diff options
Diffstat (limited to 'rust/kernel/alloc/kvec.rs')
-rw-r--r-- | rust/kernel/alloc/kvec.rs | 913 |
1 files changed, 913 insertions, 0 deletions
diff --git a/rust/kernel/alloc/kvec.rs b/rust/kernel/alloc/kvec.rs new file mode 100644 index 000000000000..ae9d072741ce --- /dev/null +++ b/rust/kernel/alloc/kvec.rs @@ -0,0 +1,913 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Implementation of [`Vec`]. + +use super::{ + allocator::{KVmalloc, Kmalloc, Vmalloc}, + layout::ArrayLayout, + AllocError, Allocator, Box, Flags, +}; +use core::{ + fmt, + marker::PhantomData, + mem::{ManuallyDrop, MaybeUninit}, + ops::Deref, + ops::DerefMut, + ops::Index, + ops::IndexMut, + ptr, + ptr::NonNull, + slice, + slice::SliceIndex, +}; + +/// Create a [`KVec`] containing the arguments. +/// +/// New memory is allocated with `GFP_KERNEL`. +/// +/// # Examples +/// +/// ``` +/// let mut v = kernel::kvec![]; +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(v, [1]); +/// +/// let mut v = kernel::kvec![1; 3]?; +/// v.push(4, GFP_KERNEL)?; +/// assert_eq!(v, [1, 1, 1, 4]); +/// +/// let mut v = kernel::kvec![1, 2, 3]?; +/// v.push(4, GFP_KERNEL)?; +/// assert_eq!(v, [1, 2, 3, 4]); +/// +/// # Ok::<(), Error>(()) +/// ``` +#[macro_export] +macro_rules! kvec { + () => ( + $crate::alloc::KVec::new() + ); + ($elem:expr; $n:expr) => ( + $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL) + ); + ($($x:expr),+ $(,)?) => ( + match $crate::alloc::KBox::new_uninit(GFP_KERNEL) { + Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))), + Err(e) => Err(e), + } + ); +} + +/// The kernel's [`Vec`] type. +/// +/// A contiguous growable array type with contents allocated with the kernel's allocators (e.g. +/// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`. +/// +/// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For +/// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist. +/// +/// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated. +/// +/// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the +/// capacity of the vector (the number of elements that currently fit into the vector), its length +/// (the number of elements that are currently stored in the vector) and the `Allocator` type used +/// to allocate (and free) the backing buffer. +/// +/// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts +/// and manually modified. +/// +/// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements +/// are added to the vector. +/// +/// # Invariants +/// +/// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for +/// zero-sized types, is a dangling, well aligned pointer. +/// +/// - `self.len` always represents the exact number of elements stored in the vector. +/// +/// - `self.layout` represents the absolute number of elements that can be stored within the vector +/// without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the +/// backing buffer to be larger than `layout`. +/// +/// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer +/// was allocated with (and must be freed with). +pub struct Vec<T, A: Allocator> { + ptr: NonNull<T>, + /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes. + /// + /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of + /// elements we can still store without reallocating. + layout: ArrayLayout<T>, + len: usize, + _p: PhantomData<A>, +} + +/// Type alias for [`Vec`] with a [`Kmalloc`] allocator. +/// +/// # Examples +/// +/// ``` +/// let mut v = KVec::new(); +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(&v, &[1]); +/// +/// # Ok::<(), Error>(()) +/// ``` +pub type KVec<T> = Vec<T, Kmalloc>; + +/// Type alias for [`Vec`] with a [`Vmalloc`] allocator. +/// +/// # Examples +/// +/// ``` +/// let mut v = VVec::new(); +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(&v, &[1]); +/// +/// # Ok::<(), Error>(()) +/// ``` +pub type VVec<T> = Vec<T, Vmalloc>; + +/// Type alias for [`Vec`] with a [`KVmalloc`] allocator. +/// +/// # Examples +/// +/// ``` +/// let mut v = KVVec::new(); +/// v.push(1, GFP_KERNEL)?; +/// assert_eq!