kernel.h> +#include <linux/kfence.h> #include <linux/kmemleak.h> #include <linux/linkage.h> #include <linux/memblock.h> @@ -158,7 +159,7 @@ static __always_inline bool memory_is_poisoned(unsigned long addr, size_t size) return memory_is_poisoned_n(addr, size); } -static __always_inline bool check_memory_region_inline(unsigned long addr, +static __always_inline bool check_region_inline(unsigned long addr, size_t size, bool write, unsigned long ret_ip) { @@ -179,37 +180,37 @@ static __always_inline bool check_memory_region_inline(unsigned long addr, return !kasan_report(addr, size, write, ret_ip); } -bool check_memory_region(unsigned long addr, size_t size, bool write, - unsigned long ret_ip) +bool kasan_check_range(unsigned long addr, size_t size, bool write, + unsigned long ret_ip) { - return check_memory_region_inline(addr, size, write, ret_ip); + return check_region_inline(addr, size, write, ret_ip); } -bool check_invalid_free(void *addr) +bool kasan_byte_accessible(const void *addr) { s8 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr)); - return shadow_byte < 0 || shadow_byte >= KASAN_GRANULE_SIZE; + return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE; } void kasan_cache_shrink(struct kmem_cache *cache) { - quarantine_remove_cache(cache); + kasan_quarantine_remove_cache(cache); } void kasan_cache_shutdown(struct kmem_cache *cache) { if (!__kmem_cache_empty(cache)) - quarantine_remove_cache(cache); + kasan_quarantine_remove_cache(cache); } static void register_global(struct kasan_global *global) { size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE); - unpoison_range(global->beg, global->size); + kasan_unpoison(global->beg, global->size); - poison_range(global->beg + aligned_size, + kasan_poison(global->beg + aligned_size, global->size_with_redzone - aligned_size, KASAN_GLOBAL_REDZONE); } @@ -231,7 +232,7 @@ EXPORT_SYMBOL(__asan_unregister_globals); #define DEFINE_ASAN_LOAD_STORE(size) \ void __asan_load##size(unsigned long addr) \ { \ - check_memory_region_inline(addr, size, false, _RET_IP_);\ + check_region_inline(addr, size, false, _RET_IP_); \ } \ EXPORT_SYMBOL(__asan_load##size); \ __alias(__asan_load##size) \ @@ -239,7 +240,7 @@ EXPORT_SYMBOL(__asan_unregister_globals); EXPORT_SYMBOL(__asan_load##size##_noabort); \ void __asan_store##size(unsigned long addr) \ { \ - check_memory_region_inline(addr, size, true, _RET_IP_); \ + check_region_inline(addr, size, true, _RET_IP_); \ } \ EXPORT_SYMBOL(__asan_store##size); \ __alias(__asan_store##size) \ @@ -254,7 +255,7 @@ DEFINE_ASAN_LOAD_STORE(16); void __asan_loadN(unsigned long addr, size_t size) { - check_memory_region(addr, size, false, _RET_IP_); + kasan_check_range(addr, size, false, _RET_IP_); } EXPORT_SYMBOL(__asan_loadN); @@ -264,7 +265,7 @@ EXPORT_SYMBOL(__asan_loadN_noabort); void __asan_storeN(unsigned long addr, size_t size) { - check_memory_region(addr, size, true, _RET_IP_); + kasan_check_range(addr, size, true, _RET_IP_); } EXPORT_SYMBOL(__asan_storeN); @@ -290,11 +291,11 @@ void __asan_alloca_poison(unsigned long addr, size_t size) WARN_ON(!IS_ALIGNED(addr, KASAN_ALLOCA_REDZONE_SIZE)); - unpoison_range((const void *)(addr + rounded_down_size), - size - rounded_down_size); - poison_range(left_redzone, KASAN_ALLOCA_REDZONE_SIZE, + kasan_unpoison((const void *)(addr + rounded_down_size), + size - rounded_down_size); + kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE, KASAN_ALLOCA_LEFT); - poison_range(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE, + kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE, KASAN_ALLOCA_RIGHT); } EXPORT_SYMBOL(__asan_alloca_poison); @@ -305,7 +306,7 @@ void __asan_allocas_unpoison(const void *stack_top, const void *stack_bottom) if (unlikely(!stack_top || stack_top > stack_bottom)) return; - unpoison_range(stack_top, stack_bottom - stack_top); + kasan_unpoison(stack_top, stack_bottom - stack_top); } EXPORT_SYMBOL(__asan_allocas_unpoison); @@ -331,7 +332,7 @@ void kasan_record_aux_stack(void *addr) struct kasan_alloc_meta *alloc_meta; void *object; - if (!(page && PageSlab(page))) + if (is_kfence_address(addr) || !(page && PageSlab(page))) return; cache = page->slab_cache; diff --git a/mm/kasan/hw_tags.c b/mm/kasan/hw_tags.c index d558799b25b3..2aad21fda156 100644 --- a/mm/kasan/hw_tags.c +++ b/mm/kasan/hw_tags.c @@ -48,7 +48,7 @@ EXPORT_SYMBOL(kasan_flag_enabled); /* Whether to collect alloc/free stack traces. */ DEFINE_STATIC_KEY_FALSE(kasan_flag_stacktrace); -/* Whether panic or disable tag checking on fault. */ +/* Whether to panic or print a report and disable tag checking on fault. */ bool kasan_flag_panic __ro_after_init; /* kasan=off/on */ @@ -185,3 +185,19 @@ struct kasan_track *kasan_get_free_track(struct kmem_cache *cache, return &alloc_meta->free_track[0]; } + +#if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) + +void kasan_set_tagging_report_once(bool state) +{ + hw_set_tagging_report_once(state); +} +EXPORT_SYMBOL_GPL(kasan_set_tagging_report_once); + +void kasan_enable_tagging(void) +{ + hw_enable_tagging(); +} +EXPORT_SYMBOL_GPL(kasan_enable_tagging); + +#endif diff --git a/mm/kasan/kasan.h b/mm/kasan/kasan.h index 8c706e7652f2..8c55634d6edd 100644 --- a/mm/kasan/kasan.h +++ b/mm/kasan/kasan.h @@ -3,6 +3,7 @@ #define __MM_KASAN_KASAN_H #include <linux/kasan.h> +#include <linux/kfence.h> #include <linux/stackdepot.h> #ifdef CONFIG_KASAN_HW_TAGS @@ -36,6 +37,12 @@ extern bool kasan_flag_panic __ro_after_init; #define KASAN_TAG_INVALID 0xFE /* inaccessible memory tag */ #define KASAN_TAG_MAX 0xFD /* maximum value for random tags */ +#ifdef CONFIG_KASAN_HW_TAGS +#define KASAN_TAG_MIN 0xF0 /* mimimum value for random tags */ +#else +#define KASAN_TAG_MIN 0x00 /* mimimum value for random tags */ +#endif + #ifdef CONFIG_KASAN_GENERIC #define KASAN_FREE_PAGE 0xFF /* page was freed */ #define KASAN_PAGE_REDZONE 0xFE /* redzone for kmalloc_large allocations */ @@ -195,14 +202,14 @@ static inline bool addr_has_metadata(const void *addr) } /** - * check_memory_region - Check memory region, and report if invalid access. + * kasan_check_range - Check memory region, and report if invalid access. * @addr: the accessed address * @size: the accessed size * @write: true if access is a write access * @ret_ip: return address * @return: true if access was valid, false if invalid */ -bool check_memory_region(unsigned long addr, size_t size, bool write, +bool kasan_check_range(unsigned long addr, size_t size, bool write, unsigned long ret_ip); #else /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ @@ -215,19 +222,19 @@ static inline bool addr_has_metadata(const void *addr) #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) -void print_tags(u8 addr_tag, const void *addr); +void kasan_print_tags(u8 addr_tag, const void *addr); #else -static inline void print_tags(u8 addr_tag, const void *addr) { } +static inline void kasan_print_tags(u8 addr_tag, const void *addr) { } #endif -void *find_first_bad_addr(void *addr, size_t size); -const char *get_bug_type(struct kasan_access_info *info); -void metadata_fetch_row(char *buffer, void *row); +void *kasan_find_first_bad_addr(void *addr, size_t size); +const char *kasan_get_bug_type(struct kasan_access_info *info); +void kasan_metadata_fetch_row(char *buffer, void *row); #if defined(CONFIG_KASAN_GENERIC) && CONFIG_KASAN_STACK -void print_address_stack_frame(const void *addr); +void kasan_print_address_stack_frame(const void *addr); #else -static inline void print_address_stack_frame(const void *addr) { } +static inline void kasan_print_address_stack_frame(const void *addr) { } #endif bool kasan_report(unsigned long addr, size_t size, @@ -244,13 +251,13 @@ struct kasan_track *kasan_get_free_track(struct kmem_cache *cache, #if defined(CONFIG_KASAN_GENERIC) && \ (defined(CONFIG_SLAB) || defined(CONFIG_SLUB)) -bool quarantine_put(struct kmem_cache *cache, void *object); -void quarantine_reduce(void); -void quarantine_remove_cache(struct kmem_cache *cache); +bool kasan_quarantine_put(struct kmem_cache *cache, void *object); +void kasan_quarantine_reduce(void); +void kasan_quarantine_remove_cache(struct kmem_cache *cache); #else -static inline bool quarantine_put(struct kmem_cache *cache, void *object) { return false; } -static inline void quarantine_reduce(void) { } -static inline void quarantine_remove_cache(struct kmem_cache *cache) { } +static inline bool kasan_quarantine_put(struct kmem_cache *cache, void *object) { return false; } +static inline void kasan_quarantine_reduce(void) { } +static inline void kasan_quarantine_remove_cache(struct kmem_cache *cache) { } #endif #ifndef arch_kasan_set_tag @@ -274,6 +281,9 @@ static inline const void *arch_kasan_set_tag(const void *addr, u8 tag) #ifndef arch_init_tags #define arch_init_tags(max_tag) #endif +#ifndef arch_set_tagging_report_once +#define arch_set_tagging_report_once(state) +#endif #ifndef arch_get_random_tag #define arch_get_random_tag() (0xFF) #endif @@ -286,51 +296,129 @@ static inline const void *arch_kasan_set_tag(const void *addr, u8 tag) #define hw_enable_tagging() arch_enable_tagging() #define hw_init_tags(max_tag) arch_init_tags(max_tag) +#define hw_set_tagging_report_once(state) arch_set_tagging_report_once(state) #define hw_get_random_tag() arch_get_random_tag() #define hw_get_mem_tag(addr) arch_get_mem_tag(addr) #define hw_set_mem_tag_range(addr, size, tag) arch_set_mem_tag_range((addr), (size), (tag)) +#else /* CONFIG_KASAN_HW_TAGS */ + +#define hw_enable_tagging() +#define hw_set_tagging_report_once(state) + #endif /* CONFIG_KASAN_HW_TAGS */ +#if defined(CONFIG_KASAN_HW_TAGS) && IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) + +void kasan_set_tagging_report_once(bool state); +void kasan_enable_tagging(void); + +#else /* CONFIG_KASAN_HW_TAGS || CONFIG_KASAN_KUNIT_TEST */ + +static inline void kasan_set_tagging_report_once(bool state) { } +static inline void kasan_enable_tagging(void) { } + +#endif /* CONFIG_KASAN_HW_TAGS || CONFIG_KASAN_KUNIT_TEST */ + #ifdef CONFIG_KASAN_SW_TAGS -u8 random_tag(void); +u8 kasan_random_tag(void); #elif defined(CONFIG_KASAN_HW_TAGS) -static inline u8 random_tag(void) { return hw_get_random_tag(); } +static inline u8 kasan_random_tag(void) { return hw_get_random_tag(); } #else -static inline u8 random_tag(void) { return 0; } +static inline u8 kasan_random_tag(void) { return 0; } #endif #ifdef CONFIG_KASAN_HW_TAGS -static inline void poison_range(const void *address, size_t size, u8 value) +static inline void kasan_poison(const void *addr, size_t size, u8 value) { - hw_set_mem_tag_range(kasan_reset_tag(address), - round_up(size, KASAN_GRANULE_SIZE), value); + addr = kasan_reset_tag(addr); + + /* Skip KFENCE memory if called explicitly outside of sl*b. */ + if (is_kfence_address(addr)) + return; + + if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK)) + return; + if (WARN_ON(size & KASAN_GRANULE_MASK)) + return; + + hw_set_mem_tag_range((void *)addr, size, value); } -static inline void unpoison_range(const void *address, size_t size) +static inline void kasan_unpoison(const void *addr, size_t size) { - hw_set_mem_tag_range(kasan_reset_tag(address), - round_up(size, KASAN_GRANULE_SIZE), get_tag(address)); + u8 tag = get_tag(addr); + + addr = kasan_reset_tag(addr); + + /* Skip KFENCE memory if called explicitly outside of sl*b. */ + if (is_kfence_address(addr)) + return; + + if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK)) + return; + size = round_up(size, KASAN_GRANULE_SIZE); + + hw_set_mem_tag_range((void *)addr, size, tag); } -static inline bool check_invalid_free(void *addr) +static inline bool kasan_byte_accessible(const void *addr) { u8 ptr_tag = get_tag(addr); - u8 mem_tag = hw_get_mem_tag(addr); + u8 mem_tag = hw_get_mem_tag((void *)addr); - return (mem_tag == KASAN_TAG_INVALID) || - (ptr_tag != KASAN_TAG_KERNEL && ptr_tag != mem_tag); + return (mem_tag != KASAN_TAG_INVALID) && + (ptr_tag == KASAN_TAG_KERNEL || ptr_tag == mem_tag); } #else /* CONFIG_KASAN_HW_TAGS */ -void poison_range(const void *address, size_t size, u8 value); -void unpoison_range(const void *address, size_t size); -bool check_invalid_free(void *addr); +/** + * kasan_poison - mark the memory range as unaccessible + * @addr - range start address, must be aligned to KASAN_GRANULE_SIZE + * @size - range size, must be aligned to KASAN_GRANULE_SIZE + * @value - value that's written to metadata for the range + * + * The size gets aligned to KASAN_GRANULE_SIZE before marking the range. + */ +void kasan_poison(const void *addr, size_t size, u8 value); + +/** + * kasan_unpoison - mark the memory range as accessible + * @addr - range start address, must be aligned to KASAN_GRANULE_SIZE + * @size - range size, can be unaligned + * + * For the tag-based modes, the @size gets aligned to KASAN_GRANULE_SIZE before + * marking the range. + * For the generic mode, the last granule of the memory range gets partially + * unpoisoned based on the @size. + */ +void kasan_unpoison(const void *addr, size_t size); + +bool kasan_byte_accessible(const void *addr); #endif /* CONFIG_KASAN_HW_TAGS */ +#ifdef CONFIG_KASAN_GENERIC + +/** + * kasan_poison_last_granule - mark the last granule of the memory range as + * unaccessible + * @addr - range start address, must be aligned to KASAN_GRANULE_SIZE + * @size - range size + * + * This function is only available for the generic mode, as it's the only mode + * that has partially poisoned memory granules. + */ +void kasan_poison_last_granule(const void *address, size_t size); + +#else /* CONFIG_KASAN_GENERIC */ + +static inline void kasan_poison_last_granule(const void *address, size_t size) { } + +#endif /* CONFIG_KASAN_GENERIC */ + /* * Exported functions for interfaces called from assembly or from generated * code. Declarations here to avoid warning about missing declarations. diff --git a/mm/kasan/quarantine.c b/mm/kasan/quarantine.c index 55783125a767..728fb24c5683 100644 --- a/mm/kasan/quarantine.c +++ b/mm/kasan/quarantine.c @@ -168,7 +168,7 @@ static void qlist_free_all(struct qlist_head *q, struct kmem_cache *cache) qlist_init(q); } -bool quarantine_put(struct kmem_cache *cache, void *object) +bool kasan_quarantine_put(struct kmem_cache *cache, void *object) { unsigned long flags; struct qlist_head *q; @@ -184,11 +184,11 @@ bool quarantine_put(struct kmem_cache *cache, void *object) /* * Note: irq must be disabled until after we move the batch to the - * global quarantine. Otherwise quarantine_remove_cache() can miss - * some objects belonging to the cache if they are in our local temp - * list. quarantine_remove_cache() executes on_each_cpu() at the - * beginning which ensures that it either sees the objects in per-cpu - * lists or in the global quarantine. + * global quarantine. Otherwise kasan_quarantine_remove_cache() can + * miss some objects belonging to the cache if they are in our local + * temp list. kasan_quarantine_remove_cache() executes on_each_cpu() + * at the beginning which ensures that it either sees the objects in + * per-cpu lists or in the global quarantine. */ local_irq_save(flags); @@ -222,7 +222,7 @@ bool quarantine_put(struct kmem_cache *cache, void *object) return true; } -void quarantine_reduce(void) +void kasan_quarantine_reduce(void) { size_t total_size, new_quarantine_size, percpu_quarantines; unsigned long flags; @@ -234,7 +234,7 @@ void quarantine_reduce(void) return; /* - * srcu critical section ensures that quarantine_remove_cache() + * srcu critical section ensures that kasan_quarantine_remove_cache() * will not miss objects belonging to the cache while they are in our * local to_free list. srcu is chosen because (1) it gives us private * grace period domain that does not interfere with anything else, @@ -309,15 +309,15 @@ static void per_cpu_remove_cache(void *arg) } /* Free all quarantined objects belonging to cache. */ -void quarantine_remove_cache(struct kmem_cache *cache) +void kasan_quarantine_remove_cache(struct kmem_cache *cache) { unsigned long flags, i; struct qlist_head to_free = QLIST_INIT; /* * Must be careful to not miss any objects that are being moved from - * per-cpu list to the global quarantine in quarantine_put(), - * nor objects being freed in quarantine_reduce(). on_each_cpu() + * per-cpu list to the global quarantine in kasan_quarantine_put(), + * nor objects being freed in kasan_quarantine_reduce(). on_each_cpu() * achieves the first goal, while synchronize_srcu() achieves the * second. */ diff --git a/mm/kasan/report.c b/mm/kasan/report.c index c0fb21797550..87b271206163 100644 --- a/mm/kasan/report.c +++ b/mm/kasan/report.c @@ -25,6 +25,7 @@ #include <linux/module.h> #include <linux/sched/task_stack.h> #include <linux/uaccess.h> +#include <trace/events/error_report.h> #include <asm/sections.h> @@ -61,7 +62,7 @@ __setup("kasan_multi_shot", kasan_set_multi_shot); static void print_error_description(struct kasan_access_info *info) { pr_err("BUG: KASAN: %s in %pS\n", - get_bug_type(info), (void *)info->ip); + kasan_get_bug_type(info), (void *)info->ip); if (info->access_size) pr_err("%s of size %zu at addr %px by task %s/%d\n", info->is_write ? "Write" : "Read", info->access_size, @@ -84,8 +85,9 @@ static void start_report(unsigned long *flags) pr_err("==================================================================\n"); } -static void end_report(unsigned long *flags) +static void end_report(unsigned long *flags, unsigned long addr) { + trace_error_report_end(ERROR_DETECTOR_KASAN, addr); pr_err("==================================================================\n"); add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); spin_unlock_irqrestore(&report_lock, *flags); @@ -247,7 +249,7 @@ static void print_address_description(void *addr, u8 tag) dump_page(page, "kasan: bad access detected"); } - print_address_stack_frame(addr); + kasan_print_address_stack_frame(addr); } static bool meta_row_is_guilty(const void *row, const void *addr) @@ -293,7 +295,7 @@ static void print_memory_metadata(const void *addr) * function, because generic functions may try to * access kasan mapping for the passed address. */ - metadata_fetch_row(&metadata[0], row); + kasan_metadata_fetch_row(&metadata[0], row); print_hex_dump(KERN_ERR, buffer, DUMP_PREFIX_NONE, META_BYTES_PER_ROW, 1, @@ -331,7 +333,7 @@ static void kasan_update_kunit_status(struct kunit *cur_test) } kasan_data = (struct kunit_kasan_expectation *)resource->data; - kasan_data->report_found = true; + WRITE_ONCE(kasan_data->report_found, true); kunit_put_resource(resource); } #endif /* IS_ENABLED(CONFIG_KUNIT) */ @@ -350,12 +352,12 @@ void kasan_report_invalid_free(void *object, unsigned long ip) start_report(&flags); pr_err("BUG: KASAN: double-free or invalid-free in %pS\n", (void *)ip); - print_tags(tag, object); + kasan_print_tags(tag, object); pr_err("\n"); print_address_description(object, tag); pr_err("\n"); print_memory_metadata(object); - end_report(&flags); + end_report(&flags, (unsigned long)object); } static void __kasan_report(unsigned long addr, size_t size, bool is_write, @@ -378,7 +380,8 @@ static void __kasan_report(unsigned long addr, size_t size, bool is_write, info.access_addr = tagged_addr; if (addr_has_metadata(untagged_addr)) - info.first_bad_addr = find_first_bad_addr(tagged_addr, size); + info.first_bad_addr = + kasan_find_first_bad_addr(tagged_addr, size); else info.first_bad_addr = untagged_addr; info.access_size = size; @@ -389,7 +392,7 @@ static void __kasan_report(unsigned long addr, size_t size, bool is_write, print_error_description(&info); if (addr_has_metadata(untagged_addr)) - print_tags(get_tag(tagged_addr), info.first_bad_addr); + kasan_print_tags(get_tag(tagged_addr), info.first_bad_addr); pr_err("\n"); if (addr_has_metadata(untagged_addr)) { @@ -400,7 +403,7 @@ static void __kasan_report(unsigned long addr, size_t size, bool is_write, dump_stack(); } - end_report(&flags); + end_report(&flags, addr); } bool kasan_report(unsigned long addr, size_t size, bool is_write, diff --git a/mm/kasan/report_generic.c b/mm/kasan/report_generic.c index 8a9c889872da..41f374585144 100644 --- a/mm/kasan/report_generic.c +++ b/mm/kasan/report_generic.c @@ -30,7 +30,7 @@ #include "kasan.h" #include "../slab.h" -void *find_first_bad_addr(void *addr, size_t size) +void *kasan_find_first_bad_addr(void *addr, size_t size) { void *p = addr; @@ -105,7 +105,7 @@ static const char *get_wild_bug_type(struct kasan_access_info *info) return bug_type; } -const char *get_bug_type(struct kasan_access_info *info) +const char *kasan_get_bug_type(struct kasan_access_info *info) { /* * If access_size is a negative number, then it has reason to be @@ -123,7 +123,7 @@ const char *get_bug_type(struct kasan_access_info *info) return get_wild_bug_type(info); } -void metadata_fetch_row(char *buffer, void *row) +void kasan_metadata_fetch_row(char *buffer, void *row) { memcpy(buffer, kasan_mem_to_shadow(row), META_BYTES_PER_ROW); } @@ -263,7 +263,7 @@ static bool __must_check get_address_stack_frame_info(const void *addr, return true; } -void print_address_stack_frame(const void *addr) +void kasan_print_address_stack_frame(const void *addr) { unsigned long offset; const char *frame_descr; diff --git a/mm/kasan/report_hw_tags.c b/mm/kasan/report_hw_tags.c index 57114f0e14d1..42b2168755d6 100644 --- a/mm/kasan/report_hw_tags.c +++ b/mm/kasan/report_hw_tags.c @@ -15,17 +15,17 @@ #include "kasan.h" -const char *get_bug_type(struct kasan_access_info *info) +const char *kasan_get_bug_type(struct kasan_access_info *info) { return "invalid-access"; } -void *find_first_bad_addr(void *addr, size_t size) +void *kasan_find_first_bad_addr(void *addr, size_t size) { return kasan_reset_tag(addr); } -void metadata_fetch_row(char *buffer, void *row) +void kasan_metadata_fetch_row(char *buffer, void *row) { int i; @@ -33,7 +33,7 @@ void metadata_fetch_row(char *buffer, void *row) buffer[i] = hw_get_mem_tag(row + i * KASAN_GRANULE_SIZE); } -void print_tags(u8 addr_tag, const void *addr) +void kasan_print_tags(u8 addr_tag, const void *addr) { u8 memory_tag = hw_get_mem_tag((void *)addr); diff --git a/mm/kasan/report_sw_tags.c b/mm/kasan/report_sw_tags.c index 1b026793ad57..3d20d3451d9e 100644 --- a/mm/kasan/report_sw_tags.c +++ b/mm/kasan/report_sw_tags.c @@ -29,7 +29,7 @@ #include "kasan.h" #include "../slab.h" -const char *get_bug_type(struct kasan_access_info *info) +const char *kasan_get_bug_type(struct kasan_access_info *info) { #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY struct kasan_alloc_meta *alloc_meta; @@ -72,7 +72,7 @@ const char *get_bug_type(struct kasan_access_info *info) return "invalid-access"; } -void *find_first_bad_addr(void *addr, size_t size) +void *kasan_find_first_bad_addr(void *addr, size_t size) { u8 tag = get_tag(addr); void *p = kasan_reset_tag(addr); @@ -83,12 +83,12 @@ void *find_first_bad_addr(void *addr, size_t size) return p; } -void metadata_fetch_row(char *buffer, void *row) +void kasan_metadata_fetch_row(char *buffer, void *row) { memcpy(buffer, kasan_mem_to_shadow(row), META_BYTES_PER_ROW); } -void print_tags(u8 addr_tag, const void *addr) +void kasan_print_tags(u8 addr_tag, const void *addr) { u8 *shadow = (u8 *)kasan_mem_to_shadow(addr); diff --git a/mm/kasan/shadow.c b/mm/kasan/shadow.c index 7c2c08c55f32..63f43443f5d7 100644 --- a/mm/kasan/shadow.c +++ b/mm/kasan/shadow.c @@ -13,6 +13,7 @@ #include <linux/init.h> #include <linux/kasan.h> #include <linux/kernel.h> +#include <linux/kfence.h> #include <linux/kmemleak.h> #include <linux/memory.h> #include <linux/mm.h> @@ -27,20 +28,20 @@ bool __kasan_check_read(const volatile void *p, unsigned int size) { - return check_memory_region((unsigned long)p, size, false, _RET_IP_); + return kasan_check_range((unsigned long)p, size, false, _RET_IP_); } EXPORT_SYMBOL(__kasan_check_read); bool __kasan_check_write(const volatile void *p, unsigned int size) { - return check_memory_region((unsigned long)p, size, true, _RET_IP_); + return kasan_check_range((unsigned long)p, size, true, _RET_IP_); } EXPORT_SYMBOL(__kasan_check_write); #undef memset void *memset(void *addr, int c, size_t len) { - if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_)) + if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_)) return NULL; return __memset(addr, c, len); @@ -50,8 +51,8 @@ void *memset(void *addr, int c, size_t len) #undef memmove void *memmove(void *dest, const void *src, size_t len) { - if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) || - !check_memory_region((unsigned long)dest, len, true, _RET_IP_)) + if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) || + !kasan_check_range((unsigned long)dest, len, true, _RET_IP_)) return NULL; return __memmove(dest, src, len); @@ -61,18 +62,14 @@ void *memmove(void *dest, const void *src, size_t len) #undef memcpy void *memcpy(void *dest, const void *src, size_t len) { - if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) || - !check_memory_region((unsigned long)dest, len, true, _RET_IP_)) + if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) || + !kasan_check_range((unsigned long)dest, len, true, _RET_IP_)) return NULL; return __memcpy(dest, src, len); } -/* - * Poisons the shadow memory for 'size' bytes starting from 'addr'. - * Memory addresses should be aligned to KASAN_GRANULE_SIZE. - */ -void poison_range(const void *address, size_t size, u8 value) +void kasan_poison(const void *addr, size_t size, u8 value) { void *shadow_start, *shadow_end; @@ -81,36 +78,62 @@ void poison_range(const void *address, size_t size, u8 value) * some of the callers (e.g. kasan_poison_object_data) pass tagged * addresses to this function. */ - address = kasan_reset_tag(address); - size = round_up(size, KASAN_GRANULE_SIZE); + addr = kasan_reset_tag(addr); - shadow_start = kasan_mem_to_shadow(address); - shadow_end = kasan_mem_to_shadow(address + size); + /* Skip KFENCE memory if called explicitly outside of sl*b. */ + if (is_kfence_address(addr)) + return; + + if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK)) + return; + if (WARN_ON(size & KASAN_GRANULE_MASK)) + return; + + shadow_start = kasan_mem_to_shadow(addr); + shadow_end = kasan_mem_to_shadow(addr + size); __memset(shadow_start, value, shadow_end - shadow_start); } +EXPORT_SYMBOL(kasan_poison); -void unpoison_range(const void *address, size_t size) +#ifdef CONFIG_KASAN_GENERIC +void kasan_poison_last_granule(const void *addr, size_t size) { - u8 tag = get_tag(address); + if (size & KASAN_GRANULE_MASK) { + u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size); + *shadow = size & KASAN_GRANULE_MASK; + } +} +#endif + +void kasan_unpoison(const void *addr, size_t size) +{ + u8 tag = get_tag(addr); /* * Perform shadow offset calculation based on untagged address, as * some of the callers (e.g. kasan_unpoison_object_data) pass tagged * addresses to this function. */ - address = kasan_reset_tag(address); + addr = kasan_reset_tag(addr); + + /* + * Skip KFENCE memory if called explicitly outside of sl*b. Also note + * that calls to ksize(), where size is not a multiple of machine-word + * size, would otherwise poison the invalid portion of the word. + */ + if (is_kfence_address(addr)) + return; - poison_range(address, size, tag); + if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK)) + return; - if (size & KASAN_GRANULE_MASK) { - u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size); + /* Unpoison all granules that cover the object. */ + kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag); - if (IS_ENABLED(CONFIG_KASAN_SW_TAGS)) - *shadow = tag; - else /* CONFIG_KASAN_GENERIC */ - *shadow = size & KASAN_GRANULE_MASK; - } + /* Partially poison the last granule for the generic mode. */ + if (IS_ENABLED(CONFIG_KASAN_GENERIC)) + kasan_poison_last_granule(addr, size); } #ifdef CONFIG_MEMORY_HOTPLUG @@ -286,7 +309,7 @@ int kasan_populate_vmalloc(unsigned long addr, unsigned long size) * // vmalloc() allocates memory * // let a = area->addr * // we reach kasan_populate_vmalloc - * // and call unpoison_range: + * // and call kasan_unpoison: * STORE shadow(a), unpoison_val * ... * STORE shadow(a+99), unpoison_val x = LOAD p @@ -321,7 +344,7 @@ void kasan_poison_vmalloc(const void *start, unsigned long size) return; size = round_up(size, KASAN_GRANULE_SIZE); - poison_range(start, size, KASAN_VMALLOC_INVALID); + kasan_poison(start, size, KASAN_VMALLOC_INVALID); } void kasan_unpoison_vmalloc(const void *start, unsigned long size) @@ -329,7 +352,7 @@ void kasan_unpoison_vmalloc(const void *start, unsigned long size) if (!is_vmalloc_or_module_addr(start)) return; - unpoison_range(start, size); + kasan_unpoison(start, size); } static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr, diff --git a/mm/kasan/sw_tags.c b/mm/kasan/sw_tags.c index 5dcd830805b2..94c2d33be333 100644 --- a/mm/kasan/sw_tags.c +++ b/mm/kasan/sw_tags.c @@ -57,7 +57,7 @@ void __init kasan_init_sw_tags(void) * sequence has in fact positive effect, since interrupts that randomly skew * PRNG at unpredictable points do only good. */ -u8 random_tag(void) +u8 kasan_random_tag(void) { u32 state = this_cpu_read(prng_state); @@ -67,7 +67,7 @@ u8 random_tag(void) return (u8)(state % (KASAN_TAG_MAX + 1)); } -bool check_memory_region(unsigned long addr, size_t size, bool write, +bool kasan_check_range(unsigned long addr, size_t size, bool write, unsigned long ret_ip) { u8 tag; @@ -118,24 +118,24 @@ bool check_memory_region(unsigned long addr, size_t size, bool write, return true; } -bool check_invalid_free(void *addr) +bool kasan_byte_accessible(const void *addr) { u8 tag = get_tag(addr); u8 shadow_byte = READ_ONCE(*(u8 *)kasan_mem_to_shadow(kasan_reset_tag(addr))); - return (shadow_byte == KASAN_TAG_INVALID) || - (tag != KASAN_TAG_KERNEL && tag != shadow_byte); + return (shadow_byte != KASAN_TAG_INVALID) && + (tag == KASAN_TAG_KERNEL || tag == shadow_byte); } #define DEFINE_HWASAN_LOAD_STORE(size) \ void __hwasan_load##size##_noabort(unsigned long addr) \ { \ - check_memory_region(addr, size, false, _RET_IP_); \ + kasan_check_range(addr, size, false, _RET_IP_); \ } \ EXPORT_SYMBOL(__hwasan_load##size##_noabort); \ void __hwasan_store##size##_noabort(unsigned long addr) \ { \ - check_memory_region(addr, size, true, _RET_IP_); \ + kasan_check_range(addr, size, true, _RET_IP_); \ } \ EXPORT_SYMBOL(__hwasan_store##size##_noabort) @@ -147,19 +147,19 @@ DEFINE_HWASAN_LOAD_STORE(16); void __hwasan_loadN_noabort(unsigned long addr, unsigned long size) { - check_memory_region(addr, size, false, _RET_IP_); + kasan_check_range(addr, size, false, _RET_IP_); } EXPORT_SYMBOL(__hwasan_loadN_noabort); void __hwasan_storeN_noabort(unsigned long addr, unsigned long size) { - check_memory_region(addr, size, true, _RET_IP_); + kasan_check_range(addr, size, true, _RET_IP_); } EXPORT_SYMBOL(__hwasan_storeN_noabort); void __hwasan_tag_memory(unsigned long addr, u8 tag, unsigned long size) { - poison_range((void *)addr, size, tag); + kasan_poison((void *)addr, size, tag); } EXPORT_SYMBOL(__hwasan_tag_memory); diff --git a/mm/kfence/Makefile b/mm/kfence/Makefile new file mode 100644 index 000000000000..6872cd5e5390 --- /dev/null +++ b/mm/kfence/Makefile @@ -0,0 +1,6 @@ +# SPDX-License-Identifier: GPL-2.0 + +obj-$(CONFIG_KFENCE) := core.o report.o + +CFLAGS_kfence_test.o := -g -fno-omit-frame-pointer -fno-optimize-sibling-calls +obj-$(CONFIG_KFENCE_KUNIT_TEST) += kfence_test.o diff --git a/mm/kfence/core.c b/mm/kfence/core.c new file mode 100644 index 000000000000..d53c91f881a4 --- /dev/null +++ b/mm/kfence/core.c @@ -0,0 +1,850 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * KFENCE guarded object allocator and fault handling. + * + * Copyright (C) 2020, Google LLC. + */ + +#define pr_fmt(fmt) "kfence: " fmt + +#include <linux/atomic.h> +#include <linux/bug.h> +#include <linux/debugfs.h> +#include <linux/kcsan-checks.h> +#include <linux/kfence.h> +#include <linux/kmemleak.h> +#include <linux/list.h> +#include <linux/lockdep.h> +#include <linux/memblock.h> +#include <linux/moduleparam.h> +#include <linux/random.h> +#include <linux/rcupdate.h> +#include <linux/seq_file.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include <linux/string.h> + +#include <asm/kfence.h> + +#include "kfence.h" + +/* Disables KFENCE on the first warning assuming an irrecoverable error. */ +#define KFENCE_WARN_ON(cond) \ + ({ \ + const bool __cond = WARN_ON(cond); \ + if (unlikely(__cond)) \ + WRITE_ONCE(kfence_enabled, false); \ + __cond; \ + }) + +/* === Data ================================================================= */ + +static bool kfence_enabled __read_mostly; + +static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL; + +#ifdef MODULE_PARAM_PREFIX +#undef MODULE_PARAM_PREFIX +#endif +#define MODULE_PARAM_PREFIX "kfence." + +static int param_set_sample_interval(const char *val, const struct kernel_param *kp) +{ + unsigned long num; + int ret = kstrtoul(val, 0, &num); + + if (ret < 0) + return ret; + + if (!num) /* Using 0 to indicate KFENCE is disabled. */ + WRITE_ONCE(kfence_enabled, false); + else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING) + return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */ + + *((unsigned long *)kp->arg) = num; + return 0; +} + +static int param_get_sample_interval(char *buffer, const struct kernel_param *kp) +{ + if (!READ_ONCE(kfence_enabled)) + return sprintf(buffer, "0\n"); + + return param_get_ulong(buffer, kp); +} + +static const struct kernel_param_ops sample_interval_param_ops = { + .set = param_set_sample_interval, + .get = param_get_sample_interval, +}; +module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600); + +/* The pool of pages used for guard pages and objects. */ +char *__kfence_pool __ro_after_init; +EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */ + +/* + * Per-object metadata, with one-to-one mapping of object metadata to + * backing pages (in __kfence_pool). + */ +static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0); +struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS]; + +/* Freelist with available objects. */ +static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist); +static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */ + +#ifdef CONFIG_KFENCE_STATIC_KEYS +/* The static key to set up a KFENCE allocation. */ +DEFINE_STATIC_KEY_FALSE(kfence_allocation_key); +#endif + +/* Gates the allocation, ensuring only one succeeds in a given period. */ +atomic_t kfence_allocation_gate = ATOMIC_INIT(1); + +/* Statistics counters for debugfs. */ +enum kfence_counter_id { + KFENCE_COUNTER_ALLOCATED, + KFENCE_COUNTER_ALLOCS, + KFENCE_COUNTER_FREES, + KFENCE_COUNTER_ZOMBIES, + KFENCE_COUNTER_BUGS, + KFENCE_COUNTER_COUNT, +}; +static atomic_long_t counters[KFENCE_COUNTER_COUNT]; +static const char *const counter_names[] = { + [KFENCE_COUNTER_ALLOCATED] = "currently allocated", + [KFENCE_COUNTER_ALLOCS] = "total allocations", + [KFENCE_COUNTER_FREES] = "total frees", + [KFENCE_COUNTER_ZOMBIES] = "zombie allocations", + [KFENCE_COUNTER_BUGS] = "total bugs", +}; +static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT); + +/* === Internals ============================================================ */ + +static bool kfence_protect(unsigned long addr) +{ + return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true)); +} + +static bool kfence_unprotect(unsigned long addr) +{ + return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false)); +} + +static inline struct kfence_metadata *addr_to_metadata(unsigned long addr) +{ + long index; + + /* The checks do not affect performance; only called from slow-paths. */ + + if (!is_kfence_address((void *)addr)) + return NULL; + + /* + * May be an invalid index if called with an address at the edge of + * __kfence_pool, in which case we would report an "invalid access" + * error. + */ + index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1; + if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS) + return NULL; + + return &kfence_metadata[index]; +} + +static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta) +{ + unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2; + unsigned long pageaddr = (unsigned long)&__kfence_pool[offset]; + + /* The checks do not affect performance; only called from slow-paths. */ + + /* Only call with a pointer into kfence_metadata. */ + if (KFENCE_WARN_ON(meta < kfence_metadata || + meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS)) + return 0; + + /* + * This metadata object only ever maps to 1 page; verify that the stored + * address is in the expected range. + */ + if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr)) + return 0; + + return pageaddr; +} + +/* + * Update the object's metadata state, including updating the alloc/free stacks + * depending on the state transition. + */ +static noinline void metadata_update_state(struct kfence_metadata *meta, + enum kfence_object_state next) +{ + struct kfence_track *track = + next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track; + + lockdep_assert_held(&meta->lock); + + /* + * Skip over 1 (this) functions; noinline ensures we do not accidentally + * skip over the caller by never inlining. + */ + track->num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1); + track->pid = task_pid_nr(current); + + /* + * Pairs with READ_ONCE() in + * kfence_shutdown_cache(), + * kfence_handle_page_fault(). + */ + WRITE_ONCE(meta->state, next); +} + +/* Write canary byte to @addr. */ +static inline bool set_canary_byte(u8 *addr) +{ + *addr = KFENCE_CANARY_PATTERN(addr); + return true; +} + +/* Check canary byte at @addr. */ +static inline bool check_canary_byte(u8 *addr) +{ + if (likely(*addr == KFENCE_CANARY_PATTERN(addr))) + return true; + + atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); + kfence_report_error((unsigned long)addr, false, NULL, addr_to_metadata((unsigned long)addr), + KFENCE_ERROR_CORRUPTION); + return false; +} + +/* __always_inline this to ensure we won't do an indirect call to fn. */ +static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *)) +{ + const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE); + unsigned long addr; + + lockdep_assert_held(&meta->lock); + + /* + * We'll iterate over each canary byte per-side until fn() returns + * false. However, we'll still iterate over the canary bytes to the + * right of the object even if there was an error in the canary bytes to + * the left of the object. Specifically, if check_canary_byte() + * generates an error, showing both sides might give more clues as to + * what the error is about when displaying which bytes were corrupted. + */ + + /* Apply to left of object. */ + for (addr = pageaddr; addr < meta->addr; addr++) { + if (!fn((u8 *)addr)) + break; + } + + /* Apply to right of object. */ + for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) { + if (!fn((u8 *)addr)) + break; + } +} + +static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp) +{ + struct kfence_metadata *meta = NULL; + unsigned long flags; + struct page *page; + void *addr; + + /* Try to obtain a free object. */ + raw_spin_lock_irqsave(&kfence_freelist_lock, flags); + if (!list_empty(&kfence_freelist)) { + meta = list_entry(kfence_freelist.next, struct kfence_metadata, list); + list_del_init(&meta->list); + } + raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); + if (!meta) + return NULL; + + if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) { + /* + * This is extremely unlikely -- we are reporting on a + * use-after-free, which locked meta->lock, and the reporting + * code via printk calls kmalloc() which ends up in + * kfence_alloc() and tries to grab the same object that we're + * reporting on. While it has never been observed, lockdep does + * report that there is a possibility of deadlock. Fix it by + * using trylock and bailing out gracefully. + */ + raw_spin_lock_irqsave(&kfence_freelist_lock, flags); + /* Put the object back on the freelist. */ + list_add_tail(&meta->list, &kfence_freelist); + raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); + + return NULL; + } + + meta->addr = metadata_to_pageaddr(meta); + /* Unprotect if we're reusing this page. */ + if (meta->state == KFENCE_OBJECT_FREED) + kfence_unprotect(meta->addr); + + /* + * Note: for allocations made before RNG initialization, will always + * return zero. We still benefit from enabling KFENCE as early as + * possible, even when the RNG is not yet available, as this will allow + * KFENCE to detect bugs due to earlier allocations. The only downside + * is that the out-of-bounds accesses detected are deterministic for + * such allocations. + */ + if (prandom_u32_max(2)) { + /* Allocate on the "right" side, re-calculate address. */ + meta->addr += PAGE_SIZE - size; + meta->addr = ALIGN_DOWN(meta->addr, cache->align); + } + + addr = (void *)meta->addr; + + /* Update remaining metadata. */ + metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED); + /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */ + WRITE_ONCE(meta->cache, cache); + meta->size = size; + for_each_canary(meta, set_canary_byte); + + /* Set required struct page fields. */ + page = virt_to_page(meta->addr); + page->slab_cache = cache; + if (IS_ENABLED(CONFIG_SLUB)) + page->objects = 1; + if (IS_ENABLED(CONFIG_SLAB)) + page->s_mem = addr; + + raw_spin_unlock_irqrestore(&meta->lock, flags); + + /* Memory initialization. */ + + /* + * We check slab_want_init_on_alloc() ourselves, rather than letting + * SL*B do the initialization, as otherwise we might overwrite KFENCE's + * redzone. + */ + if (unlikely(slab_want_init_on_alloc(gfp, cache))) + memzero_explicit(addr, size); + if (cache->ctor) + cache->ctor(addr); + + if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS)) + kfence_protect(meta->addr); /* Random "faults" by protecting the object. */ + + atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]); + atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]); + + return addr; +} + +static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie) +{ + struct kcsan_scoped_access assert_page_exclusive; + unsigned long flags; + + raw_spin_lock_irqsave(&meta->lock, flags); + + if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) { + /* Invalid or double-free, bail out. */ + atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); + kfence_report_error((unsigned long)addr, false, NULL, meta, + KFENCE_ERROR_INVALID_FREE); + raw_spin_unlock_irqrestore(&meta->lock, flags); + return; + } + + /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */ + kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE, + KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, + &assert_page_exclusive); + + if (CONFIG_KFENCE_STRESS_TEST_FAULTS) + kfence_unprotect((unsigned long)addr); /* To check canary bytes. */ + + /* Restore page protection if there was an OOB access. */ + if (meta->unprotected_page) { + kfence_protect(meta->unprotected_page); + meta->unprotected_page = 0; + } + + /* Check canary bytes for memory corruption. */ + for_each_canary(meta, check_canary_byte); + + /* + * Clear memory if init-on-free is set. While we protect the page, the + * data is still there, and after a use-after-free is detected, we + * unprotect the page, so the data is still accessible. + */ + if (!zombie && unlikely(slab_want_init_on_free(meta->cache))) + memzero_explicit(addr, meta->size); + + /* Mark the object as freed. */ + metadata_update_state(meta, KFENCE_OBJECT_FREED); + + raw_spin_unlock_irqrestore(&meta->lock, flags); + + /* Protect to detect use-after-frees. */ + kfence_protect((unsigned long)addr); + + kcsan_end_scoped_access(&assert_page_exclusive); + if (!zombie) { + /* Add it to the tail of the freelist for reuse. */ + raw_spin_lock_irqsave(&kfence_freelist_lock, flags); + KFENCE_WARN_ON(!list_empty(&meta->list)); + list_add_tail(&meta->list, &kfence_freelist); + raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); + + atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]); + atomic_long_inc(&counters[KFENCE_COUNTER_FREES]); + } else { + /* See kfence_shutdown_cache(). */ + atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]); + } +} + +static void rcu_guarded_free(struct rcu_head *h) +{ + struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head); + + kfence_guarded_free((void *)meta->addr, meta, false); +} + +static bool __init kfence_init_pool(void) +{ + unsigned long addr = (unsigned long)__kfence_pool; + struct page *pages; + int i; + + if (!__kfence_pool) + return false; + + if (!arch_kfence_init_pool()) + goto err; + + pages = virt_to_page(addr); + + /* + * Set up object pages: they must have PG_slab set, to avoid freeing + * these as real pages. + * + * We also want to avoid inserting kfence_free() in the kfree() + * fast-path in SLUB, and therefore need to ensure kfree() correctly + * enters __slab_free() slow-path. + */ + for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { + if (!i || (i % 2)) + continue; + + /* Verify we do not have a compound head page. */ + if (WARN_ON(compound_head(&pages[i]) != &pages[i])) + goto err; + + __SetPageSlab(&pages[i]); + } + + /* + * Protect the first 2 pages. The first page is mostly unnecessary, and + * merely serves as an extended guard page. However, adding one + * additional page in the beginning gives us an even number of pages, + * which simplifies the mapping of address to metadata index. + */ + for (i = 0; i < 2; i++) { + if (unlikely(!kfence_protect(addr))) + goto err; + + addr += PAGE_SIZE; + } + + for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { + struct kfence_metadata *meta = &kfence_metadata[i]; + + /* Initialize metadata. */ + INIT_LIST_HEAD(&meta->list); + raw_spin_lock_init(&meta->lock); + meta->state = KFENCE_OBJECT_UNUSED; + meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */ + list_add_tail(&meta->list, &kfence_freelist); + + /* Protect the right redzone. */ + if (unlikely(!kfence_protect(addr + PAGE_SIZE))) + goto err; + + addr += 2 * PAGE_SIZE; + } + + /* + * The pool is live and will never be deallocated from this point on. + * Remove the pool object from the kmemleak object tree, as it would + * otherwise overlap with allocations returned by kfence_alloc(), which + * are registered with kmemleak through the slab post-alloc hook. + */ + kmemleak_free(__kfence_pool); + + return true; + +err: + /* + * Only release unprotected pages, and do not try to go back and change + * page attributes due to risk of failing to do so as well. If changing + * page attributes for some pages fails, it is very likely that it also + * fails for the first page, and therefore expect addr==__kfence_pool in + * most failure cases. + */ + memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool)); + __kfence_pool = NULL; + return false; +} + +/* === DebugFS Interface ==================================================== */ + +static int stats_show(struct seq_file *seq, void *v) +{ + int i; + + seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled)); + for (i = 0; i < KFENCE_COUNTER_COUNT; i++) + seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i])); + + return 0; +} +DEFINE_SHOW_ATTRIBUTE(stats); + +/* + * debugfs seq_file operations for /sys/kernel/debug/kfence/objects. + * start_object() and next_object() return the object index + 1, because NULL is used + * to stop iteration. + */ +static void *start_object(struct seq_file *seq, loff_t *pos) +{ + if (*pos < CONFIG_KFENCE_NUM_OBJECTS) + return (void *)((long)*pos + 1); + return NULL; +} + +static void stop_object(struct seq_file *seq, void *v) +{ +} + +static void *next_object(struct seq_file *seq, void *v, loff_t *pos) +{ + ++*pos; + if (*pos < CONFIG_KFENCE_NUM_OBJECTS) + return (void *)((long)*pos + 1); + return NULL; +} + +static int show_object(struct seq_file *seq, void *v) +{ + struct kfence_metadata *meta = &kfence_metadata[(long)v - 1]; + unsigned long flags; + + raw_spin_lock_irqsave(&meta->lock, flags); + kfence_print_object(seq, meta); + raw_spin_unlock_irqrestore(&meta->lock, flags); + seq_puts(seq, "---------------------------------\n"); + + return 0; +} + +static const struct seq_operations object_seqops = { + .start = start_object, + .next = next_object, + .stop = stop_object, + .show = show_object, +}; + +static int open_objects(struct inode *inode, struct file *file) +{ + return seq_open(file, &object_seqops); +} + +static const struct file_operations objects_fops = { + .open = open_objects, + .read = seq_read, + .llseek = seq_lseek, +}; + +static int __init kfence_debugfs_init(void) +{ + struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL); + + debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops); + debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops); + return 0; +} + +late_initcall(kfence_debugfs_init); + +/* === Allocation Gate Timer ================================================ */ + +/* + * Set up delayed work, which will enable and disable the static key. We need to + * use a work queue (rather than a simple timer), since enabling and disabling a + * static key cannot be done from an interrupt. + * + * Note: Toggling a static branch currently causes IPIs, and here we'll end up + * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with + * more aggressive sampling intervals), we could get away with a variant that + * avoids IPIs, at the cost of not immediately capturing allocations if the + * instructions remain cached. + */ +static struct delayed_work kfence_timer; +static void toggle_allocation_gate(struct work_struct *work) +{ + if (!READ_ONCE(kfence_enabled)) + return; + + /* Enable static key, and await allocation to happen. */ + atomic_set(&kfence_allocation_gate, 0); +#ifdef CONFIG_KFENCE_STATIC_KEYS + static_branch_enable(&kfence_allocation_key); + /* + * Await an allocation. Timeout after 1 second, in case the kernel stops + * doing allocations, to avoid stalling this worker task for too long. + */ + { + unsigned long end_wait = jiffies + HZ; + + do { + set_current_state(TASK_UNINTERRUPTIBLE); + if (atomic_read(&kfence_allocation_gate) != 0) + break; + schedule_timeout(1); + } while (time_before(jiffies, end_wait)); + __set_current_state(TASK_RUNNING); + } + /* Disable static key and reset timer. */ + static_branch_disable(&kfence_allocation_key); +#endif + schedule_delayed_work(&kfence_timer, msecs_to_jiffies(kfence_sample_interval)); +} +static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate); + +/* === Public interface ===================================================== */ + +void __init kfence_alloc_pool(void) +{ + if (!kfence_sample_interval) + return; + + __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); + + if (!__kfence_pool) + pr_err("failed to allocate pool\n"); +} + +void __init kfence_init(void) +{ + /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */ + if (!kfence_sample_interval) + return; + + if (!kfence_init_pool()) { + pr_err("%s failed\n", __func__); + return; + } + + WRITE_ONCE(kfence_enabled, true); + schedule_delayed_work(&kfence_timer, 0); + pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE, + CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool, + (void *)(__kfence_pool + KFENCE_POOL_SIZE)); +} + +void kfence_shutdown_cache(struct kmem_cache *s) +{ + unsigned long flags; + struct kfence_metadata *meta; + int i; + + for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { + bool in_use; + + meta = &kfence_metadata[i]; + + /* + * If we observe some inconsistent cache and state pair where we + * should have returned false here, cache destruction is racing + * with either kmem_cache_alloc() or kmem_cache_free(). Taking + * the lock will not help, as different critical section + * serialization will have the same outcome. + */ + if (READ_ONCE(meta->cache) != s || + READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED) + continue; + + raw_spin_lock_irqsave(&meta->lock, flags); + in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED; + raw_spin_unlock_irqrestore(&meta->lock, flags); + + if (in_use) { + /* + * This cache still has allocations, and we should not + * release them back into the freelist so they can still + * safely be used and retain the kernel's default + * behaviour of keeping the allocations alive (leak the + * cache); however, they effectively become "zombie + * allocations" as the KFENCE objects are the only ones + * still in use and the owning cache is being destroyed. + * + * We mark them freed, so that any subsequent use shows + * more useful error messages that will include stack + * traces of the user of the object, the original + * allocation, and caller to shutdown_cache(). + */ + kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true); + } + } + + for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { + meta = &kfence_metadata[i]; + + /* See above. */ + if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED) + continue; + + raw_spin_lock_irqsave(&meta->lock, flags); + if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED) + meta->cache = NULL; + raw_spin_unlock_irqrestore(&meta->lock, flags); + } +} + +void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags) +{ + /* + * allocation_gate only needs to become non-zero, so it doesn't make + * sense to continue writing to it and pay the associated contention + * cost, in case we have a large number of concurrent allocations. + */ + if (atomic_read(&kfence_allocation_gate) || atomic_inc_return(&kfence_allocation_gate) > 1) + return NULL; + + if (!READ_ONCE(kfence_enabled)) + return NULL; + + if (size > PAGE_SIZE) + return NULL; + + return kfence_guarded_alloc(s, size, flags); +} + +size_t kfence_ksize(const void *addr) +{ + const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); + + /* + * Read locklessly -- if there is a race with __kfence_alloc(), this is + * either a use-after-free or invalid access. + */ + return meta ? meta->size : 0; +} + +void *kfence_object_start(const void *addr) +{ + const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); + + /* + * Read locklessly -- if there is a race with __kfence_alloc(), this is + * either a use-after-free or invalid access. + */ + return meta ? (void *)meta->addr : NULL; +} + +void __kfence_free(void *addr) +{ + struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); + + /* + * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing + * the object, as the object page may be recycled for other-typed + * objects once it has been freed. meta->cache may be NULL if the cache + * was destroyed. + */ + if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) + call_rcu(&meta->rcu_head, rcu_guarded_free); + else + kfence_guarded_free(addr, meta, false); +} + +bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs) +{ + const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE; + struct kfence_metadata *to_report = NULL; + enum kfence_error_type error_type; + unsigned long flags; + + if (!is_kfence_address((void *)addr)) + return false; + + if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */ + return kfence_unprotect(addr); /* ... unprotect and proceed. */ + + atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); + + if (page_index % 2) { + /* This is a redzone, report a buffer overflow. */ + struct kfence_metadata *meta; + int distance = 0; + + meta = addr_to_metadata(addr - PAGE_SIZE); + if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { + to_report = meta; + /* Data race ok; distance calculation approximate. */ + distance = addr - data_race(meta->addr + meta->size); + } + + meta = addr_to_metadata(addr + PAGE_SIZE); + if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { + /* Data race ok; distance calculation approximate. */ + if (!to_report || distance > data_race(meta->addr) - addr) + to_report = meta; + } + + if (!to_report) + goto out; + + raw_spin_lock_irqsave(&to_report->lock, flags); + to_report->unprotected_page = addr; + error_type = KFENCE_ERROR_OOB; + + /* + * If the object was freed before we took the look we can still + * report this as an OOB -- the report will simply show the + * stacktrace of the free as well. + */ + } else { + to_report = addr_to_metadata(addr); + if (!to_report) + goto out; + + raw_spin_lock_irqsave(&to_report->lock, flags); + error_type = KFENCE_ERROR_UAF; + /* + * We may race with __kfence_alloc(), and it is possible that a + * freed object may be reallocated. We simply report this as a + * use-after-free, with the stack trace showing the place where + * the object was re-allocated. + */ + } + +out: + if (to_report) { + kfence_report_error(addr, is_write, regs, to_report, error_type); + raw_spin_unlock_irqrestore(&to_report->lock, flags); + } else { + /* This may be a UAF or OOB access, but we can't be sure. */ + kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID); + } + + return kfence_unprotect(addr); /* Unprotect and let access proceed. */ +} diff --git a/mm/kfence/kfence.h b/mm/kfence/kfence.h new file mode 100644 index 000000000000..24065321ff8a --- /dev/null +++ b/mm/kfence/kfence.h @@ -0,0 +1,106 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Kernel Electric-Fence (KFENCE). For more info please see + * Documentation/dev-tools/kfence.rst. + * + * Copyright (C) 2020, Google LLC. + */ + +#ifndef MM_KFENCE_KFENCE_H +#define MM_KFENCE_KFENCE_H + +#include <linux/mm.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include <linux/types.h> + +#include "../slab.h" /* for struct kmem_cache */ + +/* + * Get the canary byte pattern for @addr. Use a pattern that varies based on the + * lower 3 bits of the address, to detect memory corruptions with higher + * probability, where similar constants are used. + */ +#define KFENCE_CANARY_PATTERN(addr) ((u8)0xaa ^ (u8)((unsigned long)(addr) & 0x7)) + +/* Maximum stack depth for reports. */ +#define KFENCE_STACK_DEPTH 64 + +/* KFENCE object states. */ +enum kfence_object_state { + KFENCE_OBJECT_UNUSED, /* Object is unused. */ + KFENCE_OBJECT_ALLOCATED, /* Object is currently allocated. */ + KFENCE_OBJECT_FREED, /* Object was allocated, and then freed. */ +}; + +/* Alloc/free tracking information. */ +struct kfence_track { + pid_t pid; + int num_stack_entries; + unsigned long stack_entries[KFENCE_STACK_DEPTH]; +}; + +/* KFENCE metadata per guarded allocation. */ +struct kfence_metadata { + struct list_head list; /* Freelist node; access under kfence_freelist_lock. */ + struct rcu_head rcu_head; /* For delayed freeing. */ + + /* + * Lock protecting below data; to ensure consistency of the below data, + * since the following may execute concurrently: __kfence_alloc(), + * __kfence_free(), kfence_handle_page_fault(). However, note that we + * cannot grab the same metadata off the freelist twice, and multiple + * __kfence_alloc() cannot run concurrently on the same metadata. + */ + raw_spinlock_t lock; + + /* The current state of the object; see above. */ + enum kfence_object_state state; + + /* + * Allocated object address; cannot be calculated from size, because of + * alignment requirements. + * + * Invariant: ALIGN_DOWN(addr, PAGE_SIZE) is constant. + */ + unsigned long addr; + + /* + * The size of the original allocation. + */ + size_t size; + + /* + * The kmem_cache cache of the last allocation; NULL if never allocated + * or the cache has already been destroyed. + */ + struct kmem_cache *cache; + + /* + * In case of an invalid access, the page that was unprotected; we + * optimistically only store one address. + */ + unsigned long unprotected_page; + + /* Allocation and free stack information. */ + struct kfence_track alloc_track; + struct kfence_track free_track; +}; + +extern struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS]; + +/* KFENCE error types for report generation. */ +enum kfence_error_type { + KFENCE_ERROR_OOB, /* Detected a out-of-bounds access. */ + KFENCE_ERROR_UAF, /* Detected a use-after-free access. */ + KFENCE_ERROR_CORRUPTION, /* Detected a memory corruption on free. */ + KFENCE_ERROR_INVALID, /* Invalid access of unknown type. */ + KFENCE_ERROR_INVALID_FREE, /* Invalid free. */ +}; + +void kfence_report_error(unsigned long address, bool is_write, struct pt_regs *regs, + const struct kfence_metadata *meta, enum kfence_error_type type); + +void kfence_print_object(struct seq_file *seq, const struct kfence_metadata *meta); + +#endif /* MM_KFENCE_KFENCE_H */ diff --git a/mm/kfence/kfence_test.c b/mm/kfence/kfence_test.c new file mode 100644 index 000000000000..4acf4251ee04 --- /dev/null +++ b/mm/kfence/kfence_test.c @@ -0,0 +1,858 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Test cases for KFENCE memory safety error detector. Since the interface with + * which KFENCE's reports are obtained is via the console, this is the output we + * should verify. For each test case checks the presence (or absence) of + * generated reports. Relies on 'console' tracepoint to capture reports as they + * appear in the kernel log. + * + * Copyright (C) 2020, Google LLC. + * Author: Alexander Potapenko <glider@google.com> + * Marco Elver <elver@google.com> + */ + +#include <kunit/test.h> +#include <linux/jiffies.h> +#include <linux/kernel.h> +#include <linux/kfence.h> +#include <linux/mm.h> +#include <linux/random.