(&v, &[1]); +/// +/// # Ok::<(), Error>(()) +/// ``` +pub type KVVec<T> = Vec<T, KVmalloc>; + +// SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements. +unsafe impl<T, A> Send for Vec<T, A> +where + T: Send, + A: Allocator, +{ +} + +// SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements. +unsafe impl<T, A> Sync for Vec<T, A> +where + T: Sync, + A: Allocator, +{ +} + +impl<T, A> Vec<T, A> +where + A: Allocator, +{ + #[inline] + const fn is_zst() -> bool { + core::mem::size_of::<T>() == 0 + } + + /// Returns the number of elements that can be stored within the vector without allocating + /// additional memory. + pub fn capacity(&self) -> usize { + if const { Self::is_zst() } { + usize::MAX + } else { + self.layout.len() + } + } + + /// Returns the number of elements stored within the vector. + #[inline] + pub fn len(&self) -> usize { + self.len + } + + /// Forcefully sets `self.len` to `new_len`. + /// + /// # Safety + /// + /// - `new_len` must be less than or equal to [`Self::capacity`]. + /// - If `new_len` is greater than `self.len`, all elements within the interval + /// [`self.len`,`new_len`) must be initialized. + #[inline] + pub unsafe fn set_len(&mut self, new_len: usize) { + debug_assert!(new_len <= self.capacity()); + self.len = new_len; + } + + /// Returns a slice of the entire vector. + #[inline] + pub fn as_slice(&self) -> &[T] { + self + } + + /// Returns a mutable slice of the entire vector. + #[inline] + pub fn as_mut_slice(&mut self) -> &mut [T] { + self + } + + /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a + /// dangling raw pointer. + #[inline] + pub fn as_mut_ptr(&mut self) -> *mut T { + self.ptr.as_ptr() + } + + /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw + /// pointer. + #[inline] + pub fn as_ptr(&self) -> *const T { + self.ptr.as_ptr() + } + + /// Returns `true` if the vector contains no elements, `false` otherwise. + /// + /// # Examples + /// + /// ``` + /// let mut v = KVec::new(); + /// assert!(v.is_empty()); + /// + /// v.push(1, GFP_KERNEL); + /// assert!(!v.is_empty()); + /// ``` + #[inline] + pub fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Creates a new, empty `Vec<T, A>`. + /// + /// This method does not allocate by itself. + #[inline] + pub const fn new() -> Self { + // INVARIANT: Since this is a new, empty `Vec` with no backing memory yet, + // - `ptr` is a properly aligned dangling pointer for type `T`, + // - `layout` is an empty `ArrayLayout` (zero capacity) + // - `len` is zero, since no elements can be or have been stored, + // - `A` is always valid. + Self { + ptr: NonNull::dangling(), + layout: ArrayLayout::empty(), + len: 0, + _p: PhantomData::<A>, + } + } + + /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector. + pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] { + // SAFETY: + // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is + // guaranteed to be part of the same allocated object. + // - `self.len` can not overflow `isize`. + let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>; + + // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated + // and valid, but uninitialized. + unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) } + } + + /// Appends an element to the back of the [`Vec`] instance. + /// + /// # Examples + /// + /// ``` + /// let mut v = KVec::new(); + /// v.push(1, GFP_KERNEL)?; + /// assert_eq!(&v, &[1]); + /// + /// v.push(2, GFP_KERNEL)?; + /// assert_eq!(&v, &[1, 2]); + /// # Ok::<(), Error>(()) + /// ``` + pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> { + self.reserve(1, flags)?; + + // SAFETY: + // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is + // guaranteed to be part of the same allocated object. + // - `self.len` can not overflow `isize`. + let ptr = unsafe { self.as_mut_ptr().add(self.len) }; + + // SAFETY: + // - `ptr` is properly aligned and valid for writes. + unsafe { core::ptr::write(ptr, v) }; + + // SAFETY: We just initialised the first spare entry, so it is safe to increase the length + // by 1. We also know that the new length is <= capacity because of the previous call to + // `reserve` above. + unsafe { self.set_len(self.len() + 1) }; + Ok(()) + } + + /// Creates a new [`Vec`] instance with at least the given capacity. + /// + /// # Examples + /// + /// ``` + /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?; + /// + /// assert!