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include <linux/string.h> +#include <linux/tracepoint.h> +#include <trace/events/printk.h> + +#include "kfence.h" + +/* Report as observed from console. */ +static struct { + spinlock_t lock; + int nlines; + char lines[2][256]; +} observed = { + .lock = __SPIN_LOCK_UNLOCKED(observed.lock), +}; + +/* Probe for console output: obtains observed lines of interest. */ +static void probe_console(void *ignore, const char *buf, size_t len) +{ + unsigned long flags; + int nlines; + + spin_lock_irqsave(&observed.lock, flags); + nlines = observed.nlines; + + if (strnstr(buf, "BUG: KFENCE: ", len) && strnstr(buf, "test_", len)) { + /* + * KFENCE report and related to the test. + * + * The provided @buf is not NUL-terminated; copy no more than + * @len bytes and let strscpy() add the missing NUL-terminator. + */ + strscpy(observed.lines[0], buf, min(len + 1, sizeof(observed.lines[0]))); + nlines = 1; + } else if (nlines == 1 && (strnstr(buf, "at 0x", len) || strnstr(buf, "of 0x", len))) { + strscpy(observed.lines[nlines++], buf, min(len + 1, sizeof(observed.lines[0]))); + } + + WRITE_ONCE(observed.nlines, nlines); /* Publish new nlines. */ + spin_unlock_irqrestore(&observed.lock, flags); +} + +/* Check if a report related to the test exists. */ +static bool report_available(void) +{ + return READ_ONCE(observed.nlines) == ARRAY_SIZE(observed.lines); +} + +/* Information we expect in a report. */ +struct expect_report { + enum kfence_error_type type; /* The type or error. */ + void *fn; /* Function pointer to expected function where access occurred. */ + char *addr; /* Address at which the bad access occurred. */ + bool is_write; /* Is access a write. */ +}; + +static const char *get_access_type(const struct expect_report *r) +{ + return r->is_write ? "write" : "read"; +} + +/* Check observed report matches information in @r. */ +static bool report_matches(const struct expect_report *r) +{ + bool ret = false; + unsigned long flags; + typeof(observed.lines) expect; + const char *end; + char *cur; + + /* Doubled-checked locking. */ + if (!report_available()) + return false; + + /* Generate expected report contents. */ + + /* Title */ + cur = expect[0]; + end = &expect[0][sizeof(expect[0]) - 1]; + switch (r->type) { + case KFENCE_ERROR_OOB: + cur += scnprintf(cur, end - cur, "BUG: KFENCE: out-of-bounds %s", + get_access_type(r)); + break; + case KFENCE_ERROR_UAF: + cur += scnprintf(cur, end - cur, "BUG: KFENCE: use-after-free %s", + get_access_type(r)); + break; + case KFENCE_ERROR_CORRUPTION: + cur += scnprintf(cur, end - cur, "BUG: KFENCE: memory corruption"); + break; + case KFENCE_ERROR_INVALID: + cur += scnprintf(cur, end - cur, "BUG: KFENCE: invalid %s", + get_access_type(r)); + break; + case KFENCE_ERROR_INVALID_FREE: + cur += scnprintf(cur, end - cur, "BUG: KFENCE: invalid free"); + break; + } + + scnprintf(cur, end - cur, " in %pS", r->fn); + /* The exact offset won't match, remove it; also strip module name. */ + cur = strchr(expect[0], '+'); + if (cur) + *cur = '\0'; + + /* Access information */ + cur = expect[1]; + end = &expect[1][sizeof(expect[1]) - 1]; + + switch (r->type) { + case KFENCE_ERROR_OOB: + cur += scnprintf(cur, end - cur, "Out-of-bounds %s at", get_access_type(r)); + break; + case KFENCE_ERROR_UAF: + cur += scnprintf(cur, end - cur, "Use-after-free %s at", get_access_type(r)); + break; + case KFENCE_ERROR_CORRUPTION: + cur += scnprintf(cur, end - cur, "Corrupted memory at"); + break; + case KFENCE_ERROR_INVALID: + cur += scnprintf(cur, end - cur, "Invalid %s at", get_access_type(r)); + break; + case KFENCE_ERROR_INVALID_FREE: + cur += scnprintf(cur, end - cur, "Invalid free of"); + break; + } + + cur += scnprintf(cur, end - cur, " 0x%p", (void *)r->addr); + + spin_lock_irqsave(&observed.lock, flags); + if (!report_available()) + goto out; /* A new report is being captured. */ + + /* Finally match expected output to what we actually observed. */ + ret = strstr(observed.lines[0], expect[0]) && strstr(observed.lines[1], expect[1]); +out: + spin_unlock_irqrestore(&observed.lock, flags); + return ret; +} + +/* ===== Test cases ===== */ + +#define TEST_PRIV_WANT_MEMCACHE ((void *)1) + +/* Cache used by tests; if NULL, allocate from kmalloc instead. */ +static struct kmem_cache *test_cache; + +static size_t setup_test_cache(struct kunit *test, size_t size, slab_flags_t flags, + void (*ctor)(void *)) +{ + if (test->priv != TEST_PRIV_WANT_MEMCACHE) + return size; + + kunit_info(test, "%s: size=%zu, ctor=%ps\n", __func__, size, ctor); + + /* + * Use SLAB_NOLEAKTRACE to prevent merging with existing caches. Any + * other flag in SLAB_NEVER_MERGE also works. Use SLAB_ACCOUNT to + * allocate via memcg, if enabled. + */ + flags |= SLAB_NOLEAKTRACE | SLAB_ACCOUNT; + test_cache = kmem_cache_create("test", size, 1, flags, ctor); + KUNIT_ASSERT_TRUE_MSG(test, test_cache, "could not create cache"); + + return size; +} + +static void test_cache_destroy(void) +{ + if (!test_cache) + return; + + kmem_cache_destroy(test_cache); + test_cache = NULL; +} + +static inline size_t kmalloc_cache_alignment(size_t size) +{ + return kmalloc_caches[kmalloc_type(GFP_KERNEL)][kmalloc_index(size)]->align; +} + +/* Must always inline to match stack trace against caller. */ +static __always_inline void test_free(void *ptr) +{ + if (test_cache) + kmem_cache_free(test_cache, ptr); + else + kfree(ptr); +} + +/* + * If this should be a KFENCE allocation, and on which side the allocation and + * the closest guard page should be. + */ +enum allocation_policy { + ALLOCATE_ANY, /* KFENCE, any side. */ + ALLOCATE_LEFT, /* KFENCE, left side of page. */ + ALLOCATE_RIGHT, /* KFENCE, right side of page. */ + ALLOCATE_NONE, /* No KFENCE allocation. */ +}; + +/* + * Try to get a guarded allocation from KFENCE. Uses either kmalloc() or the + * current test_cache if set up. + */ +static void *test_alloc(struct kunit *test, size_t size, gfp_t gfp, enum allocation_policy policy) +{ + void *alloc; + unsigned long timeout, resched_after; + const char *policy_name; + + switch (policy) { + case ALLOCATE_ANY: + policy_name = "any"; + break; + case ALLOCATE_LEFT: + policy_name = "left"; + break; + case ALLOCATE_RIGHT: + policy_name = "right"; + break; + case ALLOCATE_NONE: + policy_name = "none"; + break; + } + + kunit_info(test, "%s: size=%zu, gfp=%x, policy=%s, cache=%i\n", __func__, size, gfp, + policy_name, !!test_cache); + + /* + * 100x the sample interval should be more than enough to ensure we get + * a KFENCE allocation eventually. + */ + timeout = jiffies + msecs_to_jiffies(100 * CONFIG_KFENCE_SAMPLE_INTERVAL); + /* + * Especially for non-preemption kernels, ensure the allocation-gate + * timer can catch up: after @resched_after, every failed allocation + * attempt yields, to ensure the allocation-gate timer is scheduled. + */ + resched_after = jiffies + msecs_to_jiffies(CONFIG_KFENCE_SAMPLE_INTERVAL); + do { + if (test_cache) + alloc = kmem_cache_alloc(test_cache, gfp); + else + alloc = kmalloc(size, gfp); + + if (is_kfence_address(alloc)) { + struct page *page = virt_to_head_page(alloc); + struct kmem_cache *s = test_cache ?: kmalloc_caches[kmalloc_type(GFP_KERNEL)][kmalloc_index(size)]; + + /* + * Verify that various helpers return the right values + * even for KFENCE objects; these are required so that + * memcg accounting works correctly. + */ + KUNIT_EXPECT_EQ(test, obj_to_index(s, page, alloc), 0U); + KUNIT_EXPECT_EQ(test, objs_per_slab_page(s, page), 1); + + if (policy == ALLOCATE_ANY) + return alloc; + if (policy == ALLOCATE_LEFT && IS_ALIGNED((unsigned long)alloc, PAGE_SIZE)) + return alloc; + if (policy == ALLOCATE_RIGHT && + !IS_ALIGNED((unsigned long)alloc, PAGE_SIZE)) + return alloc; + } else if (policy == ALLOCATE_NONE) + return alloc; + + test_free(alloc); + + if (time_after(jiffies, resched_after)) + cond_resched(); + } while (time_before(jiffies, timeout)); + + KUNIT_ASSERT_TRUE_MSG(test, false, "failed to allocate from KFENCE"); + return NULL; /* Unreachable. */ +} + +static void test_out_of_bounds_read(struct kunit *test) +{ + size_t size = 32; + struct expect_report expect = { + .type = KFENCE_ERROR_OOB, + .fn = test_out_of_bounds_read, + .is_write = false, + }; + char *buf; + + setup_test_cache(test, size, 0, NULL); + + /* + * If we don't have our own cache, adjust based on alignment, so that we + * actually access guard pages on either side. + */ + if (!test_cache) + size = kmalloc_cache_alignment(size); + + /* Test both sides. */ + + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT); + expect.addr = buf - 1; + READ_ONCE(*expect.addr); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); + test_free(buf); + + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT); + expect.addr = buf + size; + READ_ONCE(*expect.addr); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); + test_free(buf); +} + +static void test_out_of_bounds_write(struct kunit *test) +{ + size_t size = 32; + struct expect_report expect = { + .type = KFENCE_ERROR_OOB, + .fn = test_out_of_bounds_write, + .is_write = true, + }; + char *buf; + + setup_test_cache(test, size, 0, NULL); + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT); + expect.addr = buf - 1; + WRITE_ONCE(*expect.addr, 42); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); + test_free(buf); +} + +static void test_use_after_free_read(struct kunit *test) +{ + const size_t size = 32; + struct expect_report expect = { + .type = KFENCE_ERROR_UAF, + .fn = test_use_after_free_read, + .is_write = false, + }; + + setup_test_cache(test, size, 0, NULL); + expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); + test_free(expect.addr); + READ_ONCE(*expect.addr); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); +} + +static void test_double_free(struct kunit *test) +{ + const size_t size = 32; + struct expect_report expect = { + .type = KFENCE_ERROR_INVALID_FREE, + .fn = test_double_free, + }; + + setup_test_cache(test, size, 0, NULL); + expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); + test_free(expect.addr); + test_free(expect.addr); /* Double-free. */ + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); +} + +static void test_invalid_addr_free(struct kunit *test) +{ + const size_t size = 32; + struct expect_report expect = { + .type = KFENCE_ERROR_INVALID_FREE, + .fn = test_invalid_addr_free, + }; + char *buf; + + setup_test_cache(test, size, 0, NULL); + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); + expect.addr = buf + 1; /* Free on invalid address. */ + test_free(expect.addr); /* Invalid address free. */ + test_free(buf); /* No error. */ + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); +} + +static void test_corruption(struct kunit *test) +{ + size_t size = 32; + struct expect_report expect = { + .type = KFENCE_ERROR_CORRUPTION, + .fn = test_corruption, + }; + char *buf; + + setup_test_cache(test, size, 0, NULL); + + /* Test both sides. */ + + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT); + expect.addr = buf + size; + WRITE_ONCE(*expect.addr, 42); + test_free(buf); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); + + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT); + expect.addr = buf - 1; + WRITE_ONCE(*expect.addr, 42); + test_free(buf); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); +} + +/* + * KFENCE is unable to detect an OOB if the allocation's alignment requirements + * leave a gap between the object and the guard page. Specifically, an + * allocation of e.g. 73 bytes is aligned on 8 and 128 bytes for SLUB or SLAB + * respectively. Therefore it is impossible for the allocated object to + * contiguously line up with the right guard page. + * + * However, we test that an access to memory beyond the gap results in KFENCE + * detecting an OOB access. + */ +static void test_kmalloc_aligned_oob_read(struct kunit *test) +{ + const size_t size = 73; + const size_t align = kmalloc_cache_alignment(size); + struct expect_report expect = { + .type = KFENCE_ERROR_OOB, + .fn = test_kmalloc_aligned_oob_read, + .is_write = false, + }; + char *buf; + + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT); + + /* + * The object is offset to the right, so there won't be an OOB to the + * left of it. + */ + READ_ONCE(*(buf - 1)); + KUNIT_EXPECT_FALSE(test, report_available()); + + /* + * @buf must be aligned on @align, therefore buf + size belongs to the + * same page -> no OOB. + */ + READ_ONCE(*(buf + size)); + KUNIT_EXPECT_FALSE(test, report_available()); + + /* Overflowing by @align bytes will result in an OOB. */ + expect.addr = buf + size + align; + READ_ONCE(*expect.addr); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); + + test_free(buf); +} + +static void test_kmalloc_aligned_oob_write(struct kunit *test) +{ + const size_t size = 73; + struct expect_report expect = { + .type = KFENCE_ERROR_CORRUPTION, + .fn = test_kmalloc_aligned_oob_write, + }; + char *buf; + + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT); + /* + * The object is offset to the right, so we won't get a page + * fault immediately after it. + */ + expect.addr = buf + size; + WRITE_ONCE(*expect.addr, READ_ONCE(*expect.addr) + 1); + KUNIT_EXPECT_FALSE(test, report_available()); + test_free(buf); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); +} + +/* Test cache shrinking and destroying with KFENCE. */ +static void test_shrink_memcache(struct kunit *test) +{ + const size_t size = 32; + void *buf; + + setup_test_cache(test, size, 0, NULL); + KUNIT_EXPECT_TRUE(test, test_cache); + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); + kmem_cache_shrink(test_cache); + test_free(buf); + + KUNIT_EXPECT_FALSE(test, report_available()); +} + +static void ctor_set_x(void *obj) +{ + /* Every object has at least 8 bytes. */ + memset(obj, 'x', 8); +} + +/* Ensure that SL*B does not modify KFENCE objects on bulk free. */ +static void test_free_bulk(struct kunit *test) +{ + int iter; + + for (iter = 0; iter < 5; iter++) { + const size_t size = setup_test_cache(test, 8 + prandom_u32_max(300), 0, + (iter & 1) ? ctor_set_x : NULL); + void *objects[] = { + test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT), + test_alloc(test, size, GFP_KERNEL, ALLOCATE_NONE), + test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT), + test_alloc(test, size, GFP_KERNEL, ALLOCATE_NONE), + test_alloc(test, size, GFP_KERNEL, ALLOCATE_NONE), + }; + + kmem_cache_free_bulk(test_cache, ARRAY_SIZE(objects), objects); + KUNIT_ASSERT_FALSE(test, report_available()); + test_cache_destroy(); + } +} + +/* Test init-on-free works. */ +static void test_init_on_free(struct kunit *test) +{ + const size_t size = 32; + struct expect_report expect = { + .type = KFENCE_ERROR_UAF, + .fn = test_init_on_free, + .is_write = false, + }; + int i; + + if (!IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON)) + return; + /* Assume it hasn't been disabled on command line. */ + + setup_test_cache(test, size, 0, NULL); + expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); + for (i = 0; i < size; i++) + expect.addr[i] = i + 1; + test_free(expect.addr); + + for (i = 0; i < size; i++) { + /* + * This may fail if the page was recycled by KFENCE and then + * written to again -- this however, is near impossible with a + * default config. + */ + KUNIT_EXPECT_EQ(test, expect.addr[i], (char)0); + + if (!i) /* Only check first access to not fail test if page is ever re-protected. */ + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); + } +} + +/* Ensure that constructors work properly. */ +static void test_memcache_ctor(struct kunit *test) +{ + const size_t size = 32; + char *buf; + int i; + + setup_test_cache(test, size, 0, ctor_set_x); + buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); + + for (i = 0; i < 8; i++) + KUNIT_EXPECT_EQ(test, buf[i], (char)'x'); + + test_free(buf); + + KUNIT_EXPECT_FALSE(test, report_available()); +} + +/* Test that memory is zeroed if requested. */ +static void test_gfpzero(struct kunit *test) +{ + const size_t size = PAGE_SIZE; /* PAGE_SIZE so we can use ALLOCATE_ANY. */ + char *buf1, *buf2; + int i; + + if (CONFIG_KFENCE_SAMPLE_INTERVAL > 100) { + kunit_warn(test, "skipping ... would take too long\n"); + return; + } + + setup_test_cache(test, size, 0, NULL); + buf1 = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); + for (i = 0; i < size; i++) + buf1[i] = i + 1; + test_free(buf1); + + /* Try to get same address again -- this can take a while. */ + for (i = 0;; i++) { + buf2 = test_alloc(test, size, GFP_KERNEL | __GFP_ZERO, ALLOCATE_ANY); + if (buf1 == buf2) + break; + test_free(buf2); + + if (i == CONFIG_KFENCE_NUM_OBJECTS) { + kunit_warn(test, "giving up ... cannot get same object back\n"); + return; + } + } + + for (i = 0; i < size; i++) + KUNIT_EXPECT_EQ(test, buf2[i], (char)0); + + test_free(buf2); + + KUNIT_EXPECT_FALSE(test, report_available()); +} + +static void test_invalid_access(struct kunit *test) +{ + const struct expect_report expect = { + .type = KFENCE_ERROR_INVALID, + .fn = test_invalid_access, + .addr = &__kfence_pool[10], + .is_write = false, + }; + + READ_ONCE(__kfence_pool[10]); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); +} + +/* Test SLAB_TYPESAFE_BY_RCU works. */ +static void test_memcache_typesafe_by_rcu(struct kunit *test) +{ + const size_t size = 32; + struct expect_report expect = { + .type = KFENCE_ERROR_UAF, + .fn = test_memcache_typesafe_by_rcu, + .is_write = false, + }; + + setup_test_cache(test, size, SLAB_TYPESAFE_BY_RCU, NULL); + KUNIT_EXPECT_TRUE(test, test_cache); /* Want memcache. */ + + expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); + *expect.addr = 42; + + rcu_read_lock(); + test_free(expect.addr); + KUNIT_EXPECT_EQ(test, *expect.addr, (char)42); + /* + * Up to this point, memory should not have been freed yet, and + * therefore there should be no KFENCE report from the above access. + */ + rcu_read_unlock(); + + /* Above access to @expect.addr should not have generated a report! */ + KUNIT_EXPECT_FALSE(test, report_available()); + + /* Only after rcu_barrier() is the memory guaranteed to be freed. */ + rcu_barrier(); + + /* Expect use-after-free. */ + KUNIT_EXPECT_EQ(test, *expect.addr, (char)42); + KUNIT_EXPECT_TRUE(test, report_matches(&expect)); +} + +/* Test krealloc(). */ +static void test_krealloc(struct kunit *test) +{ + const size_t size = 32; + const struct expect_report expect = { + .type = KFENCE_ERROR_UAF, + .fn = test_krealloc, + .addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY), + .is_write = false, + }; + char *buf = expect.addr; + int i; + + KUNIT_EXPECT_FALSE(test, test_cache); + KUNIT_EXPECT_EQ(test, ksize(buf), size); /* Precise size match after KFENCE alloc. */ + for (i = 0; i < size; i++) + buf[i] = i + 1; + + /* Check that we successfully change the size. */ + buf = krealloc(buf, size * 3, GFP_KERNEL); /* Grow. */ + /* Note: Might no longer be a KFENCE alloc. */ + KUNIT_EXPECT_GE(test, ksize(buf), size * 3); + for (i = 0; i < size; i++) + KUNIT_EXPECT_EQ(test, buf[i], (char)(i + 1)); + for (; i < size * 3; i++) /* Fill to extra bytes. */ + buf[i] = i + 1; + + buf = krealloc(buf, size * 2, GFP_KERNEL); /* Shrink. */ + KUNIT_EXPECT_GE(test, ksize(buf), size * 2); + for (i = 0; i < size * 2; i++) + KUNIT_EXPECT_EQ(test, buf[i], (char)(i + 1)); + + buf = krealloc(buf, 0, GFP_KERNEL); /* Free. */ + KUNIT_EXPECT_EQ(test, (unsigned long)buf, (unsigned long)ZERO_SIZE_PTR); + KUNIT_ASSERT_FALSE(test, report_available()); /* No reports yet! */ + + READ_ONCE(*expect.addr); /* Ensure krealloc() actually freed earlier KFENCE object. */ + KUNIT_ASSERT_TRUE(test, report_matches(&expect)); +} + +/* Test that some objects from a bulk allocation belong to KFENCE pool. */ +static void test_memcache_alloc_bulk(struct kunit *test) +{ + const size_t size = 32; + bool pass = false; + unsigned long timeout; + + setup_test_cache(test, size, 0, NULL); + KUNIT_EXPECT_TRUE(test, test_cache); /* Want memcache. */ + /* + * 100x the sample interval should be more than enough to ensure we get + * a KFENCE allocation eventually. + */ + timeout = jiffies + msecs_to_jiffies(100 * CONFIG_KFENCE_SAMPLE_INTERVAL); + do { + void *objects[100]; + int i, num = kmem_cache_alloc_bulk(test_cache, GFP_ATOMIC, ARRAY_SIZE(objects), + objects); + if (!num) + continue; + for (i = 0; i < ARRAY_SIZE(objects); i++) { + if (is_kfence_address(objects[i])) { + pass = true; + break; + } + } + kmem_cache_free_bulk(test_cache, num, objects); + /* + * kmem_cache_alloc_bulk() disables interrupts, and calling it + * in a tight loop may not give KFENCE a chance to switch the + * static branch. Call cond_resched() to let KFENCE chime in. + */ + cond_resched(); + } while (!pass && time_before(jiffies, timeout)); + + KUNIT_EXPECT_TRUE(test, pass); + KUNIT_EXPECT_FALSE(test, report_available()); +} + +/* + * KUnit does not provide a way to provide arguments to tests, and we encode + * additional info in the name. Set up 2 tests per test case, one using the + * default allocator, and another using a custom memcache (suffix '-memcache'). + */ +#define KFENCE_KUNIT_CASE(test_name) \ + { .run_case = test_name, .name = #test_name }, \ + { .run_case = test_name, .name = #test_name "-memcache" } + +static struct kunit_case kfence_test_cases[] = { + KFENCE_KUNIT_CASE(test_out_of_bounds_read), + KFENCE_KUNIT_CASE(test_out_of_bounds_write), + KFENCE_KUNIT_CASE(test_use_after_free_read), + KFENCE_KUNIT_CASE(test_double_free), + KFENCE_KUNIT_CASE(test_invalid_addr_free), + KFENCE_KUNIT_CASE(test_corruption), + KFENCE_KUNIT_CASE(test_free_bulk), + KFENCE_KUNIT_CASE(test_init_on_free), + KUNIT_CASE(test_kmalloc_aligned_oob_read), + KUNIT_CASE(test_kmalloc_aligned_oob_write), + KUNIT_CASE(test_shrink_memcache), + KUNIT_CASE(test_memcache_ctor), + KUNIT_CASE(test_invalid_access), + KUNIT_CASE(test_gfpzero), + KUNIT_CASE(test_memcache_typesafe_by_rcu), + KUNIT_CASE(test_krealloc), + KUNIT_CASE(test_memcache_alloc_bulk), + {}, +}; + +/* ===== End test cases ===== */ + +static int test_init(struct kunit *test) +{ + unsigned long flags; + int i; + + spin_lock_irqsave(&observed.lock, flags); + for (i = 0; i < ARRAY_SIZE(observed.lines); i++) + observed.lines[i][0] = '\0'; + observed.nlines = 0; + spin_unlock_irqrestore(&observed.lock, flags); + + /* Any test with 'memcache' in its name will want a memcache. */ + if (strstr(test->name, "memcache")) + test->priv = TEST_PRIV_WANT_MEMCACHE; + else + test->priv = NULL; + + return 0; +} + +static void test_exit(struct kunit *test) +{ + test_cache_destroy(); +} + +static struct kunit_suite kfence_test_suite = { + .name = "kfence", + .test_cases = kfence_test_cases, + .init = test_init, + .exit = test_exit, +}; +static struct kunit_suite *kfence_test_suites[] = { &kfence_test_suite, NULL }; + +static void register_tracepoints(struct tracepoint *tp, void *ignore) +{ + check_trace_callback_type_console(probe_console); + if (!strcmp(tp->name, "console")) + WARN_ON(tracepoint_probe_register(tp, probe_console, NULL)); +} + +static void unregister_tracepoints(struct tracepoint *tp, void *ignore) +{ + if (!strcmp(tp->name, "console")) + tracepoint_probe_unregister(tp, probe_console, NULL); +} + +/* + * We only want to do tracepoints setup and teardown once, therefore we have to + * customize the init and exit functions and cannot rely on kunit_test_suite(). + */ +static int __init kfence_test_init(void) +{ + /* + * Because we want to be able to build the test as a module, we need to + * iterate through all known tracepoints, since the static registration + * won't work here. + */ + for_each_kernel_tracepoint(register_tracepoints, NULL); + return __kunit_test_suites_init(kfence_test_suites); +} + +static void kfence_test_exit(void) +{ + __kunit_test_suites_exit(kfence_test_suites); + for_each_kernel_tracepoint(unregister_tracepoints, NULL); + tracepoint_synchronize_unregister(); +} + +late_initcall(kfence_test_init); +module_exit(kfence_test_exit); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Alexander Potapenko <glider@google.com>, Marco Elver <elver@google.com>"); diff --git a/mm/kfence/report.c b/mm/kfence/report.c new file mode 100644 index 000000000000..e3f71451ad9e --- /dev/null +++ b/mm/kfence/report.c @@ -0,0 +1,268 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * KFENCE reporting. + * + * Copyright (C) 2020, Google LLC. + */ + +#include <stdarg.h> + +#include <linux/kernel.h> +#include <linux/lockdep.h> +#include <linux/printk.h> +#include <linux/sched/debug.h> +#include <linux/seq_file.h> +#include <linux/stacktrace.h> +#include <linux/string.h> +#include <trace/events/error_report.h> + +#include <asm/kfence.h> + +#include "kfence.h" + +/* May be overridden by <asm/kfence.h>. */ +#ifndef ARCH_FUNC_PREFIX +#define ARCH_FUNC_PREFIX "" +#endif + +extern bool no_hash_pointers; + +/* Helper function to either print to a seq_file or to console. */ +__printf(2, 3) +static void seq_con_printf(struct seq_file *seq, const char *fmt, ...) +{ + va_list args; + + va_start(args, fmt); + if (seq) + seq_vprintf(seq, fmt, args); + else + vprintk(fmt, args); + va_end(args); +} + +/* + * Get the number of stack entries to skip to get out of MM internals. @type is + * optional, and if set to NULL, assumes an allocation or free stack. + */ +static int get_stack_skipnr(const unsigned long stack_entries[], int num_entries, + const enum kfence_error_type *type) +{ + char buf[64]; + int skipnr, fallback = 0; + + if (type) { + /* Depending on error type, find different stack entries. */ + switch (*type) { + case KFENCE_ERROR_UAF: + case KFENCE_ERROR_OOB: + case KFENCE_ERROR_INVALID: + /* + * kfence_handle_page_fault() may be called with pt_regs + * set to NULL; in that case we'll simply show the full + * stack trace. + */ + return 0; + case KFENCE_ERROR_CORRUPTION: + case KFENCE_ERROR_INVALID_FREE: + break; + } + } + + for (skipnr = 0; skipnr < num_entries; skipnr++) { + int len = scnprintf(buf, sizeof(buf), "%ps", (void *)stack_entries[skipnr]); + + if (str_has_prefix(buf, ARCH_FUNC_PREFIX "kfence_") || + str_has_prefix(buf, ARCH_FUNC_PREFIX "__kfence_") || + !strncmp(buf, ARCH_FUNC_PREFIX "__slab_free", len)) { + /* + * In case of tail calls from any of the below + * to any of the above. + */ + fallback = skipnr + 1; + } + + /* Also the *_bulk() variants by only checking prefixes. */ + if (str_has_prefix(buf, ARCH_FUNC_PREFIX "kfree") || + str_has_prefix(buf, ARCH_FUNC_PREFIX "kmem_cache_free") || + str_has_prefix(buf, ARCH_FUNC_PREFIX "__kmalloc") || + str_has_prefix(buf, ARCH_FUNC_PREFIX "kmem_cache_alloc")) + goto found; + } + if (fallback < num_entries) + return fallback; +found: + skipnr++; + return skipnr < num_entries ? skipnr : 0; +} + +static void kfence_print_stack(struct seq_file *seq, const struct kfence_metadata *meta, + bool show_alloc) +{ + const struct kfence_track *track = show_alloc ? &meta->alloc_track : &meta->free_track; + + if (track->num_stack_entries) { + /* Skip allocation/free internals stack. */ + int i = get_stack_skipnr(track->stack_entries, track->num_stack_entries, NULL); + + /* stack_trace_seq_print() does not exist; open code our own. */ + for (; i < track->num_stack_entries; i++) + seq_con_printf(seq, " %pS\n", (void *)track->stack_entries[i]); + } else { + seq_con_printf(seq, " no %s stack\n", show_alloc ? "allocation" : "deallocation"); + } +} + +void kfence_print_object(struct seq_file *seq, const struct kfence_metadata *meta) +{ + const int size = abs(meta->size); + const unsigned long start = meta->addr; + const struct kmem_cache *const cache = meta->cache; + + lockdep_assert_held(&meta->lock); + + if (meta->state == KFENCE_OBJECT_UNUSED) { + seq_con_printf(seq, "kfence-#%td unused\n", meta - kfence_metadata); + return; + } + + seq_con_printf(seq, + "kfence-#%td [0x%p-0x%p" + ", size=%d, cache=%s] allocated by task %d:\n", + meta - kfence_metadata, (void *)start, (void *)(start + size - 1), size, + (cache && cache->name) ? cache->name : "<destroyed>", meta->alloc_track.pid); + kfence_print_stack(seq, meta, true); + + if (meta->state == KFENCE_OBJECT_FREED) { + seq_con_printf(seq, "\nfreed by task %d:\n", meta->free_track.pid); + kfence_print_stack(seq, meta, false); + } +} + +/* + * Show bytes at @addr that are different from the expected canary values, up to + * @max_bytes. + */ +static void print_diff_canary(unsigned long address, size_t bytes_to_show, + const struct kfence_metadata *meta) +{ + const unsigned long show_until_addr = address + bytes_to_show; + const u8 *cur, *end; + + /* Do not show contents of object nor read into following guard page. */ + end = (const u8 *)(address < meta->addr ? min(show_until_addr, meta->addr) + : min(show_until_addr, PAGE_ALIGN(address))); + + pr_cont("["); + for (cur = (const u8 *)address; cur < end; cur++) { + if (*cur == KFENCE_CANARY_PATTERN(cur)) + pr_cont(" ."); + else if (no_hash_pointers) + pr_cont(" 0x%02x", *cur); + else /* Do not leak kernel memory in non-debug builds. */ + pr_cont(" !"); + } + pr_cont(" ]"); +} + +static const char *get_access_type(bool is_write) +{ + return is_write ? "write" : "read"; +} + +void kfence_report_error(unsigned long address, bool is_write, struct pt_regs *regs, + const struct kfence_metadata *meta, enum kfence_error_type type) +{ + unsigned long stack_entries[KFENCE_STACK_DEPTH] = { 0 }; + const ptrdiff_t object_index = meta ? meta - kfence_metadata : -1; + int num_stack_entries; + int skipnr = 0; + + if (regs) { + num_stack_entries = stack_trace_save_regs(regs, stack_entries, KFENCE_STACK_DEPTH, 0); + } else { + num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 1); + skipnr = get_stack_skipnr(stack_entries, num_stack_entries, &type); + } + + /* Require non-NULL meta, except if KFENCE_ERROR_INVALID. */ + if (WARN_ON(type != KFENCE_ERROR_INVALID && !meta)) + return; + + if (meta) + lockdep_assert_held(&meta->lock); + /* + * Because we may generate reports in printk-unfriendly parts of the + * kernel, such as scheduler code, the use of printk() could deadlock. + * Until such time that all printing code here is safe in all parts of + * the kernel, accept the risk, and just get our message out (given the + * system might already behave unpredictably due to the memory error). + * As such, also disable lockdep to hide warnings, and avoid disabling + * lockdep for the rest of the kernel. + */ + lockdep_off(); + + pr_err("==================================================================\n"); + /* Print report header. */ + switch (type) { + case KFENCE_ERROR_OOB: { + const bool left_of_object = address < meta->addr; + + pr_err("BUG: KFENCE: out-of-bounds %s in %pS\n\n", get_access_type(is_write), + (void *)stack_entries[skipnr]); + pr_err("Out-of-bounds %s at 0x%p (%luB %s of kfence-#%td):\n", + get_access_type(is_write), (void *)address, + left_of_object ? meta->addr - address : address - meta->addr, + left_of_object ? "left" : "right", object_index); + break; + } + case KFENCE_ERROR_UAF: + pr_err("BUG: KFENCE: use-after-free %s in %pS\n\n", get_access_type(is_write), + (void *)stack_entries[skipnr]); + pr_err("Use-after-free %s at 0x%p (in kfence-#%td):\n", + get_access_type(is_write), (void *)address, object_index); + break; + case KFENCE_ERROR_CORRUPTION: + pr_err("BUG: KFENCE: memory corruption in %pS\n\n", (void *)stack_entries[skipnr]); + pr_err("Corrupted memory at 0x%p ", (void *)address); + print_diff_canary(address, 16, meta); + pr_cont(" (in kfence-#%td):\n", object_index); + break; + case KFENCE_ERROR_INVALID: + pr_err("BUG: KFENCE: invalid %s in %pS\n\n", get_access_type(is_write), + (void *)stack_entries[skipnr]); + pr_err("Invalid %s at 0x%p:\n", get_access_type(is_write), + (void *)address); + break; + case KFENCE_ERROR_INVALID_FREE: + pr_err("BUG: KFENCE: invalid free in %pS\n\n", (void *)stack_entries[skipnr]); + pr_err("Invalid free of 0x%p (in kfence-#%td):\n", (void *)address, + object_index); + break; + } + + /* Print stack trace and object info. */ + stack_trace_print(stack_entries + skipnr, num_stack_entries - skipnr, 0); + + if (meta) { + pr_err("\n"); + kfence_print_object(NULL, meta); + } + + /* Print report footer. */ + pr_err("\n"); + if (no_hash_pointers && regs) + show_regs(regs); + else + dump_stack_print_info(KERN_ERR); + trace_error_report_end(ERROR_DETECTOR_KFENCE, address); + pr_err("==================================================================\n"); + + lockdep_on(); + + if (panic_on_warn) + panic("panic_on_warn set ...\n"); + + /* We encountered a memory unsafety error, taint the kernel! */ + add_taint(TAINT_BAD_PAGE, LOCKDEP_STILL_OK); +} diff --git a/mm/khugepaged.c b/mm/khugepaged.c index fb0fdaec34d5..a7d6cb912b05 100644 --- a/mm/khugepaged.c +++ b/mm/khugepaged.c @@ -442,18 +442,28 @@ static inline int khugepaged_test_exit(struct mm_struct *mm) static bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags) { - if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || - (vm_flags & VM_NOHUGEPAGE) || + /* Explicitly disabled through madvise. */ + if ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) return false; - if (shmem_file(vma->vm_file) || - (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && - vma->vm_file && - (vm_flags & VM_DENYWRITE))) { + /* Enabled via shmem mount options or sysfs settings. */ + if (shmem_file(vma->vm_file) && shmem_huge_enabled(vma)) { return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff, HPAGE_PMD_NR); } + + /* THP settings require madvise. */ + if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) + return false; + + /* Read-only file mappings need to be aligned for THP to work. */ + if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file && + (vm_flags & VM_DENYWRITE)) { + return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff, + HPAGE_PMD_NR); + } + if (!vma->anon_vma || vma->vm_ops) return false; if (vma_is_temporary_stack(vma)) @@ -1643,6 +1653,7 @@ static void collapse_file(struct mm_struct *mm, XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); int nr_none = 0, result = SCAN_SUCCEED; bool is_shmem = shmem_file(file); + int nr; VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); @@ -1854,11 +1865,12 @@ out_unlock: put_page(page); goto xa_unlocked; } + nr = thp_nr_pages(new_page); if (is_shmem) - __inc_lruvec_page_state(new_page, NR_SHMEM_THPS); + __mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr); else { - __inc_lruvec_page_state(new_page, NR_FILE_THPS); + __mod_lruvec_page_state(new_page, NR_FILE_THPS, nr); filemap_nr_thps_inc(mapping); } diff --git a/mm/kmemleak.c b/mm/kmemleak.c index c0014d3b91c1..fe6e3ae8e8c6 100644 --- a/mm/kmemleak.c +++ b/mm/kmemleak.c @@ -97,6 +97,7 @@ #include <linux/atomic.h> #include <linux/kasan.h> +#include <linux/kfence.h> #include <linux/kmemleak.h> #include <linux/memory_hotplug.h> @@ -589,7 +590,7 @@ static struct kmemleak_object *create_object(unsigned long ptr, size_t size, atomic_set(&object->use_count, 1); object->flags = OBJECT_ALLOCATED; object->pointer = ptr; - object->size = size; + object->size = kfence_ksize((void *)ptr) ?: size; object->excess_ref = 0; object->min_count = min_count; object->count = 0; /* white color initially */ diff --git a/mm/list_lru.c b/mm/list_lru.c index fe230081690b..6f067b6b935f 100644 --- a/mm/list_lru.c +++ b/mm/list_lru.c @@ -373,21 +373,13 @@ static void memcg_destroy_list_lru_node(struct list_lru_node *nlru) struct list_lru_memcg *memcg_lrus; /* * This is called when shrinker has already been unregistered, - * and nobody can use it. So, there is no need to use kvfree_rcu_local(). + * and nobody can use it. So, there is no need to use kvfree_rcu(). */ memcg_lrus = rcu_dereference_protected(nlru->memcg_lrus, true); __memcg_destroy_list_lru_node(memcg_lrus, 0, memcg_nr_cache_ids); kvfree(memcg_lrus); } -static void kvfree_rcu_local(struct rcu_head *head) -{ - struct list_lru_memcg *mlru; - - mlru = container_of(head, struct list_lru_memcg, rcu); - kvfree(mlru); -} - static int memcg_update_list_lru_node(struct list_lru_node *nlru, int old_size, int new_size) { @@ -419,7 +411,7 @@ static int memcg_update_list_lru_node(struct list_lru_node *nlru, rcu_assign_pointer(nlru->memcg_lrus, new); spin_unlock_irq(&nlru->lock); - call_rcu(&old->rcu, kvfree_rcu_local); + kvfree_rcu(old, rcu); return 0; } diff --git a/mm/madvise.c b/mm/madvise.c index 0938fd3ad228..01fef79ac761 100644 --- a/mm/madvise.c +++ b/mm/madvise.c @@ -539,8 +539,9 @@ static inline bool can_do_pageout(struct vm_area_struct *vma) * otherwise we'd be including shared non-exclusive mappings, which * opens a side channel. */ - return inode_owner_or_capable(file_inode(vma->vm_file)) || - inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0; + return inode_owner_or_capable(&init_user_ns, + file_inode(vma->vm_file)) || + file_permission(vma->vm_file, MAY_WRITE) == 0; } static long madvise_pageout(struct vm_area_struct *vma, @@ -1197,12 +1198,22 @@ SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec, goto release_task; } - mm = mm_access(task, PTRACE_MODE_ATTACH_FSCREDS); + /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */ + mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); if (IS_ERR_OR_NULL(mm)) { ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH; goto release_task; } + /* + * Require CAP_SYS_NICE for influencing process performance. Note that + * only non-destructive hints are currently supported. + */ + if (!capable(CAP_SYS_NICE)) { + ret = -EPERM; + goto release_mm; + } + total_len = iov_iter_count(&iter); while (iov_iter_count(&iter)) { @@ -1217,6 +1228,7 @@ SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec, if (ret == 0) ret = total_len - iov_iter_count(&iter); +release_mm: mmput(mm); release_task: put_task_struct(task); diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 913c2b9e5c72..e064ac0d850a 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -255,6 +255,11 @@ struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) #ifdef CONFIG_MEMCG_KMEM extern spinlock_t css_set_lock; +static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, + unsigned int nr_pages); +static void __memcg_kmem_uncharge(struct mem_cgroup *memcg, + unsigned int nr_pages); + static void obj_cgroup_release(struct percpu_ref *ref) { struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); @@ -447,8 +452,7 @@ static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) for_each_node(nid) { pn = mem_cgroup_nodeinfo(memcg, nid); map = rcu_dereference_protected(pn->shrinker_map, true); - if (map) - kvfree(map); + kvfree(map); rcu_assign_pointer(pn->shrinker_map, NULL); } } @@ -1043,29 +1047,6 @@ struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) } EXPORT_SYMBOL(get_mem_cgroup_from_mm); -/** - * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. - * @page: page from which memcg should be extracted. - * - * Obtain a reference on page->memcg and returns it if successful. Otherwise - * root_mem_cgroup is returned. - */ -struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) -{ - struct mem_cgroup *memcg = page_memcg(page); - - if (mem_cgroup_disabled()) - return NULL; - - rcu_read_lock(); - /* Page should not get uncharged and freed memcg under us. */ - if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) - memcg = root_mem_cgroup; - rcu_read_unlock(); - return memcg; -} -EXPORT_SYMBOL(get_mem_cgroup_from_page); - static __always_inline struct mem_cgroup *active_memcg(void) { if (in_interrupt()) @@ -1080,13 +1061,9 @@ static __always_inline struct mem_cgroup *get_active_memcg(void) rcu_read_lock(); memcg = active_memcg(); - if (memcg) { - /* current->active_memcg must hold a ref. */ - if (WARN_ON_ONCE(!css_tryget(&memcg->css))) - memcg = root_mem_cgroup; - else - memcg = current->active_memcg; - } + /* remote memcg must hold a ref. */ + if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css))) + memcg = root_mem_cgroup; rcu_read_unlock(); return memcg; @@ -1346,20 +1323,19 @@ void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) * lock_page_lruvec - lock and return lruvec for a given page. * @page: the page * - * This series functions should be used in either conditions: - * PageLRU is cleared or unset - * or page->_refcount is zero - * or page is locked. + * These functions are safe to use under any of the following conditions: + * - page locked + * - PageLRU cleared + * - lock_page_memcg() + * - page->_refcount is zero */ struct lruvec *lock_page_lruvec(struct page *page) { struct lruvec *lruvec; struct pglist_data *pgdat = page_pgdat(page); - rcu_read_lock(); lruvec = mem_cgroup_page_lruvec(page, pgdat); spin_lock(&lruvec->lru_lock); - rcu_read_unlock(); lruvec_memcg_debug(lruvec, page); @@ -1371,10 +1347,8 @@ struct lruvec *lock_page_lruvec_irq(struct page *page) struct lruvec *lruvec; struct pglist_data *pgdat = page_pgdat(page); - rcu_read_lock(); lruvec = mem_cgroup_page_lruvec(page, pgdat); spin_lock_irq(&lruvec->lru_lock); - rcu_read_unlock(); lruvec_memcg_debug(lruvec, page); @@ -1386,10 +1360,8 @@ struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags) struct lruvec *lruvec; struct pglist_data *pgdat = page_pgdat(page); - rcu_read_lock(); lruvec = mem_cgroup_page_lruvec(page, pgdat); spin_lock_irqsave(&lruvec->lru_lock, *flags); - rcu_read_unlock(); lruvec_memcg_debug(lruvec, page); @@ -1512,72 +1484,73 @@ static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) struct memory_stat { const char *name; - unsigned int ratio; unsigned int idx; }; -static struct memory_stat memory_stats[] = { - { "anon", PAGE_SIZE, NR_ANON_MAPPED }, - { "file", PAGE_SIZE, NR_FILE_PAGES }, - { "kernel_stack", 1024, NR_KERNEL_STACK_KB }, - { "pagetables", PAGE_SIZE, NR_PAGETABLE }, - { "percpu", 1, MEMCG_PERCPU_B }, - { "sock", PAGE_SIZE, MEMCG_SOCK }, - { "shmem", PAGE_SIZE, NR_SHMEM }, - { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED }, - { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY }, - { "file_writeback", PAGE_SIZE, NR_WRITEBACK }, +static const struct memory_stat memory_stats[] = { + { "anon", NR_ANON_MAPPED }, + { "file", NR_FILE_PAGES }, + { "kernel_stack", NR_KERNEL_STACK_KB }, + { "pagetables", NR_PAGETABLE }, + { "percpu", MEMCG_PERCPU_B }, + { "sock", MEMCG_SOCK }, + { "shmem", NR_SHMEM }, + { "file_mapped", NR_FILE_MAPPED }, + { "file_dirty", NR_FILE_DIRTY }, + { "file_writeback", NR_WRITEBACK }, +#ifdef CONFIG_SWAP + { "swapcached", NR_SWAPCACHE }, +#endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE - /* - * The ratio will be initialized in memory_stats_init(). Because - * on some architectures, the macro of HPAGE_PMD_SIZE is not - * constant(e.g. powerpc). - */ - { "anon_thp", 0, NR_ANON_THPS }, - { "file_thp", 0, NR_FILE_THPS }, - { "shmem_thp", 0, NR_SHMEM_THPS }, + { "anon_thp", NR_ANON_THPS }, + { "file_thp", NR_FILE_THPS }, + { "shmem_thp", NR_SHMEM_THPS }, #endif - { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON }, - { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON }, - { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE }, - { "active_file", PAGE_SIZE, NR_ACTIVE_FILE }, - { "unevictable", PAGE_SIZE, NR_UNEVICTABLE }, - - /* - * Note: The slab_reclaimable and slab_unreclaimable must be - * together and slab_reclaimable must be in front. - */ - { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B }, - { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B }, + { "inactive_anon", NR_INACTIVE_ANON }, + { "active_anon", NR_ACTIVE_ANON }, + { "inactive_file", NR_INACTIVE_FILE }, + { "active_file", NR_ACTIVE_FILE }, + { "unevictable", NR_UNEVICTABLE }, + { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, + { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, /* The memory events */ - { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON }, - { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE }, - { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON }, - { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE }, - { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON }, - { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE }, - { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM }, + { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, + { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, + { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, + { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, + { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, + { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, + { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, }; -static int __init memory_stats_init(void) -{ - int i; - - for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { -#ifdef CONFIG_TRANSPARENT_HUGEPAGE - if (memory_stats[i].idx == NR_ANON_THPS || - memory_stats[i].idx == NR_FILE_THPS || - memory_stats[i].idx == NR_SHMEM_THPS) - memory_stats[i].ratio = HPAGE_PMD_SIZE; -#endif - VM_BUG_ON(!memory_stats[i].ratio); - VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT); +/* Translate stat items to the correct unit for memory.stat output */ +static int memcg_page_state_unit(int item) +{ + switch (item) { + case MEMCG_PERCPU_B: + case NR_SLAB_RECLAIMABLE_B: + case NR_SLAB_UNRECLAIMABLE_B: + case WORKINGSET_REFAULT_ANON: + case WORKINGSET_REFAULT_FILE: + case WORKINGSET_ACTIVATE_ANON: + case WORKINGSET_ACTIVATE_FILE: + case WORKINGSET_RESTORE_ANON: + case WORKINGSET_RESTORE_FILE: + case WORKINGSET_NODERECLAIM: + return 1; + case NR_KERNEL_STACK_KB: + return SZ_1K; + default: + return PAGE_SIZE; } +} - return 0; +static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, + int item) +{ + return memcg_page_state(memcg, item) * memcg_page_state_unit(item); } -pure_initcall(memory_stats_init); static char *memory_stat_format(struct mem_cgroup *memcg) { @@ -1602,13 +1575,12 @@ static char *memory_stat_format(struct mem_cgroup *memcg) for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { u64 size; - size = memcg_page_state(memcg, memory_stats[i].idx); - size *= memory_stats[i].ratio; + size = memcg_page_state_output(memcg, memory_stats[i].idx); seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { - size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) + - memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B); + size += memcg_page_state_output(memcg, + NR_SLAB_RECLAIMABLE_B); seq_buf_printf(&s, "slab %llu\n", size); } } @@ -2935,9 +2907,10 @@ static void commit_charge(struct page *page, struct mem_cgroup *memcg) #ifdef CONFIG_MEMCG_KMEM int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, - gfp_t gfp) + gfp_t gfp, bool new_page) { unsigned int objects = objs_per_slab_page(s, page); + unsigned long memcg_data; void *vec; vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, @@ -2945,11 +2918,25 @@ int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, if (!vec) return -ENOMEM; - if (!set_page_objcgs(page, vec)) + memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; + if (new_page) { + /* + * If the slab page is brand new and nobody can yet access + * it's memcg_data, no synchronization is required and + * memcg_data can be simply assigned. + */ + page->memcg_data = memcg_data; + } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) { + /* + * If the slab page is already in use, somebody can allocate + * and assign obj_cgroups in parallel. In this case the existing + * objcg vector should be reused. + */ kfree(vec); - else - kmemleak_not_leak(vec); + return 0; + } + kmemleak_not_leak(vec); return 0; } @@ -3077,8 +3064,8 @@ static void memcg_free_cache_id(int id) * * Returns 0 on success, an error code on failure. */ -int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, - unsigned int nr_pages) +static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, + unsigned int nr_pages) { struct page_counter *counter; int ret; @@ -3110,7 +3097,7 @@ int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, * @memcg: memcg to uncharge * @nr_pages: number of pages to uncharge */ -void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) +static void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) { if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) page_counter_uncharge(&memcg->kmem, nr_pages); @@ -3300,24 +3287,21 @@ void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) #endif /* CONFIG_MEMCG_KMEM */ -#ifdef CONFIG_TRANSPARENT_HUGEPAGE /* - * Because page_memcg(head) is not set on compound tails, set it now. + * Because page_memcg(head) is not set on tails, set it now. */ -void mem_cgroup_split_huge_fixup(struct page *head) +void split_page_memcg(struct page *head, unsigned int nr) { struct mem_cgroup *memcg = page_memcg(head); int i; - if (mem_cgroup_disabled()) + if (mem_cgroup_disabled() || !memcg) return; - for (i = 1; i < HPAGE_PMD_NR; i++) { - css_get(&memcg->css); - head[i].memcg_data = (unsigned long)memcg; - } + for (i = 1; i < nr; i++) + head[i].memcg_data = head->memcg_data; + css_get_many(&memcg->css, nr - 1); } -#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #ifdef CONFIG_MEMCG_SWAP /** @@ -4072,10 +4056,6 @@ static int memcg_stat_show(struct seq_file *m, void *v) if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) continue; nr = memcg_page_state_local(memcg, memcg1_stats[i]); -#ifdef CONFIG_TRANSPARENT_HUGEPAGE - if (memcg1_stats[i] == NR_ANON_THPS) - nr *= HPAGE_PMD_NR; -#endif seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); } @@ -4106,10 +4086,6 @@ static int memcg_stat_show(struct seq_file *m, void *v) if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) continue; nr = memcg_page_state(memcg, memcg1_stats[i]); -#ifdef CONFIG_TRANSPARENT_HUGEPAGE - if (memcg1_stats[i] == NR_ANON_THPS) - nr *= HPAGE_PMD_NR; -#endif seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], (u64)nr * PAGE_SIZE); } @@ -4897,7 +4873,7 @@ static ssize_t memcg_write_event_control(struct kernfs_open_file *of, /* the process need read permission on control file */ /* AV: shouldn't we check that it's been opened for read instead? */ - ret = inode_permission(file_inode(cfile.file), MAY_READ); + ret = file_permission(cfile.file, MAY_READ); if (ret < 0) goto out_put_cfile; @@ -5193,7 +5169,7 @@ static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) return 1; } - pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat, + pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat, GFP_KERNEL_ACCOUNT); if (!pn->lruvec_stat_cpu) { free_percpu(pn->lruvec_stat_local); @@ -5642,7 +5618,6 @@ static int mem_cgroup_move_account(struct page *page, __mod_lruvec_state(to_vec, NR_ANON_THPS, nr_pages); } - } } else { __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); @@ -6393,6 +6368,12 @@ static int memory_stat_show(struct seq_file *m, void *v) } #ifdef CONFIG_NUMA +static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, + int item) +{ + return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); +} + static int memory_numa_stat_show(struct seq_file *m, void *v) { int i; @@ -6410,8 +6391,8 @@ static int memory_numa_stat_show(struct seq_file *m, void *v) struct lruvec *lruvec; lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); - size = lruvec_page_state(lruvec, memory_stats[i].idx); - size *= memory_stats[i].ratio; + size = lruvec_page_state_output(lruvec, + memory_stats[i].idx); seq_printf(m, " N%d=%llu", nid, size); } seq_putc(m, '\n'); @@ -6760,7 +6741,19 @@ int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) memcg_check_events(memcg, page); local_irq_enable(); - if (PageSwapCache(page)) { + /* + * Cgroup1's unified memory+swap counter has been charged with the + * new swapcache page, finish the transfer by uncharging the swap + * slot. The swap slot would also get uncharged when it dies, but + * it can stick around indefinitely and we'd count the page twice + * the entire time. + * + * Cgroup2 has separate resource counters for memory and swap, + * so this is a non-issue here. Memory and swap charge lifetimes + * correspond 1:1 to page and swap slot lifetimes: we charge the + * page to memory here, and uncharge swap when the slot is freed. + */ + if (do_memsw_account() && PageSwapCache(page)) { swp_entry_t entry = { .val = page_private(page) }; /* * The swap entry might not get freed for a long time, @@ -6851,31 +6844,6 @@ static void uncharge_page(struct page *page, struct uncharge_gather *ug) css_put(&ug->memcg->css); } -static void uncharge_list(struct list_head *page_list) -{ - struct uncharge_gather ug; - struct list_head *next; - - uncharge_gather_clear(&ug); - - /* - * Note that the list can be a single page->lru; hence the - * do-while loop instead of a simple list_for_each_entry(). - */ - next = page_list->next; - do { - struct page *page; - - page = list_entry(next, struct page, lru); - next = page->lru.next; - - uncharge_page(page, &ug); - } while (next != page_list); - - if (ug.memcg) - uncharge_batch(&ug); -} - /** * mem_cgroup_uncharge - uncharge a page * @page: page to uncharge @@ -6907,11 +6875,17 @@ void mem_cgroup_uncharge(struct page *page) */ void mem_cgroup_uncharge_list(struct list_head *page_list) { + struct uncharge_gather ug; + struct page *page; + if (mem_cgroup_disabled()) return; - if (!list_empty(page_list)) - uncharge_list(page_list); + uncharge_gather_clear(&ug); + list_for_each_entry(page, page_list, lru) + uncharge_page(page, &ug); + if (ug.memcg) + uncharge_batch(&ug); } /** @@ -7078,6 +7052,14 @@ static int __init mem_cgroup_init(void) { int cpu, node; + /* + * Currently s32 type (can refer to struct batched_lruvec_stat) is + * used for per-memcg-per-cpu caching of per-node statistics. In order + * to work fine, we should make sure that the overfill threshold can't + * exceed S32_MAX / PAGE_SIZE. + */ + BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); + cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, memcg_hotplug_cpu_dead); diff --git a/mm/memory-failure.c b/mm/memory-failure.c index e9481632fcd1..24210c9bd843 100644 --- a/mm/memory-failure.c +++ b/mm/memory-failure.c @@ -243,9 +243,13 @@ static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) pfn, t->comm, t->pid); if (flags & MF_ACTION_REQUIRED) { - WARN_ON_ONCE(t != current); - ret = force_sig_mceerr(BUS_MCEERR_AR, + if (t == current) + ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr, addr_lsb); + else + /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */ + ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, + addr_lsb, t); } else { /* * Don't use force here, it's convenient if the signal @@ -440,26 +444,26 @@ static struct task_struct *find_early_kill_thread(struct task_struct *tsk) * Determine whether a given process is "early kill" process which expects * to be signaled when some page under the process is hwpoisoned. * Return task_struct of the dedicated thread (main thread unless explicitly - * specified) if the process is "early kill," and otherwise returns NULL. + * specified) if the process is "early kill" and otherwise returns NULL. * - * Note that the above is true for Action Optional case, but not for Action - * Required case where SIGBUS should sent only to the current thread. + * Note that the above is true for Action Optional case. For Action Required + * case, it's only meaningful to the current thread which need to be signaled + * with SIGBUS, this error is Action Optional for other non current + * processes sharing the same error page,if the process is "early kill", the + * task_struct of the dedicated thread will also be returned. */ static struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) { if (!tsk->mm) return NULL; - if (force_early) { - /* - * Comparing ->mm here because current task might represent - * a subthread, while tsk always points to the main thread. - */ - if (tsk->mm == current->mm) - return current; - else - return NULL; - } + /* + * Comparing ->mm here because current task might represent + * a subthread, while tsk always points to the main thread. + */ + if (force_early && tsk->mm == current->mm) + return current; + return find_early_kill_thread(tsk); } @@ -1308,6 +1312,12 @@ static int memory_failure_dev_pagemap(unsigned long pfn, int flags, */ put_page(page); + /* device metadata space is not recoverable */ + if (!pgmap_pfn_valid(pgmap, pfn)) { + rc = -ENXIO; + goto out; + } + /* * Prevent the inode from being freed while we are interrogating * the address_space, typically this would be handled by diff --git a/mm/memory.c b/mm/memory.c index c32318dc11d4..5efa07fb6cdc 100644 --- a/mm/memory.c +++ b/mm/memory.c @@ -809,12 +809,8 @@ copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, struct page **prealloc, pte_t pte, struct page *page) { - struct mm_struct *src_mm = src_vma->vm_mm; struct page *new_page; - if (!is_cow_mapping(src_vma->vm_flags)) - return 1; - /* * What we want to do is to check whether this page may * have been pinned by the parent process. If so, @@ -828,9 +824,7 @@ copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma * the page count. That might give false positives for * for pinning, but it will work correctly. */ - if (likely(!atomic_read(&src_mm->has_pinned))) - return 1; - if (likely(!page_maybe_dma_pinned(page))) + if (likely(!page_needs_cow_for_dma(src_vma, page))) return 1; new_page = *prealloc; @@ -2177,11 +2171,11 @@ static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { - pte_t *pte; + pte_t *pte, *mapped_pte; spinlock_t *ptl; int err = 0; - pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); + mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; arch_enter_lazy_mmu_mode(); @@ -2195,7 +2189,7 @@ static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, pfn++; } while (pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); - pte_unmap_unlock(pte - 1, ptl); + pte_unmap_unlock(mapped_pte, ptl); return err; } @@ -2394,18 +2388,18 @@ static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, pte_fn_t fn, void *data, bool create, pgtbl_mod_mask *mask) { - pte_t *pte; + pte_t *pte, *mapped_pte; int err = 0; spinlock_t *ptl; if (create) { - pte = (mm == &init_mm) ? + mapped_pte = pte = (mm == &init_mm) ? pte_alloc_kernel_track(pmd, addr, mask) : pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; } else { - pte = (mm == &init_mm) ? + mapped_pte = pte = (mm == &init_mm) ? pte_offset_kernel(pmd, addr) : pte_offset_map_lock(mm, pmd, addr, &ptl); } @@ -2428,7 +2422,7 @@ static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, arch_leave_lazy_mmu_mode(); if (mm != &init_mm) - pte_unmap_unlock(pte-1, ptl); + pte_unmap_unlock(mapped_pte, ptl); return err; } @@ -2902,7 +2896,6 @@ static vm_fault_t wp_page_copy(struct vm_fault *vmf) } flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); entry = mk_pte(new_page, vma->vm_page_prot); - entry = pte_sw_mkyoung(entry); entry = maybe_mkwrite(pte_mkdirty(entry), vma); /* @@ -3104,6 +3097,14 @@ static vm_fault_t do_wp_page(struct vm_fault *vmf) return handle_userfault(vmf, VM_UFFD_WP); } + /* + * Userfaultfd write-protect can defer flushes. Ensure the TLB + * is flushed in this case before copying. + */ + if (unlikely(userfaultfd_wp(vmf->vma) && + mm_tlb_flush_pending(vmf->vma->vm_mm))) + flush_tlb_page(vmf->vma, vmf->address); + vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); if (!vmf->page) { /* @@ -3560,7 +3561,6 @@ static vm_fault_t do_anonymous_page(struct vm_fault *vmf) __SetPageUptodate(page); entry = mk_pte(page, vma->vm_page_prot); - entry = pte_sw_mkyoung(entry); if (vma->vm_flags & VM_WRITE) entry = pte_mkwrite(pte_mkdirty(entry)); @@ -3745,8 +3745,6 @@ void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) if (prefault && arch_wants_old_prefaulted_pte()) entry = pte_mkold(entry); - else - entry = pte_sw_mkyoung(entry); if (write) entry = maybe_mkwrite(pte_mkdirty(entry), vma); @@ -4798,28 +4796,68 @@ out: return ret; } +/** + * generic_access_phys - generic implementation for iomem mmap access + * @vma: the vma to access + * @addr: userspace addres, not relative offset within @vma + * @buf: buffer to read/write + * @len: length of transfer + * @write: set to FOLL_WRITE when writing, otherwise reading + * + * This is a generic implementation for &vm_operations_struct.access for an + * iomem mapping. This callback is used by access_process_vm() when the @vma is + * not page based. + */ int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write) { resource_size_t phys_addr; unsigned long prot = 0; void __iomem *maddr; - int offset = addr & (PAGE_SIZE-1); + pte_t *ptep, pte; + spinlock_t *ptl; + int offset = offset_in_page(addr); + int ret = -EINVAL; - if (follow_phys(vma, addr, write, &prot, &phys_addr)) + if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) + return -EINVAL; + +retry: + if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) + return -EINVAL; + pte = *ptep; + pte_unmap_unlock(ptep, ptl); + + prot = pgprot_val(pte_pgprot(pte)); + phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; + + if ((write & FOLL_WRITE) && !pte_write(pte)) return -EINVAL; maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); if (!maddr) return -ENOMEM; + if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) + goto out_unmap; + + if (!pte_same(pte, *ptep)) { + pte_unmap_unlock(ptep, ptl); + iounmap(maddr); + + goto retry; + } + if (write) memcpy_toio(maddr + offset, buf, len); else memcpy_fromio(buf, maddr + offset, len); + ret = len; + pte_unmap_unlock(ptep, ptl); +out_unmap: iounmap(maddr); - return len; + return ret; } EXPORT_SYMBOL_GPL(generic_access_phys); #endif @@ -5137,17 +5175,19 @@ long copy_huge_page_from_user(struct page *dst_page, void *page_kaddr; unsigned long i, rc = 0; unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; + struct page *subpage = dst_page; - for (i = 0; i < pages_per_huge_page; i++) { + for (i = 0; i < pages_per_huge_page; + i++, subpage = mem_map_next(subpage, dst_page, i)) { if (allow_pagefault) - page_kaddr = kmap(dst_page + i); + page_kaddr = kmap(subpage); else - page_kaddr = kmap_atomic(dst_page + i); + page_kaddr = kmap_atomic(subpage); rc = copy_from_user(page_kaddr, (const void __user *)(src + i * PAGE_SIZE), PAGE_SIZE); if (allow_pagefault) - kunmap(dst_page + i); + kunmap(subpage); else kunmap_atomic(page_kaddr); diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c index f9d57b9be8c7..0cdbbfbc5757 100644 --- a/mm/memory_hotplug.c +++ b/mm/memory_hotplug.c @@ -67,17 +67,17 @@ void put_online_mems(void) bool movable_node_enabled = false; #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE -int memhp_default_online_type = MMOP_OFFLINE; +int mhp_default_online_type = MMOP_OFFLINE; #else -int memhp_default_online_type = MMOP_ONLINE; +int mhp_default_online_type = MMOP_ONLINE; #endif static int __init setup_memhp_default_state(char *str) { - const int online_type = memhp_online_type_from_str(str); + const int online_type = mhp_online_type_from_str(str); if (online_type >= 0) - memhp_default_online_type = online_type; + mhp_default_online_type = online_type; return 1; } @@ -107,6 +107,9 @@ static struct resource *register_memory_resource(u64 start, u64 size, if (strcmp(resource_name, "System RAM")) flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; + if (!mhp_range_allowed(start, size, true)) + return