(v.capacity() >= 20); + /// # Ok::<(), Error>(()) + /// ``` + pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> { + let mut v = Vec::new(); + + v.reserve(capacity, flags)?; + + Ok(v) + } + + /// Creates a `Vec<T, A>` from a pointer, a length and a capacity using the allocator `A`. + /// + /// # Examples + /// + /// ``` + /// let mut v = kernel::kvec![1, 2, 3]?; + /// v.reserve(1, GFP_KERNEL)?; + /// + /// let (mut ptr, mut len, cap) = v.into_raw_parts(); + /// + /// // SAFETY: We've just reserved memory for another element. + /// unsafe { ptr.add(len).write(4) }; + /// len += 1; + /// + /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and + /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it + /// // from the exact same raw parts. + /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) }; + /// + /// assert_eq!(v, [1, 2, 3, 4]); + /// + /// # Ok::<(), Error>(()) + /// ``` + /// + /// # Safety + /// + /// If `T` is a ZST: + /// + /// - `ptr` must be a dangling, well aligned pointer. + /// + /// Otherwise: + /// + /// - `ptr` must have been allocated with the allocator `A`. + /// - `ptr` must satisfy or exceed the alignment requirements of `T`. + /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity` bytes. + /// - The allocated size in bytes must not be larger than `isize::MAX`. + /// - `length` must be less than or equal to `capacity`. + /// - The first `length` elements must be initialized values of type `T`. + /// + /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for + /// `cap` and `len`. + pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self { + let layout = if Self::is_zst() { + ArrayLayout::empty() + } else { + // SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is + // smaller than `isize::MAX`. + unsafe { ArrayLayout::new_unchecked(capacity) } + }; + + // INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are + // covered by the safety requirements of this function. + Self { + // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid + // memory allocation, allocated with `A`. + ptr: unsafe { NonNull::new_unchecked(ptr) }, + layout, + len: length, + _p: PhantomData::<A>, + } + } + + /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`. + /// + /// This will not run the destructor of the contained elements and for non-ZSTs the allocation + /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the + /// elements and free the allocation, if any. + pub fn into_raw_parts(self) -> (*mut T, usize, usize) { + let mut me = ManuallyDrop::new(self); + let len = me.len(); + let capacity = me.capacity(); + let ptr = me.as_mut_ptr(); + (ptr, len, capacity) + } + + /// Ensures that the capacity exceeds the length by at least `additional` elements. + /// + /// # Examples + /// + /// ``` + /// let mut v = KVec::new(); + /// v.push(1, GFP_KERNEL)?; + /// + /// v.reserve(10, GFP_KERNEL)?; + /// let cap = v.capacity(); + /// assert!(cap >= 10); + /// + /// v.reserve(10, GFP_KERNEL)?; + /// let new_cap = v.capacity(); + /// assert_eq!(new_cap, cap); + /// + /// # Ok::<(), Error>(()) + /// ``` + pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> { + let len = self.len(); + let cap = self.capacity(); + + if cap - len >= additional { + return Ok(()); + } + + if Self::is_zst() { + // The capacity is already `usize::MAX` for ZSTs, we can't go higher. + return Err(AllocError); + } + + // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the + // multiplication by two won't overflow. + let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?); + let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?; + + // SAFETY: + // - `ptr` is valid because it's either `None` or comes from a previous call to + // `A::realloc`. + // - `self.layout` matches the `ArrayLayout` of the preceding allocation. + let ptr = unsafe { + A::realloc( + Some(self.ptr.cast()), + layout.into(), + self.layout.into(), + flags, + )? + }; + + // INVARIANT: + // - `layout` is some `ArrayLayout::<T>`, + // - `ptr` has been created by `A::realloc` from `layout`. + self.ptr = ptr.cast(); + self.layout = layout; + + Ok(()) + } +} + +impl<T: Clone, A: Allocator> Vec<T, A> { + /// Extend the vector by `n` clones of `value`. + pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> { + if n == 0 { + return Ok(()); + } + + self.reserve(n, flags)?; + + let spare = self.spare_capacity_mut(); + + for item in spare.iter_mut().take(n - 1) { + item.write(value.clone()); + } + + // We can write the last element directly without cloning needlessly. + spare[n - 1].write(value); + + // SAFETY: + // - `self.len() + n < self.capacity()` due to the call to reserve above, + // - the loop and the line above initialized the next `n` elements. + unsafe { self.set_len(self.len() + n) }; + + Ok(()) + } + + /// Pushes clones of the elements of slice into the [`Vec`] instance. + /// + /// # Examples + /// + /// ``` + /// let mut v = KVec::new(); + /// v.push(1, GFP_KERNEL)?; + /// + /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?; + /// assert_eq!