ERR_PTR(-E2BIG); + /* * Make sure value parsed from 'mem=' only restricts memory adding * while booting, so that memory hotplug won't be impacted. Please @@ -284,21 +287,53 @@ static int check_pfn_span(unsigned long pfn, unsigned long nr_pages, return 0; } -static int check_hotplug_memory_addressable(unsigned long pfn, - unsigned long nr_pages) +/* + * Return page for the valid pfn only if the page is online. All pfn + * walkers which rely on the fully initialized page->flags and others + * should use this rather than pfn_valid && pfn_to_page + */ +struct page *pfn_to_online_page(unsigned long pfn) { - const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1; + unsigned long nr = pfn_to_section_nr(pfn); + struct dev_pagemap *pgmap; + struct mem_section *ms; - if (max_addr >> MAX_PHYSMEM_BITS) { - const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1; - WARN(1, - "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n", - (u64)PFN_PHYS(pfn), max_addr, max_allowed); - return -E2BIG; - } + if (nr >= NR_MEM_SECTIONS) + return NULL; - return 0; + ms = __nr_to_section(nr); + if (!online_section(ms)) + return NULL; + + /* + * Save some code text when online_section() + + * pfn_section_valid() are sufficient. + */ + if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn)) + return NULL; + + if (!pfn_section_valid(ms, pfn)) + return NULL; + + if (!online_device_section(ms)) + return pfn_to_page(pfn); + + /* + * Slowpath: when ZONE_DEVICE collides with + * ZONE_{NORMAL,MOVABLE} within the same section some pfns in + * the section may be 'offline' but 'valid'. Only + * get_dev_pagemap() can determine sub-section online status. + */ + pgmap = get_dev_pagemap(pfn, NULL); + put_dev_pagemap(pgmap); + + /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */ + if (pgmap) + return NULL; + + return pfn_to_page(pfn); } +EXPORT_SYMBOL_GPL(pfn_to_online_page); /* * Reasonably generic function for adding memory. It is @@ -317,9 +352,7 @@ int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, if (WARN_ON_ONCE(!params->pgprot.pgprot)) return -EINVAL; - err = check_hotplug_memory_addressable(pfn, nr_pages); - if (err) - return err; + VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false)); if (altmap) { /* @@ -445,20 +478,19 @@ static void update_pgdat_span(struct pglist_data *pgdat) for (zone = pgdat->node_zones; zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { - unsigned long zone_end_pfn = zone->zone_start_pfn + - zone->spanned_pages; + unsigned long end_pfn = zone_end_pfn(zone); /* No need to lock the zones, they can't change. */ if (!zone->spanned_pages) continue; if (!node_end_pfn) { node_start_pfn = zone->zone_start_pfn; - node_end_pfn = zone_end_pfn; + node_end_pfn = end_pfn; continue; } - if (zone_end_pfn > node_end_pfn) - node_end_pfn = zone_end_pfn; + if (end_pfn > node_end_pfn) + node_end_pfn = end_pfn; if (zone->zone_start_pfn < node_start_pfn) node_start_pfn = zone->zone_start_pfn; } @@ -678,6 +710,14 @@ static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned lon pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; } + +static void section_taint_zone_device(unsigned long pfn) +{ + struct mem_section *ms = __pfn_to_section(pfn); + + ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE; +} + /* * Associate the pfn range with the given zone, initializing the memmaps * and resizing the pgdat/zone data to span the added pages. After this @@ -708,12 +748,25 @@ void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, pgdat_resize_unlock(pgdat, &flags); /* + * Subsection population requires care in pfn_to_online_page(). + * Set the taint to enable the slow path detection of + * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE} + * section. + */ + if (zone_is_zone_device(zone)) { + if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION)) + section_taint_zone_device(start_pfn); + if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)) + section_taint_zone_device(start_pfn + nr_pages); + } + + /* * TODO now we have a visible range of pages which are not associated * with their zone properly. Not nice but set_pfnblock_flags_mask * expects the zone spans the pfn range. All the pages in the range * are reserved so nobody should be touching them so we should be safe */ - memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 0, + memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0, MEMINIT_HOTPLUG, altmap, migratetype); set_zone_contiguous(zone); @@ -1007,7 +1060,7 @@ static int check_hotplug_memory_range(u64 start, u64 size) static int online_memory_block(struct memory_block *mem, void *arg) { - mem->online_type = memhp_default_online_type; + mem->online_type = mhp_default_online_type; return device_online(&mem->dev); } @@ -1019,7 +1072,7 @@ static int online_memory_block(struct memory_block *mem, void *arg) */ int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) { - struct mhp_params params = { .pgprot = PAGE_KERNEL }; + struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) }; u64 start, size; bool new_node = false; int ret; @@ -1084,11 +1137,11 @@ int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) * In case we're allowed to merge the resource, flag it and trigger * merging now that adding succeeded. */ - if (mhp_flags & MEMHP_MERGE_RESOURCE) + if (mhp_flags & MHP_MERGE_RESOURCE) merge_system_ram_resource(res); /* online pages if requested */ - if (memhp_default_online_type != MMOP_OFFLINE) + if (mhp_default_online_type != MMOP_OFFLINE) walk_memory_blocks(start, size, NULL, online_memory_block); return ret; @@ -1180,6 +1233,61 @@ out_unlock: } EXPORT_SYMBOL_GPL(add_memory_driver_managed); +/* + * Platforms should define arch_get_mappable_range() that provides + * maximum possible addressable physical memory range for which the + * linear mapping could be created. The platform returned address + * range must adhere to these following semantics. + * + * - range.start <= range.end + * - Range includes both end points [range.start..range.end] + * + * There is also a fallback definition provided here, allowing the + * entire possible physical address range in case any platform does + * not define arch_get_mappable_range(). + */ +struct range __weak arch_get_mappable_range(void) +{ + struct range mhp_range = { + .start = 0UL, + .end = -1ULL, + }; + return mhp_range; +} + +struct range mhp_get_pluggable_range(bool need_mapping) +{ + const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1; + struct range mhp_range; + + if (need_mapping) { + mhp_range = arch_get_mappable_range(); + if (mhp_range.start > max_phys) { + mhp_range.start = 0; + mhp_range.end = 0; + } + mhp_range.end = min_t(u64, mhp_range.end, max_phys); + } else { + mhp_range.start = 0; + mhp_range.end = max_phys; + } + return mhp_range; +} +EXPORT_SYMBOL_GPL(mhp_get_pluggable_range); + +bool mhp_range_allowed(u64 start, u64 size, bool need_mapping) +{ + struct range mhp_range = mhp_get_pluggable_range(need_mapping); + u64 end = start + size; + + if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end) + return true; + + pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n", + start, end, mhp_range.start, mhp_range.end); + return false; +} + #ifdef CONFIG_MEMORY_HOTREMOVE /* * Confirm all pages in a range [start, end) belong to the same zone (skipping @@ -1260,7 +1368,14 @@ static int scan_movable_pages(unsigned long start, unsigned long end, if (!PageHuge(page)) continue; head = compound_head(page); - if (page_huge_active(head)) + /* + * This test is racy as we hold no reference or lock. The + * hugetlb page could have been free'ed and head is no longer + * a hugetlb page before the following check. In such unlikely + * cases false positives and negatives are possible. Calling + * code must deal with these scenarios. + */ + if (HPageMigratable(head)) goto found; skip = compound_nr(head) - (page - head); pfn += skip - 1; diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 2c3a86502053..ab51132547b8 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -677,7 +677,7 @@ static int queue_pages_test_walk(unsigned long start, unsigned long end, unsigned long flags = qp->flags; /* range check first */ - VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma); + VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma); if (!qp->first) { qp->first = vma; @@ -875,6 +875,16 @@ static long do_set_mempolicy(unsigned short mode, unsigned short flags, goto out; } + if (flags & MPOL_F_NUMA_BALANCING) { + if (new && new->mode == MPOL_BIND) { + new->flags |= (MPOL_F_MOF | MPOL_F_MORON); + } else { + ret = -EINVAL; + mpol_put(new); + goto out; + } + } + ret = mpol_set_nodemask(new, nodes, scratch); if (ret) { mpol_put(new); @@ -2486,6 +2496,12 @@ int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long break; case MPOL_BIND: + /* Optimize placement among multiple nodes via NUMA balancing */ + if (pol->flags & MPOL_F_MORON) { + if (node_isset(thisnid, pol->v.nodes)) + break; + goto out; + } /* * allows binding to multiple nodes. diff --git a/mm/mempool.c b/mm/mempool.c index 624ed51b060f..79959fac27d7 100644 --- a/mm/mempool.c +++ b/mm/mempool.c @@ -104,7 +104,7 @@ static inline void poison_element(mempool_t *pool, void *element) static __always_inline void kasan_poison_element(mempool_t *pool, void *element) { if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) - kasan_slab_free_mempool(element, _RET_IP_); + kasan_slab_free_mempool(element); else if (pool->alloc == mempool_alloc_pages) kasan_free_pages(element, (unsigned long)pool->pool_data); } diff --git a/mm/memremap.c b/mm/memremap.c index 16b2fb482da1..7aa7d6e80ee5 100644 --- a/mm/memremap.c +++ b/mm/memremap.c @@ -80,6 +80,21 @@ static unsigned long pfn_first(struct dev_pagemap *pgmap, int range_id) return pfn + vmem_altmap_offset(pgmap_altmap(pgmap)); } +bool pgmap_pfn_valid(struct dev_pagemap *pgmap, unsigned long pfn) +{ + int i; + + for (i = 0; i < pgmap->nr_range; i++) { + struct range *range = &pgmap->ranges[i]; + + if (pfn >= PHYS_PFN(range->start) && + pfn <= PHYS_PFN(range->end)) + return pfn >= pfn_first(pgmap, i); + } + + return false; +} + static unsigned long pfn_end(struct dev_pagemap *pgmap, int range_id) { const struct range *range = &pgmap->ranges[range_id]; @@ -185,6 +200,7 @@ static void dev_pagemap_percpu_release(struct percpu_ref *ref) static int pagemap_range(struct dev_pagemap *pgmap, struct mhp_params *params, int range_id, int nid) { + const bool is_private = pgmap->type == MEMORY_DEVICE_PRIVATE; struct range *range = &pgmap->ranges[range_id]; struct dev_pagemap *conflict_pgmap; int error, is_ram; @@ -230,6 +246,11 @@ static int pagemap_range(struct dev_pagemap *pgmap, struct mhp_params *params, if (error) goto err_pfn_remap; + if (!mhp_range_allowed(range->start, range_len(range), !is_private)) { + error = -EINVAL; + goto err_pfn_remap; + } + mem_hotplug_begin(); /* @@ -243,7 +264,7 @@ static int pagemap_range(struct dev_pagemap *pgmap, struct mhp_params *params, * the CPU, we do want the linear mapping and thus use * arch_add_memory(). */ - if (pgmap->type == MEMORY_DEVICE_PRIVATE) { + if (is_private) { error = add_pages(nid, PHYS_PFN(range->start), PHYS_PFN(range_len(range)), params); } else { diff --git a/mm/migrate.c b/mm/migrate.c index 20ca887ea769..62b81d5257aa 100644 --- a/mm/migrate.c +++ b/mm/migrate.c @@ -331,7 +331,7 @@ void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep, if (!get_page_unless_zero(page)) goto out; pte_unmap_unlock(ptep, ptl); - put_and_wait_on_page_locked(page); + put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); return; out: pte_unmap_unlock(ptep, ptl); @@ -365,7 +365,7 @@ void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd) if (!get_page_unless_zero(page)) goto unlock; spin_unlock(ptl); - put_and_wait_on_page_locked(page); + put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE); return; unlock: spin_unlock(ptl); @@ -500,6 +500,12 @@ int migrate_page_move_mapping(struct address_space *mapping, __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr); __mod_lruvec_state(new_lruvec, NR_SHMEM, nr); } +#ifdef CONFIG_SWAP + if (PageSwapCache(page)) { + __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr); + __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr); + } +#endif if (dirty && mapping_can_writeback(mapping)) { __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr); __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr); diff --git a/mm/mincore.c b/mm/mincore.c index 02db1a834021..9122676b54d6 100644 --- a/mm/mincore.c +++ b/mm/mincore.c @@ -166,8 +166,9 @@ static inline bool can_do_mincore(struct vm_area_struct *vma) * for writing; otherwise we'd be including shared non-exclusive * mappings, which opens a side channel. */ - return inode_owner_or_capable(file_inode(vma->vm_file)) || - inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0; + return inode_owner_or_capable(&init_user_ns, + file_inode(vma->vm_file)) || + file_permission(vma->vm_file, MAY_WRITE) == 0; } static const struct mm_walk_ops mincore_walk_ops = { diff --git a/mm/mlock.c b/mm/mlock.c index 55b3b3672977..f8f8cc32d03d 100644 --- a/mm/mlock.c +++ b/mm/mlock.c @@ -278,8 +278,7 @@ static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) */ if (TestClearPageLRU(page)) { lruvec = relock_page_lruvec_irq(page, lruvec); - del_page_from_lru_list(page, lruvec, - page_lru(page)); + del_page_from_lru_list(page, lruvec); continue; } else __munlock_isolation_failed(page); @@ -623,7 +622,7 @@ static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm, vma = find_vma(mm, start); if (vma == NULL) - vma = mm->mmap; + return 0; for (; vma ; vma = vma->vm_next) { if (start >= vma->vm_end) diff --git a/mm/mmap.c b/mm/mmap.c index 90673febce6a..3f287599a7a3 100644 --- a/mm/mmap.c +++ b/mm/mmap.c @@ -189,7 +189,6 @@ static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long struct list_head *uf); SYSCALL_DEFINE1(brk, unsigned long, brk) { - unsigned long retval; unsigned long newbrk, oldbrk, origbrk; struct mm_struct *mm = current->mm; struct vm_area_struct *next; @@ -281,9 +280,8 @@ success: return brk; out: - retval = origbrk; mmap_write_unlock(mm); - return retval; + return origbrk; } static inline unsigned long vma_compute_gap(struct vm_area_struct *vma) diff --git a/mm/mmu_notifier.c b/mm/mmu_notifier.c index 61ee40ed804e..459d195d2ff6 100644 --- a/mm/mmu_notifier.c +++ b/mm/mmu_notifier.c @@ -501,10 +501,33 @@ static int mn_hlist_invalidate_range_start( ""); WARN_ON(mmu_notifier_range_blockable(range) || _ret != -EAGAIN); + /* + * We call all the notifiers on any EAGAIN, + * there is no way for a notifier to know if + * its start method failed, thus a start that + * does EAGAIN can't also do end. + */ + WARN_ON(ops->invalidate_range_end); ret = _ret; } } } + + if (ret) { + /* + * Must be non-blocking to get here. If there are multiple + * notifiers and one or more failed start, any that succeeded + * start are expecting their end to be called. Do so now. + */ + hlist_for_each_entry_rcu(subscription, &subscriptions->list, + hlist, srcu_read_lock_held(&srcu)) { + if (!subscription->ops->invalidate_range_end) + continue; + + subscription->ops->invalidate_range_end(subscription, + range); + } + } srcu_read_unlock(&srcu, id); return ret; diff --git a/mm/mprotect.c b/mm/mprotect.c index ab709023e9aa..94188df1ee55 100644 --- a/mm/mprotect.c +++ b/mm/mprotect.c @@ -617,10 +617,11 @@ static int do_mprotect_pkey(unsigned long start, size_t len, if (tmp > end) tmp = end; - if (vma->vm_ops && vma->vm_ops->mprotect) + if (vma->vm_ops && vma->vm_ops->mprotect) { error = vma->vm_ops->mprotect(vma, nstart, tmp, newflags); - if (error) - goto out; + if (error) + goto out; + } error = mprotect_fixup(vma, &prev, nstart, tmp, newflags); if (error) diff --git a/mm/mremap.c b/mm/mremap.c index 47192691fe32..ec8f840399ed 100644 --- a/mm/mremap.c +++ b/mm/mremap.c @@ -593,6 +593,14 @@ static unsigned long move_vma(struct vm_area_struct *vma, /* We always clear VM_LOCKED[ONFAULT] on the old vma */ vma->vm_flags &= VM_LOCKED_CLEAR_MASK; + /* + * anon_vma links of the old vma is no longer needed after its page + * table has been moved. + */ + if (new_vma != vma && vma->vm_start == old_addr && + vma->vm_end == (old_addr + old_len)) + unlink_anon_vmas(vma); + /* Because we won't unmap we don't need to touch locked_vm */ return new_addr; } diff --git a/mm/oom_kill.c b/mm/oom_kill.c index c9a33ffe38b7..9efaf430cfd3 100644 --- a/mm/oom_kill.c +++ b/mm/oom_kill.c @@ -395,9 +395,8 @@ static int dump_task(struct task_struct *p, void *arg) task = find_lock_task_mm(p); if (!task) { /* - * This is a kthread or all of p's threads have already - * detached their mm's. There's no need to report - * them; they can't be oom killed anyway. + * All of p's threads have already detached their mm's. There's + * no need to report them; they can't be oom killed anyway. */ return 0; } diff --git a/mm/page-writeback.c b/mm/page-writeback.c index eb34d204d4ee..9e35b636a393 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c @@ -2833,6 +2833,22 @@ void wait_on_page_writeback(struct page *page) } EXPORT_SYMBOL_GPL(wait_on_page_writeback); +/* + * Wait for a page to complete writeback. Returns -EINTR if we get a + * fatal signal while waiting. + */ +int wait_on_page_writeback_killable(struct page *page) +{ + while (PageWriteback(page)) { + trace_wait_on_page_writeback(page, page_mapping(page)); + if (wait_on_page_bit_killable(page, PG_writeback)) + return -EINTR; + } + + return 0; +} +EXPORT_SYMBOL_GPL(wait_on_page_writeback_killable); + /** * wait_for_stable_page() - wait for writeback to finish, if necessary. * @page: The page to wait on. diff --git a/mm/page_alloc.c b/mm/page_alloc.c index ef5070fed76b..cfc72873961d 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -1282,6 +1282,12 @@ static __always_inline bool free_pages_prepare(struct page *page, kernel_poison_pages(page, 1 << order); /* + * With hardware tag-based KASAN, memory tags must be set before the + * page becomes unavailable via debug_pagealloc or arch_free_page. + */ + kasan_free_nondeferred_pages(page, order); + + /* * arch_free_page() can make the page's contents inaccessible. s390 * does this. So nothing which can access the page's contents should * happen after this. @@ -1290,8 +1296,6 @@ static __always_inline bool free_pages_prepare(struct page *page, debug_pagealloc_unmap_pages(page, 1 << order); - kasan_free_nondeferred_pages(page, order); - return true; } @@ -2168,6 +2172,7 @@ void __init init_cma_reserved_pageblock(struct page *page) } adjust_managed_page_count(page, pageblock_nr_pages); + page_zone(page)->cma_pages += pageblock_nr_pages; } #endif @@ -3309,6 +3314,7 @@ void split_page(struct page *page, unsigned int order) for (i = 1; i < (1 << order); i++) set_page_refcounted(page + i); split_page_owner(page, 1 << order); + split_page_memcg(page, 1 << order); } EXPORT_SYMBOL_GPL(split_page); @@ -5584,10 +5590,9 @@ void show_free_areas(unsigned int filter, nodemask_t *nodemask) K(node_page_state(pgdat, NR_WRITEBACK)), K(node_page_state(pgdat, NR_SHMEM)), #ifdef CONFIG_TRANSPARENT_HUGEPAGE - K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), - K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) - * HPAGE_PMD_NR), - K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), + K(node_page_state(pgdat, NR_SHMEM_THPS)), + K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), + K(node_page_state(pgdat, NR_ANON_THPS)), #endif K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), node_page_state(pgdat, NR_KERNEL_STACK_KB), @@ -6122,7 +6127,7 @@ overlap_memmap_init(unsigned long zone, unsigned long *pfn) * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related * zone stats (e.g., nr_isolate_pageblock) are touched. */ -void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, +void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, unsigned long start_pfn, unsigned long zone_end_pfn, enum meminit_context context, struct vmem_altmap *altmap, int migratetype) @@ -6259,24 +6264,97 @@ static void __meminit zone_init_free_lists(struct zone *zone) } } -void __meminit __weak memmap_init(unsigned long size, int nid, - unsigned long zone, - unsigned long range_start_pfn) +#if !defined(CONFIG_FLAT_NODE_MEM_MAP) +/* + * Only struct pages that correspond to ranges defined by memblock.memory + * are zeroed and initialized by going through __init_single_page() during + * memmap_init_zone(). + * + * But, there could be struct pages that correspond to holes in + * memblock.memory. This can happen because of the following reasons: + * - physical memory bank size is not necessarily the exact multiple of the + * arbitrary section size + * - early reserved memory may not be listed in memblock.memory + * - memory layouts defined with memmap= kernel parameter may not align + * nicely with memmap sections + * + * Explicitly initialize those struct pages so that: + * - PG_Reserved is set + * - zone and node links point to zone and node that span the page if the + * hole is in the middle of a zone + * - zone and node links point to adjacent zone/node if the hole falls on + * the zone boundary; the pages in such holes will be prepended to the + * zone/node above the hole except for the trailing pages in the last + * section that will be appended to the zone/node below. + */ +static u64 __meminit init_unavailable_range(unsigned long spfn, + unsigned long epfn, + int zone, int node) { + unsigned long pfn; + u64 pgcnt = 0; + + for (pfn = spfn; pfn < epfn; pfn++) { + if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { + pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) + + pageblock_nr_pages - 1; + continue; + } + __init_single_page(pfn_to_page(pfn), pfn, zone, node); + __SetPageReserved(pfn_to_page(pfn)); + pgcnt++; + } + + return pgcnt; +} +#else +static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn, + int zone, int node) +{ + return 0; +} +#endif + +void __meminit __weak memmap_init_zone(struct zone *zone) +{ + unsigned long zone_start_pfn = zone->zone_start_pfn; + unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; + int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone); + static unsigned long hole_pfn; unsigned long start_pfn, end_pfn; - unsigned long range_end_pfn = range_start_pfn + size; - int i; + u64 pgcnt = 0; for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { - start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); - end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); + start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); + end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); - if (end_pfn > start_pfn) { - size = end_pfn - start_pfn; - memmap_init_zone(size, nid, zone, start_pfn, range_end_pfn, - MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); - } + if (end_pfn > start_pfn) + memmap_init_range(end_pfn - start_pfn, nid, + zone_id, start_pfn, zone_end_pfn, + MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); + + if (hole_pfn < start_pfn) + pgcnt += init_unavailable_range(hole_pfn, start_pfn, + zone_id, nid); + hole_pfn = end_pfn; } + +#ifdef CONFIG_SPARSEMEM + /* + * Initialize the hole in the range [zone_end_pfn, section_end]. + * If zone boundary falls in the middle of a section, this hole + * will be re-initialized during the call to this function for the + * higher zone. + */ + end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION); + if (hole_pfn < end_pfn) + pgcnt += init_unavailable_range(hole_pfn, end_pfn, + zone_id, nid); +#endif + + if (pgcnt) + pr_info(" %s zone: %llu pages in unavailable ranges\n", + zone->name, pgcnt); } static int zone_batchsize(struct zone *zone) @@ -6768,25 +6846,22 @@ static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned l return usemapsize / 8; } -static void __ref setup_usemap(struct pglist_data *pgdat, - struct zone *zone, - unsigned long zone_start_pfn, - unsigned long zonesize) +static void __ref setup_usemap(struct zone *zone) { - unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); + unsigned long usemapsize = usemap_size(zone->zone_start_pfn, + zone->spanned_pages); zone->pageblock_flags = NULL; if (usemapsize) { zone->pageblock_flags = memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, - pgdat->node_id); + zone_to_nid(zone)); if (!zone->pageblock_flags) panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", - usemapsize, zone->name, pgdat->node_id); + usemapsize, zone->name, zone_to_nid(zone)); } } #else -static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, - unsigned long zone_start_pfn, unsigned long zonesize) {} +static inline void setup_usemap(struct zone *zone) {} #endif /* CONFIG_SPARSEMEM */ #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE @@ -6933,7 +7008,6 @@ static void __init free_area_init_core(struct pglist_data *pgdat) for (j = 0; j < MAX_NR_ZONES; j++) { struct zone *zone = pgdat->node_zones + j; unsigned long size, freesize, memmap_pages; - unsigned long zone_start_pfn = zone->zone_start_pfn; size = zone->spanned_pages; freesize = zone->present_pages; @@ -6981,9 +7055,9 @@ static void __init free_area_init_core(struct pglist_data *pgdat) continue; set_pageblock_order(); - setup_usemap(pgdat, zone, zone_start_pfn, size); - init_currently_empty_zone(zone, zone_start_pfn, size); - memmap_init(size, nid, j, zone_start_pfn); + setup_usemap(zone); + init_currently_empty_zone(zone, zone->zone_start_pfn, size); + memmap_init_zone(zone); } } @@ -7077,88 +7151,6 @@ void __init free_area_init_memoryless_node(int nid) free_area_init_node(nid); } -#if !defined(CONFIG_FLAT_NODE_MEM_MAP) -/* - * Initialize all valid struct pages in the range [spfn, epfn) and mark them - * PageReserved(). Return the number of struct pages that were initialized. - */ -static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn) -{ - unsigned long pfn; - u64 pgcnt = 0; - - for (pfn = spfn; pfn < epfn; pfn++) { - if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { - pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) - + pageblock_nr_pages - 1; - continue; - } - /* - * Use a fake node/zone (0) for now. Some of these pages - * (in memblock.reserved but not in memblock.memory) will - * get re-initialized via reserve_bootmem_region() later. - */ - __init_single_page(pfn_to_page(pfn), pfn, 0, 0); - __SetPageReserved(pfn_to_page(pfn)); - pgcnt++; - } - - return pgcnt; -} - -/* - * Only struct pages that are backed by physical memory are zeroed and - * initialized by going through __init_single_page(). But, there are some - * struct pages which are reserved in memblock allocator and their fields - * may be accessed (for example page_to_pfn() on some configuration accesses - * flags). We must explicitly initialize those struct pages. - * - * This function also addresses a similar issue where struct pages are left - * uninitialized because the physical address range is not covered by - * memblock.memory or memblock.reserved. That could happen when memblock - * layout is manually configured via memmap=, or when the highest physical - * address (max_pfn) does not end on a section boundary. - */ -static void __init init_unavailable_mem(void) -{ - phys_addr_t start, end; - u64 i, pgcnt; - phys_addr_t next = 0; - - /* - * Loop through unavailable ranges not covered by memblock.memory. - */ - pgcnt = 0; - for_each_mem_range(i, &start, &end) { - if (next < start) - pgcnt += init_unavailable_range(PFN_DOWN(next), - PFN_UP(start)); - next = end; - } - - /* - * Early sections always have a fully populated memmap for the whole - * section - see pfn_valid(). If the last section has holes at the - * end and that section is marked "online", the memmap will be - * considered initialized. Make sure that memmap has a well defined - * state. - */ - pgcnt += init_unavailable_range(PFN_DOWN(next), - round_up(max_pfn, PAGES_PER_SECTION)); - - /* - * Struct pages that do not have backing memory. This could be because - * firmware is using some of this memory, or for some other reasons. - */ - if (pgcnt) - pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); -} -#else -static inline void __init init_unavailable_mem(void) -{ -} -#endif /* !CONFIG_FLAT_NODE_MEM_MAP */ - #if MAX_NUMNODES > 1 /* * Figure out the number of possible node ids. @@ -7582,7 +7574,6 @@ void __init free_area_init(unsigned long *max_zone_pfn) /* Initialise every node */ mminit_verify_pageflags_layout(); setup_nr_node_ids(); - init_unavailable_mem(); for_each_online_node(nid) { pg_data_t *pgdat = NODE_DATA(nid); free_area_init_node(nid); @@ -7698,17 +7689,6 @@ unsigned long free_reserved_area(void *start, void *end, int poison, const char return pages; } -#ifdef CONFIG_HIGHMEM -void free_highmem_page(struct page *page) -{ - __free_reserved_page(page); - totalram_pages_inc(); - atomic_long_inc(&page_zone(page)->managed_pages); - totalhigh_pages_inc(); -} -#endif - - void __init mem_init_print_info(const char *str) { unsigned long physpages, codesize, datasize, rosize, bss_size; diff --git a/mm/page_io.c b/mm/page_io.c index 92f7941c6d01..c493ce9ebcf5 100644 --- a/mm/page_io.c +++ b/mm/page_io.c @@ -41,9 +41,9 @@ void end_swap_bio_write(struct bio *bio) * Also clear PG_reclaim to avoid rotate_reclaimable_page() */ set_page_dirty(page); - pr_alert("Write-error on swap-device (%u:%u:%llu)\n", - MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), - (unsigned long long)bio->bi_iter.bi_sector); + pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n", + MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), + (unsigned long long)bio->bi_iter.bi_sector); ClearPageReclaim(page); } end_page_writeback(page); @@ -106,9 +106,9 @@ static void end_swap_bio_read(struct bio *bio) if (bio->bi_status) { SetPageError(page); ClearPageUptodate(page); - pr_alert("Read-error on swap-device (%u:%u:%llu)\n", - MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), - (unsigned long long)bio->bi_iter.bi_sector); + pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n", + MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), + (unsigned long long)bio->bi_iter.bi_sector); goto out; } @@ -254,11 +254,6 @@ out: return ret; } -static sector_t swap_page_sector(struct page *page) -{ - return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9); -} - static inline void count_swpout_vm_event(struct page *page) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE diff --git a/mm/page_owner.c b/mm/page_owner.c index af464bb7fbe7..d15c7c4994f5 100644 --- a/mm/page_owner.c +++ b/mm/page_owner.c @@ -263,8 +263,8 @@ void pagetypeinfo_showmixedcount_print(struct seq_file *m, struct page *page; struct page_ext *page_ext; struct page_owner *page_owner; - unsigned long pfn = zone->zone_start_pfn, block_end_pfn; - unsigned long end_pfn = pfn + zone->spanned_pages; + unsigned long pfn, block_end_pfn; + unsigned long end_pfn = zone_end_pfn(zone); unsigned long count[MIGRATE_TYPES] = { 0, }; int pageblock_mt, page_mt; int i; diff --git a/mm/page_reporting.c b/mm/page_reporting.c index cd8e13d41df4..c50d93ffa252 100644 --- a/mm/page_reporting.c +++ b/mm/page_reporting.c @@ -211,7 +211,7 @@ page_reporting_cycle(struct page_reporting_dev_info *prdev, struct zone *zone, } /* Rotate any leftover pages to the head of the freelist */ - if (&next->lru != list && !list_is_first(&next->lru, list)) + if (!list_entry_is_head(next, list, lru) && !list_is_first(&next->lru, list)) list_rotate_to_front(&next->lru, list); spin_unlock_irq(&zone->lock); diff --git a/mm/percpu.c b/mm/percpu.c index ad7a37ee74ef..6596a0a4286e 100644 --- a/mm/percpu.c +++ b/mm/percpu.c @@ -69,6 +69,7 @@ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/bitmap.h> +#include <linux/cpumask.h> #include <linux/memblock.h> #include <linux/err.h> #include <linux/lcm.h> @@ -2662,13 +2663,14 @@ early_param("percpu_alloc", percpu_alloc_setup); * On success, pointer to the new allocation_info is returned. On * failure, ERR_PTR value is returned. */ -static struct pcpu_alloc_info * __init pcpu_build_alloc_info( +static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info( size_t reserved_size, size_t dyn_size, size_t atom_size, pcpu_fc_cpu_distance_fn_t cpu_distance_fn) { static int group_map[NR_CPUS] __initdata; static int group_cnt[NR_CPUS] __initdata; + static struct cpumask mask __initdata; const size_t static_size = __per_cpu_end - __per_cpu_start; int nr_groups = 1, nr_units = 0; size_t size_sum, min_unit_size, alloc_size; @@ -2681,6 +2683,7 @@ static struct pcpu_alloc_info * __init pcpu_build_alloc_info( /* this function may be called multiple times */ memset(group_map, 0, sizeof(group_map)); memset(group_cnt, 0, sizeof(group_cnt)); + cpumask_clear(&mask); /* calculate size_sum and ensure dyn_size is enough for early alloc */ size_sum = PFN_ALIGN(static_size + reserved_size + @@ -2702,24 +2705,27 @@ static struct pcpu_alloc_info * __init pcpu_build_alloc_info( upa--; max_upa = upa; + cpumask_copy(&mask, cpu_possible_mask); + /* group cpus according to their proximity */ - for_each_possible_cpu(cpu) { - group = 0; - next_group: - for_each_possible_cpu(tcpu) { - if (cpu == tcpu) - break; - if (group_map[tcpu] == group && cpu_distance_fn && - (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || - cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { - group++; - nr_groups = max(nr_groups, group + 1); - goto next_group; - } - } + for (group = 0; !cpumask_empty(&mask); group++) { + /* pop the group's first cpu */ + cpu = cpumask_first(&mask); group_map[cpu] = group; group_cnt[group]++; + cpumask_clear_cpu(cpu, &mask); + + for_each_cpu(tcpu, &mask) { + if (!cpu_distance_fn || + (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE && + cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) { + group_map[tcpu] = group; + group_cnt[group]++; + cpumask_clear_cpu(tcpu, &mask); + } + } } + nr_groups = group; /* * Wasted space is caused by a ratio imbalance of upa to group_cnt. diff --git a/mm/pgtable-generic.c b/mm/pgtable-generic.c index 9578db83e312..c2210e1cdb51 100644 --- a/mm/pgtable-generic.c +++ b/mm/pgtable-generic.c @@ -135,8 +135,9 @@ pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, unsigned long address, { pmd_t pmd; VM_BUG_ON(address & ~HPAGE_PMD_MASK); - VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) && - !pmd_devmap(*pmdp)) || !pmd_present(*pmdp)); + VM_BUG_ON(!pmd_present(*pmdp)); + /* Below assumes pmd_present() is true */ + VM_BUG_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); pmd = pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); return pmd; diff --git a/mm/rmap.c b/mm/rmap.c index 08c56aaf72eb..b0fc27e77d6d 100644 --- a/mm/rmap.c +++ b/mm/rmap.c @@ -168,7 +168,7 @@ static void anon_vma_chain_link(struct vm_area_struct *vma, * * Anon-vma allocations are very subtle, because we may have * optimistically looked up an anon_vma in page_lock_anon_vma_read() - * and that may actually touch the spinlock even in the newly + * and that may actually touch the rwsem even in the newly * allocated vma (it depends on RCU to make sure that the * anon_vma isn't actually destroyed). * @@ -359,7 +359,7 @@ int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) goto out_error_free_anon_vma; /* - * The root anon_vma's spinlock is the lock actually used when we + * The root anon_vma's rwsem is the lock actually used when we * lock any of the anon_vmas in this anon_vma tree. */ anon_vma->root = pvma->anon_vma->root; @@ -413,8 +413,15 @@ void unlink_anon_vmas(struct vm_area_struct *vma) list_del(&avc->same_vma); anon_vma_chain_free(avc); } - if (vma->anon_vma) + if (vma->anon_vma) { vma->anon_vma->degree--; + + /* + * vma would still be needed after unlink, and anon_vma will be prepared + * when handle fault. + */ + vma->anon_vma = NULL; + } unlock_anon_vma_root(root); /* @@ -455,8 +462,8 @@ void __init anon_vma_init(void) * Getting a lock on a stable anon_vma from a page off the LRU is tricky! * * Since there is no serialization what so ever against page_remove_rmap() - * the best this function can do is return a locked anon_vma that might - * have been relevant to this page. + * the best this function can do is return a refcount increased anon_vma + * that might have been relevant to this page. * * The page might have been remapped to a different anon_vma or the anon_vma * returned may already be freed (and even reused). @@ -1079,8 +1086,7 @@ static void __page_check_anon_rmap(struct page *page, * be set up correctly at this point. * * We have exclusion against page_add_anon_rmap because the caller - * always holds the page locked, except if called from page_dup_rmap, - * in which case the page is already known to be setup. + * always holds the page locked. * * We have exclusion against page_add_new_anon_rmap because those pages * are initially only visible via the pagetables, and the pte is locked @@ -1144,7 +1150,7 @@ void do_page_add_anon_rmap(struct page *page, * disabled. */ if (compound) - __inc_lruvec_page_state(page, NR_ANON_THPS); + __mod_lruvec_page_state(page, NR_ANON_THPS, nr); __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); } @@ -1186,7 +1192,7 @@ void page_add_new_anon_rmap(struct page *page, if (hpage_pincount_available(page)) atomic_set(compound_pincount_ptr(page), 0); - __inc_lruvec_page_state(page, NR_ANON_THPS); + __mod_lruvec_page_state(page, NR_ANON_THPS, nr); } else { /* Anon THP always mapped first with PMD */ VM_BUG_ON_PAGE(PageTransCompound(page), page); @@ -1211,16 +1217,20 @@ void page_add_file_rmap(struct page *page, bool compound) VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); lock_page_memcg(page); if (compound && PageTransHuge(page)) { - for (i = 0, nr = 0; i < thp_nr_pages(page); i++) { + int nr_pages = thp_nr_pages(page); + + for (i = 0, nr = 0; i < nr_pages; i++) { if (atomic_inc_and_test(&page[i]._mapcount)) nr++; } if (!atomic_inc_and_test(compound_mapcount_ptr(page))) goto out; if (PageSwapBacked(page)) - __inc_node_page_state(page, NR_SHMEM_PMDMAPPED); + __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, + nr_pages); else - __inc_node_page_state(page, NR_FILE_PMDMAPPED); + __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, + nr_pages); } else { if (PageTransCompound(page) && page_mapping(page)) { VM_WARN_ON_ONCE(!PageLocked(page)); @@ -1252,16 +1262,20 @@ static void page_remove_file_rmap(struct page *page, bool compound) /* page still mapped by someone else? */ if (compound && PageTransHuge(page)) { - for (i = 0, nr = 0; i < thp_nr_pages(page); i++) { + int nr_pages = thp_nr_pages(page); + + for (i = 0, nr = 0; i < nr_pages; i++) { if (atomic_add_negative(-1, &page[i]._mapcount)) nr++; } if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) return; if (PageSwapBacked(page)) - __dec_node_page_state(page, NR_SHMEM_PMDMAPPED); + __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, + -nr_pages); else - __dec_node_page_state(page, NR_FILE_PMDMAPPED); + __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, + -nr_pages); } else { if (!atomic_add_negative(-1, &page->_mapcount)) return; @@ -1292,7 +1306,7 @@ static void page_remove_anon_compound_rmap(struct page *page) if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) return; - __dec_lruvec_page_state(page, NR_ANON_THPS); + __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page)); if (TestClearPageDoubleMap(page)) { /* @@ -1722,9 +1736,9 @@ static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) return vma_is_temporary_stack(vma); } -static int page_mapcount_is_zero(struct page *page) +static int page_not_mapped(struct page *page) { - return !total_mapcount(page); + return !page_mapped(page); } /** @@ -1742,7 +1756,7 @@ bool try_to_unmap(struct page *page, enum ttu_flags flags) struct rmap_walk_control rwc = { .rmap_one = try_to_unmap_one, .arg = (void *)flags, - .done = page_mapcount_is_zero, + .done = page_not_mapped, .anon_lock = page_lock_anon_vma_read, }; @@ -1766,11 +1780,6 @@ bool try_to_unmap(struct page *page, enum ttu_flags flags) return !page_mapcount(page) ? true : false; } -static int page_not_mapped(struct page *page) -{ - return !page_mapped(page); -}; - /** * try_to_munlock - try to munlock a page * @page: the page to be munlocked diff --git a/mm/shmem.c b/mm/shmem.c index 1b254fbfdf52..b2db4ed0fbc7 100644 --- a/mm/shmem.c +++ b/mm/shmem.c @@ -713,7 +713,7 @@ next: } if (PageTransHuge(page)) { count_vm_event(THP_FILE_ALLOC); - __inc_lruvec_page_state(page, NR_SHMEM_THPS); + __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr); } mapping->nrpages += nr; __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); @@ -842,7 +842,6 @@ unsigned long shmem_swap_usage(struct vm_area_struct *vma) void shmem_unlock_mapping(struct address_space *mapping) { struct pagevec pvec; - pgoff_t indices[PAGEVEC_SIZE]; pgoff_t index = 0; pagevec_init(&pvec); @@ -850,16 +849,8 @@ void shmem_unlock_mapping(struct address_space *mapping) * Minor point, but we might as well stop if someone else SHM_LOCKs it. */ while (!mapping_unevictable(mapping)) { - /* - * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it - * has finished, if it hits a row of PAGEVEC_SIZE swap entries. - */ - pvec.nr = find_get_entries(mapping, index, - PAGEVEC_SIZE, pvec.pages, indices); - if (!pvec.nr) + if (!pagevec_lookup(&pvec, mapping, &index)) break; - index = indices[pvec.nr - 1] + 1; - pagevec_remove_exceptionals(&pvec); check_move_unevictable_pages(&pvec); pagevec_release(&pvec); cond_resched(); @@ -916,18 +907,12 @@ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, pagevec_init(&pvec); index = start; - while (index < end) { - pvec.nr = find_get_entries(mapping, index, - min(end - index, (pgoff_t)PAGEVEC_SIZE), - pvec.pages, indices); - if (!pvec.nr) - break; + while (index < end && find_lock_entries(mapping, index, end - 1, + &pvec, indices)) { for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; index = indices[i]; - if (index >= end) - break; if (xa_is_value(page)) { if (unfalloc) @@ -936,18 +921,10 @@ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, index, page); continue; } + index += thp_nr_pages(page) - 1; - VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); - - if (!trylock_page(page)) - continue; - - if ((!unfalloc || !PageUptodate(page)) && - page_mapping(page) == mapping) { - VM_BUG_ON_PAGE(PageWriteback(page), page); - if (shmem_punch_compound(page, start, end)) - truncate_inode_page(mapping, page); - } + if (!unfalloc || !PageUptodate(page)) + truncate_inode_page(mapping, page); unlock_page(page); } pagevec_remove_exceptionals(&pvec); @@ -988,10 +965,8 @@ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, while (index < end) { cond_resched(); - pvec.nr = find_get_entries(mapping, index, - min(end - index, (pgoff_t)PAGEVEC_SIZE), - pvec.pages, indices); - if (!pvec.nr) { + if (!find_get_entries(mapping, index, end - 1, &pvec, + indices)) { /* If all gone or hole-punch or unfalloc, we're done */ if (index == start || end != -1) break; @@ -1003,9 +978,6 @@ static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, struct page *page = pvec.pages[i]; index = indices[i]; - if (index >= end) - break; - if (xa_is_value(page)) { if (unfalloc) continue; @@ -1060,7 +1032,8 @@ void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) } EXPORT_SYMBOL_GPL(shmem_truncate_range); -static int shmem_getattr(const struct path *path, struct kstat *stat, +static int shmem_getattr(struct user_namespace *mnt_userns, + const struct path *path, struct kstat *stat, u32 request_mask, unsigned int query_flags) { struct inode *inode = path->dentry->d_inode; @@ -1072,7 +1045,7 @@ static int shmem_getattr(const struct path *path, struct kstat *stat, shmem_recalc_inode(inode); spin_unlock_irq(&info->lock); } - generic_fillattr(inode, stat); + generic_fillattr(&init_user_ns, inode, stat); if (is_huge_enabled(sb_info)) stat->blksize = HPAGE_PMD_SIZE; @@ -1080,14 +1053,15 @@ static int shmem_getattr(const struct path *path, struct kstat *stat, return 0; } -static int shmem_setattr(struct dentry *dentry, struct iattr *attr) +static int shmem_setattr(struct user_namespace *mnt_userns, + struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_inode(dentry); struct shmem_inode_info *info = SHMEM_I(inode); struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); int error; - error = setattr_prepare(dentry, attr); + error = setattr_prepare(&init_user_ns, dentry, attr); if (error) return error; @@ -1141,9 +1115,9 @@ static int shmem_setattr(struct dentry *dentry, struct iattr *attr) } } - setattr_copy(inode, attr); + setattr_copy(&init_user_ns, inode, attr); if (attr->ia_valid & ATTR_MODE) - error = posix_acl_chmod(inode, inode->i_mode); + error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); return error; } @@ -1531,6 +1505,30 @@ static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, return page; } +/* + * Make sure huge_gfp is always more limited than limit_gfp. + * Some of the flags set permissions, while others set limitations. + */ +static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) +{ + gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; + gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; + gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; + gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); + + /* Allow allocations only from the originally specified zones. */ + result |= zoneflags; + + /* + * Minimize the result gfp by taking the union with the deny flags, + * and the intersection of the allow flags. + */ + result |= (limit_gfp & denyflags); + result |= (huge_gfp & limit_gfp) & allowflags; + + return result; +} + static struct page *shmem_alloc_hugepage(gfp_t gfp, struct shmem_inode_info *info, pgoff_t index) { @@ -1545,8 +1543,8 @@ static struct page *shmem_alloc_hugepage(gfp_t gfp, return NULL; shmem_pseudo_vma_init(&pvma, info, hindex); - page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, - HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); + page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), + true); shmem_pseudo_vma_destroy(&pvma); if (page) prep_transhuge_page(page); @@ -1802,6 +1800,7 @@ static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, struct page *page; enum sgp_type sgp_huge = sgp; pgoff_t hindex = index; + gfp_t huge_gfp; int error; int once = 0; int alloced = 0; @@ -1819,7 +1818,8 @@ repeat: sbinfo = SHMEM_SB(inode->i_sb); charge_mm = vma ? vma->vm_mm : current->mm; - page = find_lock_entry(mapping, index); + page = pagecache_get_page(mapping, index, + FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0); if (xa_is_value(page)) { error = shmem_swapin_page(inode, index, &page, sgp, gfp, vma, fault_type); @@ -1887,7 +1887,9 @@ repeat: } alloc_huge: - page = shmem_alloc_and_acct_page(gfp, inode, index, true); + huge_gfp = vma_thp_gfp_mask(vma); + huge_gfp = limit_gfp_mask(huge_gfp, gfp); + page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true); if (IS_ERR(page)) { alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode, @@ -2303,7 +2305,7 @@ static struct inode *shmem_get_inode(struct super_block *sb, const struct inode inode = new_inode(sb); if (inode) { inode->i_ino = ino; - inode_init_owner(inode, dir, mode); + inode_init_owner(&init_user_ns, inode, dir, mode); inode->i_blocks = 0; inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); inode->i_generation = prandom_u32(); @@ -2674,86 +2676,20 @@ static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) return retval ? retval : error; } -/* - * llseek SEEK_DATA or SEEK_HOLE through the page cache. - */ -static pgoff_t shmem_seek_hole_data(struct address_space *mapping, - pgoff_t index, pgoff_t end, int whence) -{ - struct page *page; - struct pagevec pvec; - pgoff_t indices[PAGEVEC_SIZE]; - bool done = false; - int i; - - pagevec_init(&pvec); - pvec.nr = 1; /* start small: we may be there already */ - while (!done) { - pvec.nr = find_get_entries(mapping, index, - pvec.nr, pvec.pages, indices); - if (!pvec.nr) { - if (whence == SEEK_DATA) - index = end; - break; - } - for (i = 0; i < pvec.nr; i++, index++) { - if (index < indices[i]) { - if (whence == SEEK_HOLE) { - done = true; - break; - } - index = indices[i]; - } - page = pvec.pages[i]; - if (page && !xa_is_value(page)) { - if (!PageUptodate(page)) - page = NULL; - } - if (index >= end || - (page && whence == SEEK_DATA) || - (!page && whence == SEEK_HOLE)) { - done = true; - break; - } - } - pagevec_remove_exceptionals(&pvec); - pagevec_release(&pvec); - pvec.nr = PAGEVEC_SIZE; - cond_resched(); - } - return index; -} - static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) { struct address_space *mapping = file->f_mapping; struct inode *inode = mapping->host; - pgoff_t start, end; - loff_t new_offset; if (whence != SEEK_DATA && whence != SEEK_HOLE) return generic_file_llseek_size(file, offset, whence, MAX_LFS_FILESIZE, i_size_read(inode)); + if (offset < 0) + return -ENXIO; + inode_lock(inode); /* We're holding i_mutex so we can access i_size directly */ - - if (offset < 0 || offset >= inode->i_size) - offset = -ENXIO; - else { - start = offset >> PAGE_SHIFT; - end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; - new_offset = shmem_seek_hole_data(mapping, start, end, whence); - new_offset <<= PAGE_SHIFT; - if (new_offset > offset) { - if (new_offset < inode->i_size) - offset = new_offset; - else if (whence == SEEK_DATA) - offset = -ENXIO; - else - offset = inode->i_size; - } - } - + offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); if (offset >= 0) offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); inode_unlock(inode); @@ -2917,7 +2853,8 @@ static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) * File creation. Allocate an inode, and we're done.. */ static int -shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) +shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, + struct dentry *dentry, umode_t mode, dev_t dev) { struct inode *inode; int error = -ENOSPC; @@ -2946,7 +2883,8 @@ out_iput: } static int -shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) +shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, + struct dentry *dentry, umode_t mode) { struct inode *inode; int error = -ENOSPC; @@ -2969,20 +2907,22 @@ out_iput: return error; } -static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) +static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, + struct dentry *dentry, umode_t mode) { int error; - if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) + if ((error = shmem_mknod(&init_user_ns, dir, dentry, + mode | S_IFDIR, 0))) return error; inc_nlink(dir); return 0; } -static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, - bool excl) +static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, + struct dentry *dentry, umode_t mode, bool excl) { - return shmem_mknod(dir, dentry, mode | S_IFREG, 0); + return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); } /* @@ -3062,7 +3002,8 @@ static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, stru return 0; } -static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) +static int shmem_whiteout(struct user_namespace *mnt_userns, + struct inode *old_dir, struct dentry *old_dentry) { struct dentry *whiteout; int error; @@ -3071,7 +3012,7 @@ static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) if (!whiteout) return -ENOMEM; - error = shmem_mknod(old_dir, whiteout, + error = shmem_mknod(&init_user_ns, old_dir, whiteout, S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); dput(whiteout); if (error) @@ -3094,7 +3035,10 @@ static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) * it exists so that the VFS layer correctly free's it when it * gets overwritten. */ -static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) +static int shmem_rename2(struct user_namespace *mnt_userns, + struct inode *old_dir, struct dentry *old_dentry, + struct inode *new_dir, struct dentry *new_dentry, + unsigned int flags) { struct inode *inode = d_inode(old_dentry); int they_are_dirs = S_ISDIR(inode->i_mode); @@ -3111,7 +3055,7 @@ static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struc if (flags & RENAME_WHITEOUT) { int error; - error = shmem_whiteout(old_dir, old_dentry); + error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); if (error) return error; } @@ -3135,7 +3079,8 @@ static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struc return 0; } -static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) +static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, + struct dentry *dentry, const char *symname) { int error; int len; @@ -3273,6 +3218,7 @@ static int shmem_xattr_handler_get(const struct xattr_handler *handler, } static int shmem_xattr_handler_set(const struct xattr_handler *handler, + struct user_namespace *mnt_userns, struct dentry *unused, struct inode *inode, const char *name, const void *value, size_t size, int flags) diff --git a/mm/slab.c b/mm/slab.c index dcc55e78f353..ae651bf540b7 100644 --- a/mm/slab.c +++ b/mm/slab.c @@ -100,6 +100,7 @@ #include <linux/seq_file.h> #include <linux/notifier.h> #include <linux/kallsyms.h> +#include <linux/kfence.h> #include <linux/cpu.h> #include <linux/sysctl.h> #include <linux/module.h> @@ -272,7 +273,7 @@ static void kmem_cache_node_init(struct kmem_cache_node *parent) #define STATS_DEC_ACTIVE(x) ((x)->num_active--) #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) #define STATS_INC_GROWN(x) ((x)->grown++) -#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) +#define STATS_ADD_REAPED(x, y) ((x)->reaped += (y)) #define STATS_SET_HIGH(x) \ do { \ if ((x)->num_active > (x)->high_mark) \ @@ -296,7 +297,7 @@ static void kmem_cache_node_init(struct kmem_cache_node *parent) #define STATS_DEC_ACTIVE(x) do { } while (0) #define STATS_INC_ALLOCED(x) do { } while (0) #define STATS_INC_GROWN(x) do { } while (0) -#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) +#define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0) #define STATS_SET_HIGH(x) do { } while (0) #define STATS_INC_ERR(x) do { } while (0) #define STATS_INC_NODEALLOCS(x) do { } while (0) @@ -332,7 +333,7 @@ static int obj_offset(struct kmem_cache *cachep) static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) { BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); - return (unsigned long long*) (objp + obj_offset(cachep) - + return (unsigned long long *) (objp + obj_offset(cachep) - sizeof(unsigned long long)); } @@ -580,7 +581,7 @@ static int transfer_objects(struct array_cache *to, if (!nr) return 0; - memcpy(to->entry + to->avail, from->entry + from->avail -nr, + memcpy(to->entry + to->avail, from->entry + from->avail - nr, sizeof(void *) *nr); from->avail -= nr; @@ -1379,7 +1380,7 @@ static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, return NULL; } - account_slab_page(page, cachep->gfporder, cachep); + account_slab_page(page, cachep->gfporder, cachep, flags); __SetPageSlab(page); /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */ if (sk_memalloc_socks() && page_is_pfmemalloc(page)) @@ -1790,8 +1791,7 @@ static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) } slab_flags_t kmem_cache_flags(unsigned int object_size, - slab_flags_t flags, const char *name, - void (*ctor)(void *)) + slab_flags_t flags, const char *name) { return flags; } @@ -2738,7 +2738,7 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, #else #define kfree_debugcheck(x) do { } while(0) -#define cache_free_debugcheck(x,objp,z) (objp) +#define cache_free_debugcheck(x, objp, z) (objp) #endif static inline void fixup_objfreelist_debug(struct kmem_cache *cachep, @@ -2992,7 +2992,7 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags, void *objp, unsigned long caller) { WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO)); - if (!objp) + if (!objp || is_kfence_address(objp)) return objp; if (cachep->flags & SLAB_POISON) { check_poison_obj(cachep, objp); @@ -3025,7 +3025,7 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, return objp; } #else -#define cache_alloc_debugcheck_after(a,b,objp,d) (objp) +#define cache_alloc_debugcheck_after(a, b, objp, d) (objp) #endif static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) @@ -3209,7 +3209,7 @@ must_grow: } static __always_inline void * -slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, +slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, size_t orig_size, unsigned long caller) { unsigned long save_flags; @@ -3222,6 +3222,10 @@ slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, if (unlikely(!cachep)) return NULL; + ptr = kfence_alloc(cachep, orig_size, flags); + if (unlikely(ptr)) + goto out_hooks; + cache_alloc_debugcheck_before(cachep, flags); local_irq_save(save_flags); @@ -3254,6 +3258,7 @@ slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr) memset(ptr, 0, cachep->object_size); +out_hooks: slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr); return ptr; } @@ -3291,7 +3296,7 @@ __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) #endif /* CONFIG_NUMA */ static __always_inline void * -slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) +slab_alloc(struct kmem_cache *cachep, gfp_t flags, size_t orig_size, unsigned long caller) { unsigned long save_flags; void *objp; @@ -3302,6 +3307,10 @@ slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) if (unlikely(!cachep)) return NULL; + objp = kfence_alloc(cachep, orig_size, flags); + if (unlikely(objp)) + goto out; + cache_alloc_debugcheck_before(cachep, flags); local_irq_save(save_flags); objp = __do_cache_alloc(cachep, flags); @@ -3312,6 +3321,7 @@ slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller) if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp) memset(objp, 0, cachep->object_size); +out: slab_post_alloc_hook(cachep, objcg, flags, 1, &objp); return objp; } @@ -3417,11 +3427,17 @@ free_done: static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp, unsigned long caller) { + if (is_kfence_address(objp)) { + kmemleak_free_recursive(objp, cachep->flags); + __kfence_free(objp); + return; + } + if (unlikely(slab_want_init_on_free(cachep))) memset(objp, 0, cachep->object_size); /* Put the object into the quarantine, don't touch it for now. */ - if (kasan_slab_free(cachep, objp, _RET_IP_)) + if (kasan_slab_free(cachep, objp)) return; /* Use KCSAN to help debug racy use-after-free. */ @@ -3483,7 +3499,7 @@ void ___cache_free(struct kmem_cache *cachep, void *objp, */ void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) { - void *ret = slab_alloc(cachep, flags, _RET_IP_); + void *ret = slab_alloc(cachep, flags, cachep->object_size, _RET_IP_); trace_kmem_cache_alloc(_RET_IP_, ret, cachep->object_size, cachep->size, flags); @@ -3516,7 +3532,7 @@ int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, local_irq_disable(); for (i = 0; i < size; i++) { - void *objp = __do_cache_alloc(s, flags); + void *objp = kfence_alloc(s, s->object_size, flags) ?: __do_cache_alloc(s, flags); if (unlikely(!objp)) goto error; @@ -3549,7 +3565,7 @@ kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size) { void *ret; - ret = slab_alloc(cachep, flags, _RET_IP_); + ret = slab_alloc(cachep, flags, size, _RET_IP_); ret = kasan_kmalloc(cachep, ret, size, flags); trace_kmalloc(_RET_IP_, ret, @@ -3575,7 +3591,7 @@ EXPORT_SYMBOL(kmem_cache_alloc_trace); */ void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) { - void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); + void *ret = slab_alloc_node(cachep, flags, nodeid, cachep->object_size, _RET_IP_); trace_kmem_cache_alloc_node(_RET_IP_, ret, cachep->object_size, cachep->size, @@ -3593,7 +3609,7 @@ void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep, { void *ret; - ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_); + ret = slab_alloc_node(cachep, flags, nodeid, size, _RET_IP_); ret = kasan_kmalloc(cachep, ret, size, flags); trace_kmalloc_node(_RET_IP_, ret, @@ -3674,7 +3690,7 @@ static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, cachep = kmalloc_slab(size, flags); if (unlikely(ZERO_OR_NULL_PTR(cachep))) return cachep; - ret = slab_alloc(cachep, flags, caller); + ret = slab_alloc(cachep, flags, size, caller); ret = kasan_kmalloc(cachep, ret, size, flags); trace_kmalloc(caller, ret, @@ -3717,7 +3733,7 @@ void kmem_cache_free(struct kmem_cache *cachep, void *objp) __cache_free(cachep, objp, _RET_IP_); local_irq_restore(flags); - trace_kmem_cache_free(_RET_IP_, objp); + trace_kmem_cache_free(_RET_IP_, objp, cachep->name); } EXPORT_SYMBOL(kmem_cache_free); @@ -4173,7 +4189,10 @@ void __check_heap_object(const void *ptr, unsigned long n, struct page *page, BUG_ON(objnr >= cachep->num); /* Find offset within object. */ - offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); + if (is_kfence_address(ptr)) + offset = ptr - kfence_object_start(ptr); + else + offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep); /* Allow address range falling entirely within usercopy region. */ if (offset >= cachep->useroffset && diff --git a/mm/slab.h b/mm/slab.h index ecad9b57bc44..076582f58f68 100644 --- a/mm/slab.h +++ b/mm/slab.h @@ -110,8 +110,7 @@ __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, void (*ctor)(void *)); slab_flags_t kmem_cache_flags(unsigned int object_size, - slab_flags_t flags, const char *name, - void (*ctor)(void *)); + slab_flags_t flags, const char *name); #else static inline struct kmem_cache * __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, @@ -119,8 +118,7 @@ __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, { return NULL; } static inline slab_flags_t kmem_cache_flags(unsigned int object_size, - slab_flags_t flags, const char *name, - void (*ctor)(void *)) + slab_flags_t flags, const char *name) { return flags; } @@ -240,7 +238,7 @@ static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t fla #ifdef CONFIG_MEMCG_KMEM int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, - gfp_t gfp); + gfp_t gfp, bool new_page); static inline void memcg_free_page_obj_cgroups(struct page *page) { @@ -317,7 +315,8 @@ static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s, page = virt_to_head_page(p[i]); if (!page_objcgs(page) && - memcg_alloc_page_obj_cgroups(page, s, flags)) { + memcg_alloc_page_obj_cgroups(page, s, flags, + false)) { obj_cgroup_uncharge(objcg, obj_full_size(s)); continue; } @@ -381,7 +380,8 @@ static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr) } static inline int memcg_alloc_page_obj_cgroups(struct page *page, - struct kmem_cache *s, gfp_t gfp) + struct kmem_cache *s, gfp_t gfp, + bool new_page) { return 0; } @@ -422,8 +422,12 @@ static inline struct kmem_cache *virt_to_cache(const void *obj) } static __always_inline void account_slab_page(struct page *page, int order, - struct kmem_cache *s) + struct kmem_cache *s, + gfp_t gfp) { + if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT)) + memcg_alloc_page_obj_cgroups(page, s, gfp, true); + mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s), PAGE_SIZE << order); } diff --git a/mm/slab_common.c b/mm/slab_common.c index adbace4256ef..88e833986332 100644 --- a/mm/slab_common.c +++ b/mm/slab_common.c @@ -12,6 +12,7 @@ #include <linux/memory.h> #include <linux/cache.h> #include <linux/compiler.h> +#include <linux/kfence.h> #include <linux/module.h> #include <linux/cpu.h> #include <linux/uaccess.h> @@ -197,7 +198,7 @@ struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, size = ALIGN(size, sizeof(void *)); align = calculate_alignment(flags, align, size); size = ALIGN(size, align); - flags = kmem_cache_flags(size, flags, name, NULL); + flags = kmem_cache_flags(size, flags, name); if (flags & SLAB_NEVER_MERGE) return NULL; @@ -309,9 +310,6 @@ kmem_cache_create_usercopy(const char *name, const char *cache_name; int err; - get_online_cpus(); - get_online_mems(); - mutex_lock(&slab_mutex); err = kmem_cache_sanity_check(name, size); @@ -360,9 +358,6 @@ kmem_cache_create_usercopy(const char *name, out_unlock: mutex_unlock(&slab_mutex); - put_online_mems(); - put_online_cpus(); - if (err) { if (flags & SLAB_PANIC) panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", @@ -436,6 +431,7 @@ static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) rcu_barrier(); list_for_each_entry_safe(s, s2, &to_destroy, list) { + kfence_shutdown_cache(s); #ifdef SLAB_SUPPORTS_SYSFS sysfs_slab_release(s); #else @@ -461,6 +457,7 @@ static int shutdown_cache(struct kmem_cache *s) list_add_tail(&s->list, &slab_caches_to_rcu_destroy); schedule_work(&slab_caches_to_rcu_destroy_work); } else { + kfence_shutdown_cache(s); #ifdef SLAB_SUPPORTS_SYSFS sysfs_slab_unlink(s); sysfs_slab_release(s); @@ -486,9 +483,6 @@ void kmem_cache_destroy(struct kmem_cache *s) if (unlikely(!s)) return; - get_online_cpus(); - get_online_mems(); - mutex_lock(&slab_mutex); s->refcount--; @@ -503,9 +497,6 @@ void kmem_cache_destroy(struct kmem_cache *s) } out_unlock: mutex_unlock(&slab_mutex); - - put_online_mems(); - put_online_cpus(); } EXPORT_SYMBOL(kmem_cache_destroy); @@ -522,12 +513,10 @@ int kmem_cache_shrink(struct kmem_cache *cachep) { int ret; - get_online_cpus(); - get_online_mems(); + kasan_cache_shrink(cachep); ret = __kmem_cache_shrink(cachep); - put_online_mems(); - put_online_cpus(); + return ret; } EXPORT_SYMBOL(kmem_cache_shrink); @@ -654,6 +643,7 @@ struct kmem_cache *__init create_kmalloc_cache(const char *name, panic("Out of memory when creating slab %s\n", name); create_boot_cache(s, name, size, flags, useroffset, usersize); + kasan_cache_create_kmalloc(s); list_add(&s->list, &slab_caches); s->refcount = 1; return s; @@ -912,8 +902,8 @@ void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) page = alloc_pages(flags, order); if (likely(page)) { ret = page_address(page); - mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, - PAGE_SIZE << order); + mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, + PAGE_SIZE << order); } ret = kasan_kmalloc_large(ret, size, flags); /* As ret might get tagged, call kmemleak hook after KASAN. */ @@ -1146,16 +1136,27 @@ static __always_inline void *__do_krealloc(const void *p, size_t new_size, void *ret; size_t ks; - ks = ksize(p); + /* Don't use instrumented ksize to allow precise KASAN poisoning. */ + if (likely(!ZERO_OR_NULL_PTR(p))) { + if (!kasan_check_byte(p)) + return NULL; + ks = kfence_ksize(p) ?: __ksize(p); + } else + ks = 0; + /* If the object still fits, repoison it precisely. */ if (ks >= new_size) { p = kasan_krealloc((void *)p, new_size, flags); return (void *)p; } ret = kmalloc_track_caller(new_size, flags); - if (ret && p) - memcpy(ret, p, ks); + if (ret && p) { + /* Disable KASAN checks as the object's redzone is accessed. */ + kasan_disable_current(); + memcpy(ret, kasan_reset_tag(p), ks); + kasan_enable_current(); + } return ret; } @@ -1232,22 +1233,24 @@ size_t ksize(const void *objp) size_t size; /* - * We need to check that the pointed to object is valid, and only then - * unpoison the shadow memory below. We use __kasan_check_read(), to - * generate a more useful report at the time ksize() is called (rather - * than later where behaviour is undefined due to potential - * use-after-free or double-free). + * We need to first check that the pointer to the object is valid, and + * only then unpoison the memory. The report printed from ksize() is + * more useful, then when it's printed later when the behaviour could + * be undefined due to a potential use-after-free or double-free. + * + * We use kasan_check_byte(), which is supported for the hardware + * tag-based KASAN mode, unlike kasan_check_read/write(). * - * If the pointed to memory is invalid we return 0, to avoid users of + * If the pointed to memory is invalid, we return 0 to avoid users of * ksize() writing to and potentially corrupting the memory region. * * We want to perform the check before __ksize(), to avoid potentially * crashing in __ksize() due to accessing invalid metadata. */ - if (unlikely(ZERO_OR_NULL_PTR(objp)) || !__kasan_check_read(objp, 1)) + if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp)) return 0; - size = __ksize(objp); + size = kfence_ksize(objp) ?: __ksize(objp); /* * We assume that ksize callers could use whole allocated area, * so we need to unpoison this area. diff --git a/mm/slob.c b/mm/slob.c index ef87ada8705d..0578429b991b 100644 --- a/mm/slob.c +++ b/mm/slob.c @@ -673,7 +673,7 @@ void kmem_cache_free(struct kmem_cache *c, void *b) __kmem_cache_free(b, c->size); } - trace_kmem_cache_free(_RET_IP_, b); + trace_kmem_cache_free(_RET_IP_, b, c->name); } EXPORT_SYMBOL(kmem_cache_free); diff --git a/mm/slub.c b/mm/slub.c index f5baf429654f..3021ce9bf1b3 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -27,6 +27,7 @@ #include <linux/ctype.h> #include <linux/debugobjects.h> #include <linux/kallsyms.h> +#include <linux/kfence.h> #include <linux/memory.h> #include <linux/math64.h> #include <linux/fault-inject.h> @@ -235,6 +236,14 @@ static inline void stat(const struct kmem_cache *s, enum stat_item si) #endif } +/* + * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. + * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily + * differ during memory hotplug/hotremove operations. + * Protected by slab_mutex. + */ +static nodemask_t slab_nodes; + /******************************************************************** * Core slab cache functions *******************************************************************/ @@ -1400,7 +1409,6 @@ __setup("slub_debug", setup_slub_debug); * @object_size: the size of an object without meta data * @flags: flags to set * @name: name of the cache - * @ctor: constructor function * * Debug option(s) are applied to @flags. In addition to the debug * option(s), if a slab name (or multiple) is specified i.e. @@ -1408,13 +1416,21 @@ __setup("slub_debug", setup_slub_debug); * then only the select slabs will receive the debug option(s). */ slab_flags_t kmem_cache_flags(unsigned int object_size, - slab_flags_t flags, const char *name, - void (*ctor)(void *)) + slab_flags_t flags, const char *name) { char *iter; size_t len; char *next_block; slab_flags_t block_flags; + slab_flags_t slub_debug_local = slub_debug; + + /* + * If the slab cache is for debugging (e.g. kmemleak) then + * don't store user (stack trace) information by default, + * but let the user enable it via the command line below. + */ + if (flags & SLAB_NOLEAKTRACE) + slub_debug_local &= ~SLAB_STORE_USER; len = strlen(name); next_block = slub_debug_string; @@ -1449,7 +1465,7 @@ slab_flags_t kmem_cache_flags(unsigned int object_size, } } - return flags | slub_debug; + return flags | slub_debug_local; } #else /* !CONFIG_SLUB_DEBUG */ static inline void setup_object_debug(struct kmem_cache *s, @@ -1474,8 +1490,7 @@ static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) {} slab_flags_t kmem_cache_flags(unsigned int object_size, - slab_flags_t flags, const char *name, - void (*ctor)(void *)) + slab_flags_t flags, const char *name) { return flags; } @@ -1514,7 +1529,7 @@ static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) static __always_inline void kfree_hook(void *x) { kmemleak_free(x); - kasan_kfree_large(x, _RET_IP_); + kasan_kfree_large(x); } static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) @@ -1544,7 +1559,7 @@ static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); /* KASAN might put x into memory quarantine, delaying its reuse */ - return kasan_slab_free(s, x, _RET_IP_); + return kasan_slab_free(s, x); } static inline bool slab_free_freelist_hook(struct kmem_cache *s, @@ -1556,6 +1571,11 @@ static inline bool slab_free_freelist_hook(struct kmem_cache *s, void *old_tail = *tail ? *tail : *head; int rsize; + if (is_kfence_address(next)) { + slab_free_hook(s, next); + return true; + } + /* Head and tail of the reconstructed freelist */ *head = NULL; *tail = NULL; @@ -1771,7 +1791,7 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) page->objects = oo_objects(oo); - account_slab_page(page, oo_order(oo), s); + account_slab_page(page, oo_order(oo), s, flags); page->slab_cache = s; __SetPageSlab(page); @@ -1973,7 +1993,7 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, t = acquire_slab(s, n, page, object == NULL, &objects); if (!t) - continue; /* cmpxchg raced */ + break; available += objects; if (!object) { @@ -2153,9 +2173,9 @@ static void deactivate_slab(struct kmem_cache *s, struct page *page, { enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; struct kmem_cache_node *n = get_node(s, page_to_nid(page)); - int lock = 0; + int lock = 0, free_delta = 0; enum slab_modes l = M_NONE, m = M_NONE; - void *nextfree; + void *nextfree, *freelist_iter, *freelist_tail; int tail = DEACTIVATE_TO_HEAD; struct page new; struct page old; @@ -2166,45 +2186,34 @@ static void deactivate_slab(struct kmem_cache *s, struct page *page, } /* - * Stage one: Free all available per cpu objects back - * to the page freelist while it is still frozen. Leave the - * last one. - * - * There is no need to take the list->lock because the page - * is still frozen. + * Stage one: Count the objects on cpu's freelist as free_delta and + * remember the last object in freelist_tail for later splicing. */ - while (freelist && (nextfree = get_freepointer(s, freelist))) { - void *prior; - unsigned long counters; + freelist_tail = NULL; + freelist_iter = freelist; + while (freelist_iter) { + nextfree = get_freepointer(s, freelist_iter); /* * If 'nextfree' is invalid, it is possible that the object at - * 'freelist' is already corrupted. So isolate all objects - * starting at 'freelist'. + * 'freelist_iter' is already corrupted. So isolate all objects + * starting at 'freelist_iter' by skipping them. */ - if (freelist_corrupted(s, page, &freelist, nextfree)) + if (freelist_corrupted(s, page, &freelist_iter, nextfree)) break; - do { - prior = page->freelist; - counters = page->counters; - set_freepointer(s, freelist, prior); - new.counters = counters; - new.inuse--; - VM_BUG_ON(!new.frozen); - - } while (!__cmpxchg_double_slab(s, page, - prior, counters, - freelist, new.counters, - "drain percpu freelist")); + freelist_tail = freelist_iter; + free_delta++; - freelist = nextfree; + freelist_iter = nextfree; } /* - * Stage two: Ensure that the page is unfrozen while the - * list presence reflects the actual number of objects - * during unfreeze. + * Stage two: Unfreeze the page while splicing the per-cpu + * freelist to the head of page's freelist. + * + * Ensure that the page is unfrozen while the list presence + * reflects the actual number of objects during unfreeze. * * We setup the list membership and then perform a cmpxchg * with the count. If there is a mismatch then the page @@ -2217,15 +2226,15 @@ static void deactivate_slab(struct kmem_cache *s, struct page *page, */ redo: - old.freelist = page->freelist; - old.counters = page->counters; + old.freelist = READ_ONCE(page->freelist); + old.counters = READ_ONCE(page->counters); VM_BUG_ON(!old.frozen); /* Determine target state of the slab */ new.counters = old.counters; - if (freelist) { - new.inuse--; - set_freepointer(s, freelist, old.freelist); + if (freelist_tail) { + new.inuse -= free_delta; + set_freepointer(s, freelist_tail, old.freelist); new.freelist = freelist; } else new.freelist = old.freelist; @@ -2672,7 +2681,7 @@ static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, * ignore the node constraint */ if (unlikely(node != NUMA_NO_NODE && - !node_state(node, N_NORMAL_MEMORY))) + !node_isset(node, slab_nodes))) node = NUMA_NO_NODE; goto new_slab; } @@ -2683,7 +2692,7 @@ redo: * same as above but node_match() being false already * implies node != NUMA_NO_NODE */ - if (!node_state(node, N_NORMAL_MEMORY)) { + if (!node_isset(node, slab_nodes)) { node = NUMA_NO_NODE; goto redo; } else { @@ -2806,7 +2815,7 @@ static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, * Otherwise we can simply pick the next object from the lockless free list. */ static __always_inline void *slab_alloc_node(struct kmem_cache *s, - gfp_t gfpflags, int node, unsigned long addr) + gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) { void *object; struct kmem_cache_cpu *c; @@ -2817,6 +2826,11 @@ static __always_inline void *slab_alloc_node(struct kmem_cache *s, s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags); if (!s) return NULL; + + object = kfence_alloc(s, orig_size, gfpflags); + if (unlikely(object)) + goto out; + redo: /* * Must read kmem_cache cpu data via this cpu ptr. Preemption is @@ -2889,20 +2903,21 @@ redo: if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) memset(kasan_reset_tag(object), 0, s->object_size); +out: slab_post_alloc_hook(s, objcg, gfpflags, 1, &object); return object; } static __always_inline void *slab_alloc(struct kmem_cache *s, - gfp_t gfpflags, unsigned long addr) + gfp_t gfpflags, unsigned long addr, size_t orig_size) { - return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); + return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size); } void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) { - void *ret = slab_alloc(s, gfpflags, _RET_IP_); + void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size); trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags); @@ -2914,7 +2929,7 @@ EXPORT_SYMBOL(kmem_cache_alloc); #ifdef CONFIG_TRACING void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) { - void *ret = slab_alloc(s, gfpflags, _RET_IP_); + void *ret = slab_alloc(s, gfpflags, _RET_IP_, size); trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); ret = kasan_kmalloc(s, ret, size, gfpflags); return ret; @@ -2925,7 +2940,7 @@ EXPORT_SYMBOL(kmem_cache_alloc_trace); #ifdef CONFIG_NUMA void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) { - void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); + void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size); trace_kmem_cache_alloc_node(_RET_IP_, ret, s->object_size, s->size, gfpflags, node); @@ -2939,7 +2954,7 @@ void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) { - void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); + void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size); trace_kmalloc_node(_RET_IP_, ret, size, s->size, gfpflags, node); @@ -2973,6 +2988,9 @@ static void __slab_free(struct kmem_cache *s, struct page *page, stat(s, FREE_SLOWPATH); + if (kfence_free(head)) + return; + if (kmem_cache_debug(s) && !free_debug_processing(s, page, head, tail, cnt, addr)) return; @@ -3157,7 +3175,7 @@ void kmem_cache_free(struct kmem_cache *s, void *x) if (!s) return; slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); - trace_kmem_cache_free(_RET_IP_, x); + trace_kmem_cache_free(_RET_IP_, x, s->name); } EXPORT_SYMBOL(kmem_cache_free); @@ -3217,6 +3235,13 @@ int build_detached_freelist(struct kmem_cache *s, size_t size, df->s = cache_from_obj(s, object); /* Support for memcg */ } + if (is_kfence_address(object)) { + slab_free_hook(df->s, object); + __kfence_free(object); + p[size] = NULL; /* mark object processed */ + return size; + } + /* Start new detached freelist */ df->page = page; set_freepointer(df->s, object, NULL); @@ -3266,7 +3291,7 @@ void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) if (!df.page) continue; - slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); + slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_); } while (likely(size)); } EXPORT_SYMBOL(kmem_cache_free_bulk); @@ -3292,8 +3317,14 @@ int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, c = this_cpu_ptr(s->cpu_slab); for (i = 0; i < size; i++) { - void *object = c->freelist; + void *object = kfence_alloc(s, s->object_size, flags); + if (unlikely(object)) { + p[i] = object; + continue; + } + + object = c->freelist; if (unlikely(!object)) { /* * We may have removed an object from c->freelist using @@ -3548,8 +3579,7 @@ static void early_kmem_cache_node_alloc(int node) init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); init_tracking(kmem_cache_node, n); #endif - n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), - GFP_KERNEL); + n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL); page->freelist = get_freepointer(kmem_cache_node, n); page->inuse = 1; page->frozen = 0; @@ -3586,7 +3616,7 @@ static int init_kmem_cache_nodes(struct kmem_cache *s) { int node; - for_each_node_state(node, N_NORMAL_MEMORY) { + for_each_node_mask(node, slab_nodes) { struct kmem_cache_node *n; if (slab_state == DOWN) { @@ -3797,7 +3827,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order) static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) { - s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); + s->flags = kmem_cache_flags(s->size, flags, s->name); #ifdef CONFIG_SLAB_FREELIST_HARDENED s->random = get_random_long(); #endif @@ -4018,7 +4048,7 @@ void *__kmalloc(size_t size, gfp_t flags) if (unlikely(ZERO_OR_NULL_PTR(s))) return s; - ret = slab_alloc(s, flags, _RET_IP_); + ret = slab_alloc(s, flags, _RET_IP_, size); trace_kmalloc(_RET_IP_, ret, size, s->size, flags); @@ -4039,8 +4069,8 @@ static void *kmalloc_large_node(size_t size, gfp_t flags, int node) page = alloc_pages_node(node, flags, order); if (page) { ptr = page_address(page); - mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, - PAGE_SIZE << order); + mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, + PAGE_SIZE << order); } return kmalloc_large_node_hook(ptr, size, flags); @@ -4066,7 +4096,7 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node) if (unlikely(ZERO_OR_NULL_PTR(s))) return s; - ret = slab_alloc_node(s, flags, node, _RET_IP_); + ret = slab_alloc_node(s, flags, node, _RET_IP_, size); trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); @@ -4092,6 +4122,7 @@ void __check_heap_object(const void *ptr, unsigned long n, struct page *page, struct kmem_cache *s; unsigned int offset; size_t object_size; + bool is_kfence = is_kfence_address(ptr); ptr = kasan_reset_tag(ptr); @@ -4104,10 +4135,13 @@ void __check_heap_object(const void *ptr, unsigned long n, struct page *page, to_user, 0, n); /* Find offset within object. */ - offset = (ptr - page_address(page)) % s->size; + if (is_kfence) + offset = ptr - kfence_object_start(ptr); + else + offset = (ptr - page_address(page)) % s->size; /* Adjust for redzone and reject if within the redzone. */ - if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { + if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { if (offset < s->red_left_pad) usercopy_abort("SLUB object in left red zone", s->name, to_user, offset, n); @@ -4171,8 +4205,8 @@ void kfree(const void *x) BUG_ON(!PageCompound(page)); kfree_hook(object); - mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, - -(PAGE_SIZE << order)); + mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, + -(PAGE_SIZE << order)); __free_pages(page, order); return; } @@ -4267,8 +4301,6 @@ static int slab_mem_going_offline_callback(void *arg) static void slab_mem_offline_callback(void *arg) { - struct kmem_cache_node *n; - struct kmem_cache *s; struct memory_notify *marg = arg; int offline_node; @@ -4282,21 +4314,12 @@ static void slab_mem_offline_callback(void *arg) return; mutex_lock(&slab_mutex); - list_for_each_entry(s, &slab_caches, list) { - n = get_node(s, offline_node); - if (n) { - /* - * if n->nr_slabs > 0, slabs still exist on the node - * that is going down. We were unable to free them, - * and offline_pages() function shouldn't call this - * callback. So, we must fail. - */ - BUG_ON(slabs_node(s, offline_node)); - - s->node[offline_node] = NULL; - kmem_cache_free(kmem_cache_node, n); - } - } + node_clear(offline_node, slab_nodes); + /* + * We no longer free kmem_cache_node structures here, as it would be + * racy with all get_node() users, and infeasible to protect them with + * slab_mutex. + */ mutex_unlock(&slab_mutex); } @@ -4323,6 +4346,12 @@ static int slab_mem_going_online_callback(void *arg) mutex_lock(&slab_mutex); list_for_each_entry(s, &slab_caches, list) { /* + * The structure may already exist if the node was previously + * onlined and offlined. + */ + if (get_node(s, nid)) + continue; + /* * XXX: kmem_cache_alloc_node will fallback to other nodes * since memory is not yet available from the node that * is brought up. @@ -4335,6 +4364,11 @@ static int slab_mem_going_online_callback(void *arg) init_kmem_cache_node(n); s->node[nid] = n; } + /* + * Any cache created after this point will also have kmem_cache_node + * initialized for the new node. + */ + node_set(nid, slab_nodes); out: mutex_unlock(&slab_mutex); return ret; @@ -4415,6 +4449,7 @@ void __init kmem_cache_init(void) { static __initdata struct kmem_cache boot_kmem_cache, boot_kmem_cache_node; + int node; if (debug_guardpage_minorder()) slub_max_order = 0; @@ -4422,6 +4457,13 @@ void __init kmem_cache_init(void) kmem_cache_node = &boot_kmem_cache_node; kmem_cache = &boot_kmem_cache; + /* + * Initialize the nodemask for which we will allocate per node + * structures. Here we don't need taking slab_mutex yet. + */ + for_each_node_state(node, N_NORMAL_MEMORY) + node_set(node, slab_nodes); + create_boot_cache(kmem_cache_node, "kmem_cache_node", sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); @@ -4516,7 +4558,7 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) if (unlikely(ZERO_OR_NULL_PTR(s))) return s; - ret = slab_alloc(s, gfpflags, caller); + ret = slab_alloc(s, gfpflags, caller, size); /* Honor the call site pointer we received. */ trace_kmalloc(caller, ret, size, s->size, gfpflags); @@ -4547,7 +4589,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, if (unlikely(ZERO_OR_NULL_PTR(s))) return s; - ret = slab_alloc_node(s, gfpflags, node, caller); + ret = slab_alloc_node(s, gfpflags, node, caller, size); /* Honor the call site pointer we received. */ trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); @@ -4932,22 +4974,6 @@ enum slab_stat_type { #define SO_OBJECTS (1 << SL_OBJECTS) #define SO_TOTAL (1 << SL_TOTAL) -#ifdef CONFIG_MEMCG -static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); - -static int __init setup_slub_memcg_sysfs(char *str) -{ - int v; - - if (get_option(&str, &v) > 0) - memcg_sysfs_enabled = v; - - return 1; -} - -__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); -#endif - static ssize_t show_slab_objects(struct kmem_cache *s, char *buf, unsigned long flags) { diff --git a/mm/swap.c b/mm/swap.c index 2cca7141470c..31b844d4ed94 100644 --- a/mm/swap.c +++ b/mm/swap.c @@ -83,9 +83,8 @@ static void __page_cache_release(struct page *page) unsigned long flags; lruvec = lock_page_lruvec_irqsave(page, &flags); - VM_BUG_ON_PAGE(!PageLRU(page), page); - __ClearPageLRU(page); - del_page_from_lru_list(page, lruvec, page_off_lru(page)); + del_page_from_lru_list(page, lruvec); + __clear_page_lru_flags(page); unlock_page_lruvec_irqrestore(lruvec, flags); } __ClearPageWaiters(page); @@ -229,9 +228,9 @@ static void pagevec_lru_move_fn(struct pagevec *pvec, static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec) { if (!PageUnevictable(page)) { - del_page_from_lru_list(page, lruvec, page_lru(page)); + del_page_from_lru_list(page, lruvec); ClearPageActive(page); - add_page_to_lru_list_tail(page, lruvec, page_lru(page)); + add_page_to_lru_list_tail(page, lruvec); __count_vm_events(PGROTATED, thp_nr_pages(page)); } } @@ -308,13 +307,11 @@ void lru_note_cost_page(struct page *page) static void __activate_page(struct page *page, struct lruvec *lruvec) { if (!PageActive(page) && !PageUnevictable(page)) { - int lru = page_lru_base_type(page); int nr_pages = thp_nr_pages(page); - del_page_from_lru_list(page, lruvec, lru); + del_page_from_lru_list(page, lruvec); SetPageActive(page); - lru += LRU_ACTIVE; - add_page_to_lru_list(page, lruvec, lru); + add_page_to_lru_list(page, lruvec); trace_mm_lru_activate(page); __count_vm_events(PGACTIVATE, nr_pages); @@ -519,8 +516,7 @@ void lru_cache_add_inactive_or_unevictable(struct page *page, */ static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec) { - int lru; - bool active; + bool active = PageActive(page); int nr_pages = thp_nr_pages(page); if (PageUnevictable(page)) @@ -530,10 +526,7 @@ static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec) if (page_mapped(page)) return; - active = PageActive(page); - lru = page_lru_base_type(page); - - del_page_from_lru_list(page, lruvec, lru + active); + del_page_from_lru_list(page, lruvec); ClearPageActive(page); ClearPageReferenced(page); @@ -543,14 +536,14 @@ static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec) * It can make readahead confusing. But race window * is _really_ small and it's non-critical problem. */ - add_page_to_lru_list(page, lruvec, lru); + add_page_to_lru_list(page, lruvec); SetPageReclaim(page); } else { /* * The page's writeback ends up during pagevec * We moves tha page into tail of inactive. */ - add_page_to_lru_list_tail(page, lruvec, lru); + add_page_to_lru_list_tail(page, lruvec); __count_vm_events(PGROTATED, nr_pages); } @@ -564,13 +557,12 @@ static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec) static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec) { if (PageActive(page) && !PageUnevictable(page)) { - int lru = page_lru_base_type(page); int nr_pages = thp_nr_pages(page); - del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE); + del_page_from_lru_list(page, lruvec); ClearPageActive(page); ClearPageReferenced(page); - add_page_to_lru_list(page, lruvec, lru); + add_page_to_lru_list(page, lruvec); __count_vm_events(PGDEACTIVATE, nr_pages); __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, @@ -582,11 +574,9 @@ static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec) { if (PageAnon(page) && PageSwapBacked(page) && !PageSwapCache(page) && !PageUnevictable(page)) { - bool active = PageActive(page); int nr_pages = thp_nr_pages(page); - del_page_from_lru_list(page, lruvec, - LRU_INACTIVE_ANON + active); + del_page_from_lru_list(page, lruvec); ClearPageActive(page); ClearPageReferenced(page); /* @@ -595,7 +585,7 @@ static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec) * anonymous pages */ ClearPageSwapBacked(page); - add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE); + add_page_to_lru_list(page, lruvec); __count_vm_events(PGLAZYFREE, nr_pages); __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, @@ -918,9 +908,8 @@ void release_pages(struct page **pages, int nr) if (prev_lruvec != lruvec) lock_batch = 0; - VM_BUG_ON_PAGE(!PageLRU(page), page); - __ClearPageLRU(page); - del_page_from_lru_list(page, lruvec, page_off_lru(page)); + del_page_from_lru_list(page, lruvec); + __clear_page_lru_flags(page); } __ClearPageWaiters(page); @@ -958,7 +947,6 @@ EXPORT_SYMBOL(__pagevec_release); static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec) { - enum lru_list lru; int was_unevictable = TestClearPageUnevictable(page); int nr_pages = thp_nr_pages(page); @@ -994,19 +982,17 @@ static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec) smp_mb__after_atomic(); if (page_evictable(page)) { - lru = page_lru(page); if (was_unevictable) __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages); } else { - lru = LRU_UNEVICTABLE; ClearPageActive(page); SetPageUnevictable(page); if (!was_unevictable) __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages); } - add_page_to_lru_list(page, lruvec, lru); - trace_mm_lru_insertion(page, lru); + add_page_to_lru_list(page, lruvec); + trace_mm_lru_insertion(page); } /* @@ -1032,45 +1018,11 @@ void __pagevec_lru_add(struct pagevec *pvec) } /** - * pagevec_lookup_entries - gang pagecache lookup - * @pvec: Where the resulting entries are placed - * @mapping: The address_space to search - * @start: The starting entry index - * @nr_entries: The maximum number of pages - * @indices: The cache indices corresponding to the entries in @pvec - * - * pagevec_lookup_entries() will search for and return a group of up - * to @nr_pages pages and shadow entries in the mapping. All - * entries are placed in @pvec. pagevec_lookup_entries() takes a - * reference against actual pages in @pvec. - * - * The search returns a group of mapping-contiguous entries with - * ascending indexes. There may be holes in the indices due to - * not-present entries. - * - * Only one subpage of a Transparent Huge Page is returned in one call: - * allowing truncate_inode_pages_range() to evict the whole THP without - * cycling through a pagevec of extra references. - * - * pagevec_lookup_entries() returns the number of entries which were - * found. - */ -unsigned pagevec_lookup_entries(struct pagevec *pvec, - struct address_space *mapping, - pgoff_t start, unsigned nr_entries, - pgoff_t *indices) -{ - pvec->nr = find_get_entries(mapping, start, nr_entries, - pvec->pages, indices); - return pagevec_count(pvec); -} - -/** * pagevec_remove_exceptionals - pagevec exceptionals pruning * @pvec: The pagevec to prune * - * pagevec_lookup_entries() fills both pages and exceptional radix - * tree entries into the pagevec. This function prunes all + * find_get_entries() fills both pages and XArray value entries (aka + * exceptional entries) into the pagevec. This function prunes all * exceptionals from @pvec without leaving holes, so that it can be * passed on to page-only pagevec operations. */ diff --git a/mm/swap_slots.c b/mm/swap_slots.c index 0357fbe70645..be9de6d5b516 100644 --- a/mm/swap_slots.c +++ b/mm/swap_slots.c @@ -193,8 +193,7 @@ static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type, cache->slots_ret = NULL; } spin_unlock_irq(&cache->free_lock); - if (slots) - kvfree(slots); + kvfree(slots); } } diff --git a/mm/swap_state.c b/mm/swap_state.c index 751c1ef2fe0e..3cdee7b11da9 100644 --- a/mm/swap_state.c +++ b/mm/swap_state.c @@ -68,32 +68,6 @@ static struct { unsigned long find_total; } swap_cache_info; -unsigned long total_swapcache_pages(void) -{ - unsigned int i, j, nr; - unsigned long ret = 0; - struct address_space *spaces; - struct swap_info_struct *si; - - for (i = 0; i < MAX_SWAPFILES; i++) { - swp_entry_t entry = swp_entry(i, 1); - - /* Avoid get_swap_device() to warn for bad swap entry */ - if (!swp_swap_info(entry)) - continue; - /* Prevent swapoff to free swapper_spaces */ - si = get_swap_device(entry); - if (!si) - continue; - nr = nr_swapper_spaces[i]; - spaces = swapper_spaces[i]; - for (j = 0; j < nr; j++) - ret += spaces[j].nrpages; - put_swap_device(si); - } - return ret; -} - static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); void show_swap_cache_info(void) @@ -113,11 +87,9 @@ void *get_shadow_from_swap_cache(swp_entry_t entry) pgoff_t idx = swp_offset(entry); struct page *page; - page = find_get_entry(address_space, idx); + page = xa_load(&address_space->i_pages, idx); if (xa_is_value(page)) return page; - if (page) - put_page(page); return NULL; } @@ -163,6 +135,7 @@ int add_to_swap_cache(struct page *page, swp_entry_t entry, address_space->nrexceptional -= nr_shadows; address_space->nrpages += nr; __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); + __mod_lruvec_page_state(page, NR_SWAPCACHE, nr); ADD_CACHE_INFO(add_total, nr); unlock: xas_unlock_irq(&xas); @@ -203,6 +176,7 @@ void __delete_from_swap_cache(struct page *page, address_space->nrexceptional += nr; address_space->nrpages -= nr; __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); + __mod_lruvec_page_state(page, NR_SWAPCACHE, -nr); ADD_CACHE_INFO(del_total, nr); } @@ -429,7 +403,8 @@ struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index) { swp_entry_t swp; struct swap_info_struct *si; - struct page *page = find_get_entry(mapping, index); + struct page *page = pagecache_get_page(mapping, index, + FGP_ENTRY | FGP_HEAD, 0); if (!page) return page; @@ -537,7 +512,6 @@ struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, workingset_refault(page, shadow); /* Caller will initiate read into locked page */ - SetPageWorkingset(page); lru_cache_add(page); *new_page_allocated = true; return page; @@ -927,7 +901,7 @@ static struct attribute *swap_attrs[] = { NULL, }; -static struct attribute_group swap_attr_group = { +static const struct attribute_group swap_attr_group = { .attrs = swap_attrs, }; diff --git a/mm/swapfile.c b/mm/swapfile.c index 96799a2f6957..084a5b9a18e5 100644 --- a/mm/swapfile.c +++ b/mm/swapfile.c @@ -219,6 +219,19 @@ offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) BUG(); } +sector_t swap_page_sector(struct page *page) +{ + struct swap_info_struct *sis = page_swap_info(page); + struct swap_extent *se; + sector_t sector; + pgoff_t offset; + + offset = __page_file_index(page); + se = offset_to_swap_extent(sis, offset); + sector = se->start_block + (offset - se->start_page); + return sector << (PAGE_SHIFT - 9); +} + /* * swap allocation tell device that a cluster of swap can now be discarded, * to allow the swap device to optimize its wear-levelling. @@ -1157,13 +1170,13 @@ static struct swap_info_struct *__swap_info_get(swp_entry_t entry) return p; bad_offset: - pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); + pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); goto out; bad_device: - pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); + pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); goto out; bad_nofile: - pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); + pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); out: return NULL; } @@ -1180,7 +1193,7 @@ static struct swap_info_struct *_swap_info_get(swp_entry_t entry) return p; bad_free: - pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); + pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); out: return NULL; } diff --git a/mm/truncate.c b/mm/truncate.c index 8aa4907e06e0..455944264663 100644 --- a/mm/truncate.c +++ b/mm/truncate.c @@ -57,11 +57,10 @@ static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, * exceptional entries similar to what pagevec_remove_exceptionals does. */ static void truncate_exceptional_pvec_entries(struct address_space *mapping, - struct pagevec *pvec, pgoff_t *indices, - pgoff_t end) + struct pagevec *pvec, pgoff_t *indices) { int i, j; - bool dax, lock; + bool dax; /* Handled by shmem itself */ if (shmem_mapping(mapping)) @@ -75,8 +74,7 @@ static void truncate_exceptional_pvec_entries(struct address_space *mapping, return; dax = dax_mapping(mapping); - lock = !dax && indices[j] < end; - if (lock) + if (!dax) xa_lock_irq(&mapping->i_pages); for (i = j; i < pagevec_count(pvec); i++) { @@ -88,9 +86,6 @@ static void truncate_exceptional_pvec_entries(struct address_space *mapping, continue; } - if (index >= end) - continue; - if (unlikely(dax)) { dax_delete_mapping_entry(mapping, index); continue; @@ -99,7 +94,7 @@ static void truncate_exceptional_pvec_entries(struct address_space *mapping, __clear_shadow_entry(mapping, index, page); } - if (lock) + if (!dax) xa_unlock_irq(&mapping->i_pages); pvec->nr = j; } @@ -326,51 +321,19 @@ void truncate_inode_pages_range(struct address_space *mapping, pagevec_init(&pvec); index = start; - while (index < end && pagevec_lookup_entries(&pvec, mapping, index, - min(end - index, (pgoff_t)PAGEVEC_SIZE), - indices)) { - /* - * Pagevec array has exceptional entries and we may also fail - * to lock some pages. So we store pages that can be deleted - * in a new pagevec. - */ - struct pagevec locked_pvec; - - pagevec_init(&locked_pvec); - for (i = 0; i < pagevec_count(&pvec); i++) { - struct page *page = pvec.pages[i]; - - /* We rely upon deletion not changing page->index */ - index = indices[i]; - if (index >= end) - break; - - if (xa_is_value(page)) - continue; - - if (!trylock_page(page)) - continue; - WARN_ON(page_to_index(page) != index); - if (PageWriteback(page)) { - unlock_page(page); - continue; - } - if (page->mapping != mapping) { - unlock_page(page); - continue; - } - pagevec_add(&locked_pvec, page); - } - for (i = 0; i < pagevec_count(&locked_pvec); i++) - truncate_cleanup_page(mapping, locked_pvec.pages[i]); - delete_from_page_cache_batch(mapping, &locked_pvec); - for (i = 0; i < pagevec_count(&locked_pvec); i++) - unlock_page(locked_pvec.pages[i]); - truncate_exceptional_pvec_entries(mapping, &pvec, indices, end); + while (index < end && find_lock_entries(mapping, index, end - 1, + &pvec, indices)) { + index = indices[pagevec_count(&pvec) - 1] + 1; + truncate_exceptional_pvec_entries(mapping, &pvec, indices); + for (i = 0; i < pagevec_count(&pvec); i++) + truncate_cleanup_page(mapping, pvec.pages[i]); + delete_from_page_cache_batch(mapping, &pvec); + for (i = 0; i < pagevec_count(&pvec); i++) + unlock_page(pvec.pages[i]); pagevec_release(&pvec); cond_resched(); - index++; } + if (partial_start) { struct page *page = find_lock_page(mapping, start - 1); if (page) { @@ -413,8 +376,8 @@ void truncate_inode_pages_range(struct address_space *mapping, index = start; for ( ; ; ) { cond_resched(); - if (!pagevec_lookup_entries(&pvec, mapping, index, - min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { + if (!find_get_entries(mapping, index, end - 1, &pvec, + indices)) { /* If all gone from start onwards, we're done */ if (index == start) break; @@ -422,23 +385,12 @@ void truncate_inode_pages_range(struct address_space *mapping, index = start; continue; } - if (index == start && indices[0] >= end) { - /* All gone out of hole to be punched, we're done */ - pagevec_remove_exceptionals(&pvec); - pagevec_release(&pvec); - break; - } for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; /* We rely upon deletion not changing page->index */ index = indices[i]; - if (index >= end) { - /* Restart punch to make sure all gone */ - index = start - 1; - break; - } if (xa_is_value(page)) continue; @@ -449,7 +401,7 @@ void truncate_inode_pages_range(struct address_space *mapping, truncate_inode_page(mapping, page); unlock_page(page); } - truncate_exceptional_pvec_entries(mapping, &pvec, indices, end); + truncate_exceptional_pvec_entries(mapping, &pvec, indices); pagevec_release(&pvec); index++; } @@ -539,55 +491,19 @@ static unsigned long __invalidate_mapping_pages(struct address_space *mapping, int i; pagevec_init(&pvec); - while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, - min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, - indices)) { + while (find_lock_entries(mapping, index, end, &pvec, indices)) { for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; /* We rely upon deletion not changing page->index */ index = indices[i]; - if (index > end) - break; if (xa_is_value(page)) { invalidate_exceptional_entry(mapping, index, page); continue; } - - if (!trylock_page(page)) - continue; - - WARN_ON(page_to_index(page) != index); - - /* Middle of THP: skip */ - if (PageTransTail(page)) { - unlock_page(page); - continue; - } else if (PageTransHuge(page)) { - index += HPAGE_PMD_NR - 1; - i += HPAGE_PMD_NR - 1; - /* - * 'end' is in the middle of THP. Don't - * invalidate the page as the part outside of - * 'end' could be still useful. - */ - if (index > end) { - unlock_page(page); - continue; - } - - /* Take a pin outside pagevec */ - get_page(page); - - /* - * Drop extra pins before trying to invalidate - * the huge page. - */ - pagevec_remove_exceptionals(&pvec); - pagevec_release(&pvec); - } + index += thp_nr_pages(page) - 1; ret = invalidate_inode_page(page); unlock_page(page); @@ -601,9 +517,6 @@ static unsigned long __invalidate_mapping_pages(struct address_space *mapping, if (nr_pagevec) (*nr_pagevec)++; } - - if (PageTransHuge(page)) - put_page(page); count += ret; } pagevec_remove_exceptionals(&pvec); @@ -725,16 +638,12 @@ int invalidate_inode_pages2_range(struct address_space *mapping, pagevec_init(&pvec); index = start; - while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, - min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, - indices)) { + while (find_get_entries(mapping, index, end, &pvec, indices)) { for (i = 0; i < pagevec_count(&pvec); i++) { struct page *page = pvec.pages[i]; /* We rely upon deletion not changing page->index */ index = indices[i]; - if (index > end) - break; if (xa_is_value(page)) { if (!invalidate_exceptional_entry2(mapping, diff --git a/mm/vmscan.c b/mm/vmscan.c index b1b574ad199d..562e87cbd7a1 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -310,7 +310,8 @@ unsigned long zone_reclaimable_pages(struct zone *zone) * @lru: lru to use * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) */ -unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) +static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, + int zone_idx) { unsigned long size = 0; int zid; @@ -1539,19 +1540,17 @@ unsigned int reclaim_clean_pages_from_list(struct zone *zone, * page: page to consider * mode: one of the LRU isolation modes defined above * - * returns 0 on success, -ve errno on failure. + * returns true on success, false on failure. */ -int __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) +bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) { - int ret = -EBUSY; - /* Only take pages on the LRU. */ if (!PageLRU(page)) - return ret; + return false; /* Compaction should not handle unevictable pages but CMA can do so */ if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) - return ret; + return false; /* * To minimise LRU disruption, the caller can indicate that it only @@ -1564,7 +1563,7 @@ int __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) if (mode & ISOLATE_ASYNC_MIGRATE) { /* All the caller can do on PageWriteback is block */ if (PageWriteback(page)) - return ret; + return false; if (PageDirty(page)) { struct address_space *mapping; @@ -1580,20 +1579,20 @@ int __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode) * from the page cache. */ if (!trylock_page(page)) - return ret; + return false; mapping = page_mapping(page); migrate_dirty = !mapping || mapping->a_ops->migratepage; unlock_page(page); if (!migrate_dirty) - return ret; + return false; } } if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) - return ret; + return false; - return 0; + return true; } /* @@ -1677,35 +1676,31 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, * only when the page is being freed somewhere else. */ scan += nr_pages; - switch (__isolate_lru_page_prepare(page, mode)) { - case 0: - /* - * Be careful not to clear PageLRU until after we're - * sure the page is not being freed elsewhere -- the - * page release code relies on it. - */ - if (unlikely(!get_page_unless_zero(page))) - goto busy; - - if (!TestClearPageLRU(page)) { - /* - * This page may in other isolation path, - * but we still hold lru_lock. - */ - put_page(page); - goto busy; - } - - nr_taken += nr_pages; - nr_zone_taken[page_zonenum(page)] += nr_pages; - list_move(&page->lru, dst); - break; + if (!__isolate_lru_page_prepare(page, mode)) { + /* It is being freed elsewhere */ + list_move(&page->lru, src); + continue; + } + /* + * Be careful not to clear PageLRU until after we're + * sure the page is not being freed elsewhere -- the + * page release code relies on it. + */ + if (unlikely(!get_page_unless_zero(page))) { + list_move(&page->lru, src); + continue; + } - default: -busy: - /* else it is being freed elsewhere */ + if (!TestClearPageLRU(page)) { + /* Another thread is already isolating this page */ + put_page(page); list_move(&page->lru, src); + continue; } + + nr_taken += nr_pages; + nr_zone_taken[page_zonenum(page)] += nr_pages; + list_move(&page->lru, dst); } /* @@ -1772,7 +1767,7 @@ int isolate_lru_page(struct page *page) get_page(page); lruvec = lock_page_lruvec_irq(page); - del_page_from_lru_list(page, lruvec, page_lru(page)); + del_page_from_lru_list(page, lruvec); unlock_page_lruvec_irq(lruvec); ret = 0; } @@ -1829,7 +1824,6 @@ static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, int nr_pages, nr_moved = 0; LIST_HEAD(pages_to_free); struct page *page; - enum lru_list lru; while (!list_empty(list)) { page = lru_to_page(list); @@ -1856,8 +1850,7 @@ static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, SetPageLRU(page); if (unlikely(put_page_testzero(page))) { - __ClearPageLRU(page); - __ClearPageActive(page); + __clear_page_lru_flags(page); if (unlikely(PageCompound(page))) { spin_unlock_irq(&lruvec->lru_lock); @@ -1874,11 +1867,8 @@ static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec, * inhibits memcg migration). */ VM_BUG_ON_PAGE(!lruvec_holds_page_lru_lock(page, lruvec), page); - lru = page_lru(page); + add_page_to_lru_list(page, lruvec); nr_pages = thp_nr_pages(page); - - update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); - list_add(&page->lru, &lruvec->lists[lru]); nr_moved += nr_pages; if (PageActive(page)) workingset_age_nonresident(lruvec, nr_pages); @@ -4095,8 +4085,13 @@ module_init(kswapd_init) */ int node_reclaim_mode __read_mostly; -#define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */ -#define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */ +/* + * These bit locations are exposed in the vm.zone_reclaim_mode sysctl + * ABI. New bits are OK, but existing bits can never change. + */ +#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ +#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ +#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ /* * Priority for NODE_RECLAIM. This determines the fraction of pages @@ -4292,12 +4287,9 @@ void check_move_unevictable_pages(struct pagevec *pvec) lruvec = relock_page_lruvec_irq(page, lruvec); if (page_evictable(page) && PageUnevictable(page)) { - enum lru_list lru = page_lru_base_type(page); - - VM_BUG_ON_PAGE(PageActive(page), page); + del_page_from_lru_list(page, lruvec); ClearPageUnevictable(page); - del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); - add_page_to_lru_list(page, lruvec, lru); + add_page_to_lru_list(page, lruvec); pgrescued += nr_pages; } SetPageLRU(page); diff --git a/mm/vmstat.c b/mm/vmstat.c index f8942160fc95..74b2c374b86c 100644 --- a/mm/vmstat.c +++ b/mm/vmstat.c @@ -342,6 +342,12 @@ void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item, long t; if (vmstat_item_in_bytes(item)) { + /* + * Only cgroups use subpage accounting right now; at + * the global level, these items still change in + * multiples of whole pages. Store them as pages + * internally to keep the per-cpu counters compact. + */ VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); delta >>= PAGE_SHIFT; } @@ -551,6 +557,12 @@ static inline void mod_node_state(struct pglist_data *pgdat, long o, n, t, z; if (vmstat_item_in_bytes(item)) { + /* + * Only cgroups use subpage accounting right now; at + * the global level, these items still change in + * multiples of whole pages. Store them as pages + * internally to keep the per-cpu counters compact. + */ VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1)); delta >>= PAGE_SHIFT; } @@ -1215,6 +1227,9 @@ const char * const vmstat_text[] = { "nr_shadow_call_stack", #endif "nr_page_table_pages", +#ifdef CONFIG_SWAP + "nr_swapcached", +#endif /* enum writeback_stat_item counters */ "nr_dirty_threshold", @@ -1619,8 +1634,12 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, if (is_zone_first_populated(pgdat, zone)) { seq_printf(m, "\n per-node stats"); for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { + unsigned long pages = node_page_state_pages(pgdat, i); + + if (vmstat_item_print_in_thp(i)) + pages /= HPAGE_PMD_NR; seq_printf(m, "\n %-12s %lu", node_stat_name(i), - node_page_state_pages(pgdat, i)); + pages); } } seq_printf(m, @@ -1630,14 +1649,16 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, "\n high %lu" "\n spanned %lu" "\n present %lu" - "\n managed %lu", + "\n managed %lu" + "\n cma %lu", zone_page_state(zone, NR_FREE_PAGES), min_wmark_pages(zone), low_wmark_pages(zone), high_wmark_pages(zone), zone->spanned_pages, zone->present_pages, - zone_managed_pages(zone)); + zone_managed_pages(zone), + zone_cma_pages(zone)); seq_printf(m, "\n protection: (%ld", @@ -1740,8 +1761,11 @@ static void *vmstat_start(struct seq_file *m, loff_t *pos) v += NR_VM_NUMA_STAT_ITEMS; #endif - for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) + for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { v[i] = global_node_page_state_pages(i); + if (vmstat_item_print_in_thp(i)) + v[i] /= HPAGE_PMD_NR; + } v += NR_VM_NODE_STAT_ITEMS; global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, @@ -1882,16 +1906,12 @@ static void vmstat_update(struct work_struct *w) */ static bool need_update(int cpu) { + pg_data_t *last_pgdat = NULL; struct zone *zone; for_each_populated_zone(zone) { struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu); - - BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1); -#ifdef CONFIG_NUMA - BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2); -#endif - + struct per_cpu_nodestat *n; /* * The fast way of checking if there are any vmstat diffs. */ @@ -1903,6 +1923,13 @@ static bool need_update(int cpu) sizeof(p->vm_numa_stat_diff[0]))) return true; #endif + if (last_pgdat == zone->zone_pgdat) + continue; + last_pgdat = zone->zone_pgdat; + n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu); + if (memchr_inv(n->vm_node_stat_diff, 0, NR_VM_NODE_STAT_ITEMS * + sizeof(n->vm_node_stat_diff[0]))) + return true; } return false; } @@ -1953,6 +1980,8 @@ static void vmstat_shepherd(struct work_struct *w) if (!delayed_work_pending(dw) && need_update(cpu)) queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0); + + cond_resched(); } put_online_cpus(); diff --git a/mm/workingset.c b/mm/workingset.c index 10e96de945b3..cd39902c1062 100644 --- a/mm/workingset.c +++ b/mm/workingset.c @@ -263,10 +263,10 @@ void *workingset_eviction(struct page *page, struct mem_cgroup *target_memcg) VM_BUG_ON_PAGE(!PageLocked(page), page); lruvec = mem_cgroup_lruvec(target_memcg, pgdat); - workingset_age_nonresident(lruvec, thp_nr_pages(page)); /* XXX: target_memcg can be NULL, go through lruvec */ memcgid = mem_cgroup_id(lruvec_memcg(lruvec)); eviction = atomic_long_read(&lruvec->nonresident_age); + workingset_age_nonresident(lruvec, thp_nr_pages(page)); return pack_shadow(memcgid, pgdat, eviction, PageWorkingset(page)); } @@ -461,6 +461,8 @@ static unsigned long count_shadow_nodes(struct shrinker *shrinker, unsigned long pages; nodes = list_lru_shrink_count(&shadow_nodes, sc); + if (!nodes) + return SHRINK_EMPTY; /* * Approximate a reasonable limit for the nodes @@ -503,9 +505,6 @@ static unsigned long count_shadow_nodes(struct shrinker *shrinker, max_nodes = pages >> (XA_CHUNK_SHIFT - 3); - if (!nodes) - return SHRINK_EMPTY; - if (nodes <= max_nodes) return 0; return nodes - max_nodes; diff --git a/mm/z3fold.c b/mm/z3fold.c index dacb0d70fa61..9d889ad2bb86 100644 --- a/mm/z3fold.c +++ b/mm/z3fold.c @@ -413,16 +413,10 @@ static struct z3fold_header *init_z3fold_page(struct page *page, bool headless, if (!slots) return NULL; + memset(zhdr, 0, sizeof(*zhdr)); spin_lock_init(&zhdr->page_lock); kref_init(&zhdr->refcount); - zhdr->first_chunks = 0; - zhdr->middle_chunks = 0; - zhdr->last_chunks = 0; - zhdr->first_num = 0; - zhdr->start_middle = 0; zhdr->cpu = -1; - zhdr->foreign_handles = 0; - zhdr->mapped_count = 0; zhdr->slots = slots; zhdr->pool = pool; INIT_LIST_HEAD(&zhdr->buddy); @@ -541,8 +535,7 @@ static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked) spin_unlock(&pool->stale_lock); } -static void __attribute__((__unused__)) - release_z3fold_page(struct kref *ref) +static void release_z3fold_page(struct kref *ref) { struct z3fold_header *zhdr = container_of(ref, struct z3fold_header, refcount); @@ -1353,8 +1346,22 @@ static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries) page = list_entry(pos, struct page, lru); zhdr = page_address(page); - if (test_bit(PAGE_HEADLESS, &page->private)) + if (test_bit(PAGE_HEADLESS, &page->private)) { + /* + * For non-headless pages, we wait to do this + * until we have the page lock to avoid racing + * with __z3fold_alloc(). Headless pages don't + * have a lock (and __z3fold_alloc() will never + * see them), but we still need to test and set + * PAGE_CLAIMED to avoid racing with + * z3fold_free(), so just do it now before + * leaving the loop. + */ + if (test_and_set_bit(PAGE_CLAIMED, &page->private)) + continue; + break; + } if (kref_get_unless_zero(&zhdr->refcount) == 0) { zhdr = NULL; @@ -1778,6 +1785,7 @@ static u64 z3fold_zpool_total_size(void *pool) static struct zpool_driver z3fold_zpool_driver = { .type = "z3fold", + .sleep_mapped = true, .owner = THIS_MODULE, .create = z3fold_zpool_create, .destroy = z3fold_zpool_destroy, diff --git a/mm/zbud.c b/mm/zbud.c index c49966ece674..7ec5f27a68b0 100644 --- a/mm/zbud.c +++ b/mm/zbud.c @@ -203,6 +203,7 @@ static u64 zbud_zpool_total_size(void *pool) static struct zpool_driver zbud_zpool_driver = { .type = "zbud", + .sleep_mapped = true, .owner = THIS_MODULE, .create = zbud_zpool_create, .destroy = zbud_zpool_destroy, diff --git a/mm/zpool.c b/mm/zpool.c index 3744a2d1a624..5ed71207ced7 100644 --- a/mm/zpool.c +++ b/mm/zpool.c @@ -23,6 +23,7 @@ struct zpool { void *pool; const struct zpool_ops *ops; bool evictable; + bool can_sleep_mapped; struct list_head list; }; @@ -183,6 +184,7 @@ struct zpool *zpool_create_pool(const char *type, const char *name, gfp_t gfp, zpool->pool = driver->create(name, gfp, ops, zpool); zpool->ops = ops; zpool->evictable = driver->shrink && ops && ops->evict; + zpool->can_sleep_mapped = driver->sleep_mapped; if (!zpool->pool) { pr_err("couldn't create %s pool\n", type); @@ -393,6 +395,17 @@ bool zpool_evictable(struct zpool *zpool) return zpool->evictable; } +/** + * zpool_can_sleep_mapped - Test if zpool can sleep when do mapped. + * @zpool: The zpool to test + * + * Returns: true if zpool can sleep; false otherwise. + */ +bool zpool_can_sleep_mapped(struct zpool *zpool) +{ + return zpool->can_sleep_mapped; +} + MODULE_LICENSE("GPL"); MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>"); MODULE_DESCRIPTION("Common API for compressed memory storage"); diff --git a/mm/zsmalloc.c b/mm/zsmalloc.c index 7289f502ffac..30c358b72025 100644 --- a/mm/zsmalloc.c +++ b/mm/zsmalloc.c @@ -357,7 +357,7 @@ static void cache_free_handle(struct zs_pool *pool, unsigned long handle) static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) { - return kmem_cache_alloc(pool->zspage_cachep, + return kmem_cache_zalloc(pool->zspage_cachep, flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); } @@ -816,7 +816,7 @@ static int get_pages_per_zspage(int class_size) static struct zspage *get_zspage(struct page *page) { - struct zspage *zspage = (struct zspage *)page->private; + struct zspage *zspage = (struct zspage *)page_private(page); BUG_ON(zspage->magic != ZSPAGE_MAGIC); return zspage; @@ -1064,7 +1064,6 @@ static struct zspage *alloc_zspage(struct zs_pool *pool, if (!zspage) return NULL; - memset(zspage, 0, sizeof(struct zspage)); zspage->magic = ZSPAGE_MAGIC; migrate_lock_init(zspage); @@ -2213,11 +2212,13 @@ static unsigned long zs_can_compact(struct size_class *class) return obj_wasted * class->pages_per_zspage; } -static void __zs_compact(struct zs_pool *pool, struct size_class *class) +static unsigned long __zs_compact(struct zs_pool *pool, + struct size_class *class) { struct zs_compact_control cc; struct zspage *src_zspage; struct zspage *dst_zspage = NULL; + unsigned long pages_freed = 0; spin_lock(&class->lock); while ((src_zspage = isolate_zspage(class, true))) { @@ -2247,7 +2248,7 @@ static void __zs_compact(struct zs_pool *pool, struct size_class *class) putback_zspage(class, dst_zspage); if (putback_zspage(class, src_zspage) == ZS_EMPTY) { free_zspage(pool, class, src_zspage); - pool->stats.pages_compacted += class->pages_per_zspage; + pages_freed += class->pages_per_zspage; } spin_unlock(&class->lock); cond_resched(); @@ -2258,12 +2259,15 @@ static void __zs_compact(struct zs_pool *pool, struct size_class *class) putback_zspage(class, src_zspage); spin_unlock(&class->lock); + + return pages_freed; } unsigned long zs_compact(struct zs_pool *pool) { int i; struct size_class *class; + unsigned long pages_freed = 0; for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { class = pool->size_class[i]; @@ -2271,10 +2275,11 @@ unsigned long zs_compact(struct zs_pool *pool) continue; if (class->index != i) continue; - __zs_compact(pool, class); + pages_freed += __zs_compact(pool, class); } + atomic_long_add(pages_freed, &pool->stats.pages_compacted); - return pool->stats.pages_compacted; + return pages_freed; } EXPORT_SYMBOL_GPL(zs_compact); @@ -2291,13 +2296,12 @@ static unsigned long zs_shrinker_scan(struct shrinker *shrinker, struct zs_pool *pool = container_of(shrinker, struct zs_pool, shrinker); - pages_freed = pool->stats.pages_compacted; /* * Compact classes and calculate compaction delta. * Can run concurrently with a manually triggered * (by user) compaction. */ - pages_freed = zs_compact(pool) - pages_freed; + pages_freed = zs_compact(pool); return pages_freed ? pages_freed : SHRINK_STOP; } diff --git a/mm/zswap.c b/mm/zswap.c index 182f6ad5aa69..578d9f256920 100644 --- a/mm/zswap.c +++ b/mm/zswap.c @@ -935,13 +935,19 @@ static int zswap_writeback_entry(struct zpool *pool, unsigned long handle) struct scatterlist input, output; struct crypto_acomp_ctx *acomp_ctx; - u8 *src; + u8 *src, *tmp = NULL; unsigned int dlen; int ret; struct writeback_control wbc = { .sync_mode = WB_SYNC_NONE, }; + if (!zpool_can_sleep_mapped(pool)) { + tmp = kmalloc(PAGE_SIZE, GFP_ATOMIC); + if (!tmp) + return -ENOMEM; + } + /* extract swpentry from data */ zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO); swpentry = zhdr->swpentry; /* here */ @@ -955,6 +961,7 @@ static int zswap_writeback_entry(struct zpool *pool, unsigned long handle) /* entry was invalidated */ spin_unlock(&tree->lock); zpool_unmap_handle(pool, handle); + kfree(tmp); return 0; } spin_unlock(&tree->lock); @@ -979,6 +986,14 @@ static int zswap_writeback_entry(struct zpool *pool, unsigned long handle) dlen = PAGE_SIZE; src = (u8 *)zhdr + sizeof(struct zswap_header); + if (!zpool_can_sleep_mapped(pool)) { + + memcpy(tmp, src, entry->length); + src = tmp; + + zpool_unmap_handle(pool, handle); + } + mutex_lock(acomp_ctx->mutex); sg_init_one(&input, src, entry->length); sg_init_table(&output, 1); @@ -1022,10 +1037,10 @@ static int zswap_writeback_entry(struct zpool *pool, unsigned long handle) /* * if we get here due to ZSWAP_SWAPCACHE_EXIST - * a load may happening concurrently - * it is safe and okay to not free the entry + * a load may be happening concurrently. + * it is safe and okay to not free the entry. * if we free the entry in the following put - * it it either okay to return !0 + * it is also okay to return !0 */ fail: spin_lock(&tree->lock); @@ -1033,7 +1048,11 @@ fail: spin_unlock(&tree->lock); end: - zpool_unmap_handle(pool, handle); + if (zpool_can_sleep_mapped(pool)) + zpool_unmap_handle(pool, handle); + else + kfree(tmp); + return ret; } @@ -1235,7 +1254,7 @@ static int zswap_frontswap_load(unsigned type, pgoff_t offset, struct zswap_entry *entry; struct scatterlist input, output; struct crypto_acomp_ctx *acomp_ctx; - u8 *src, *dst; + u8 *src, *dst, *tmp; unsigned int dlen; int ret; @@ -1253,15 +1272,33 @@ static int zswap_frontswap_load(unsigned type, pgoff_t offset, dst = kmap_atomic(page); zswap_fill_page(dst, entry->value); kunmap_atomic(dst); + ret = 0; goto freeentry; } + if (!zpool_can_sleep_mapped(entry->pool->zpool)) { + + tmp = kmalloc(entry->length, GFP_ATOMIC); + if (!tmp) { + ret = -ENOMEM; + goto freeentry; + } + } + /* decompress */ dlen = PAGE_SIZE; src = zpool_map_handle(entry->pool->zpool, entry->handle, ZPOOL_MM_RO); if (zpool_evictable(entry->pool->zpool)) src += sizeof(struct zswap_header); + if (!zpool_can_sleep_mapped(entry->pool->zpool)) { + + memcpy(tmp, src, entry->length); + src = tmp; + + zpool_unmap_handle(entry->pool->zpool, entry->handle); + } + acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx); mutex_lock(acomp_ctx->mutex); sg_init_one(&input, src, entry->length); @@ -1271,7 +1308,11 @@ static int zswap_frontswap_load(unsigned type, pgoff_t offset, ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait); mutex_unlock(acomp_ctx->mutex); - zpool_unmap_handle(entry->pool->zpool, entry->handle); + if (zpool_can_sleep_mapped(entry->pool->zpool)) + zpool_unmap_handle(entry->pool->zpool, entry->handle); + else + kfree(tmp); + BUG_ON(ret); freeentry: @@ -1279,7 +1320,7 @@ freeentry: zswap_entry_put(tree, entry); spin_unlock(&tree->lock); - return 0; + return ret; } /* frees an entry in zswap */ |