(&v, &[1, 20, 30, 40]); + /// + /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?; + /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]); + /// # Ok::<(), Error>(()) + /// ``` + pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> { + self.reserve(other.len(), flags)?; + for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) { + slot.write(item.clone()); + } + + // SAFETY: + // - `other.len()` spare entries have just been initialized, so it is safe to increase + // the length by the same number. + // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve` + // call. + unsafe { self.set_len(self.len() + other.len()) }; + Ok(()) + } + + /// Create a new `Vec<T, A>` and extend it by `n` clones of `value`. + pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> { + let mut v = Self::with_capacity(n, flags)?; + + v.extend_with(n, value, flags)?; + + Ok(v) + } +} + +impl<T, A> Drop for Vec<T, A> +where + A: Allocator, +{ + fn drop(&mut self) { + // SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant. + unsafe { + ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut( + self.as_mut_ptr(), + self.len, + )) + }; + + // SAFETY: + // - `self.ptr` was previously allocated with `A`. + // - `self.layout` matches the `ArrayLayout` of the preceding allocation. + unsafe { A::free(self.ptr.cast(), self.layout.into()) }; + } +} + +impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A> +where + A: Allocator, +{ + fn from(b: Box<[T; N], A>) -> Vec<T, A> { + let len = b.len(); + let ptr = Box::into_raw(b); + + // SAFETY: + // - `b` has been allocated with `A`, + // - `ptr` fulfills the alignment requirements for `T`, + // - `ptr` points to memory with at least a size of `size_of::<T>() * len`, + // - all elements within `b` are initialized values of `T`, + // - `len` does not exceed `isize::MAX`. + unsafe { Vec::from_raw_parts(ptr as _, len, len) } + } +} + +impl<T> Default for KVec<T> { + #[inline] + fn default() -> Self { + Self::new() + } +} + +impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + fmt::Debug::fmt(&**self, f) + } +} + +impl<T, A> Deref for Vec<T, A> +where + A: Allocator, +{ + type Target = [T]; + + #[inline] + fn deref(&self) -> &[T] { + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` + // initialized elements of type `T`. + unsafe { slice::from_raw_parts(self.as_ptr(), self.len) } + } +} + +impl<T, A> DerefMut for Vec<T, A> +where + A: Allocator, +{ + #[inline] + fn deref_mut(&mut self) -> &mut [T] { + // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len` + // initialized elements of type `T`. + unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) } + } +} + +impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {} + +impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A> +where + A: Allocator, +{ + type Output = I::Output; + + #[inline] + fn index(&self, index: I) -> &Self::Output { + Index::index(&**self, index) + } +} + +impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A> +where + A: Allocator, +{ + #[inline] + fn index_mut(&mut self, index: I) -> &mut Self::Output { + IndexMut::index_mut(&mut **self, index) + } +} + +macro_rules! impl_slice_eq { + ($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => { + $( + impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs + where + T: PartialEq<U>, + { + #[inline] + fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] } + } + )* + } +} + +impl_slice_eq! { + [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>, + [A: Allocator] Vec<T, A>, &[U], + [A: Allocator] Vec<T, A>, &mut [U], + [A: Allocator] &[T], Vec<U, A>, + [A: Allocator] &mut [T], Vec<U, A>, + [A: Allocator] Vec<T, A>, [U], + [A: Allocator] [T], Vec<U, A>, + [A: Allocator, const N: usize] Vec<T, A>, [U; N], + [A: Allocator, const N: usize] Vec<T, A>, &[U; N], +} + +impl<'a, T, A> IntoIterator for &'a Vec<T, A> +where + A: Allocator, +{ + type Item = &'a T; + type IntoIter = slice::Iter<'a, T>; + + fn into_iter(self) -> Self::IntoIter { + self.iter() + } +} + +impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> +where + A: Allocator, +{ + type Item = &'a mut T; + type IntoIter = slice::IterMut<'a, T>; + + fn into_iter(self) -> Self::IntoIter { + self.iter_mut() + } +} + +/// An [`Iterator`] implementation for [`Vec`] that moves elements out of a vector. +/// +/// This structure is created by the [`Vec::into_iter`] method on [`Vec`] (provided by the +/// [`IntoIterator`] trait). +/// +/// # Examples +/// +/// ``` +/// let v = kernel::kvec![0, 1, 2]?; +/// let iter = v.into_iter(); +/// +/// # Ok::<(), Error>(()) +/// ``` +pub struct IntoIter<T, A: Allocator> { + ptr: *mut T, + buf: NonNull<T>, + len: usize, + layout: ArrayLayout<T>, + _p: PhantomData<A>, +} + +impl<T, A> IntoIter<T, A> +where + A: Allocator, +{ + fn into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize) { + let me = ManuallyDrop::new(self); + let ptr = me.ptr; + let buf = me.buf; + let len = me.len; + let cap = me.layout.len(); + (ptr, buf, len, cap) + } + + /// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`. + /// + /// # Examples + /// + /// ``` + /// let v = kernel::kvec![1, 2, 3]?; + /// let mut it = v.into_iter(); + /// + /// assert_eq!(it.next(), Some(1)); + /// + /// let v = it.collect(GFP_KERNEL); + /// assert_eq!(v, [2, 3]); + /// + /// # Ok::<(), Error>(()) + /// ``` + /// + /// # Implementation details + /// + /// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait + /// in the kernel, namely: + /// + /// - Rust's specialization feature is unstable. This prevents us to optimize for the special + /// case where `I::IntoIter` equals `Vec`'s `IntoIter` type. + /// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator` + /// doesn't require this type to be `'static`. + /// - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence + /// we can't properly handle allocation failures. + /// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation + /// flags. + /// + /// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a + /// `Vec` again. + /// + /// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing + /// buffer. However, this backing buffer may be shrunk to the actual count of elements. + pub fn collect(self, flags: Flags) -> Vec<T, A> { + let old_layout = self.layout; + let (mut ptr, buf, len, mut cap) = self.into_raw_parts(); + let has_advanced = ptr != buf.as_ptr(); + + if has_advanced { + // Copy the contents we have advanced to at the beginning of the buffer. + // + // SAFETY: + // - `ptr` is valid for reads of `len * size_of::<T>()` bytes, + // - `buf.as_ptr()` is valid for writes of `len * size_of::<T>()` bytes, + // - `ptr` and `buf.as_ptr()` are not be subject to aliasing restrictions relative to + // each other, + // - both `ptr` and `buf.ptr()` are properly aligned. + unsafe { ptr::copy(ptr, buf.as_ptr(), len) }; + ptr = buf.as_ptr(); + + // SAFETY: `len` is guaranteed to be smaller than `self.layout.len()`. + let layout = unsafe { ArrayLayout::<T>::new_unchecked(len) }; + + // SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed to be + // smaller than `cap`. Depending on `alloc` this operation may shrink the buffer or leaves + // it as it is. + ptr = match unsafe { + A::realloc(Some(buf.cast()), layout.into(), old_layout.into(), flags) + } { + // If we fail to shrink, which likely can't even happen, continue with the existing + // buffer. + Err(_) => ptr, + Ok(ptr) => { + cap = len; + ptr.as_ptr().cast() + } + }; + } + + // SAFETY: If the iterator has been advanced, the advanced elements have been copied to + // the beginning of the buffer and `len` has been adjusted accordingly. + // + // - `ptr` is guaranteed to point to the start of the backing buffer. + // - `cap` is either the original capacity or, after shrinking the buffer, equal to `len`. + // - `alloc` is guaranteed to be unchanged since `into_iter` has been called on the original + // `Vec`. + unsafe { Vec::from_raw_parts(ptr, len, cap) } + } +} + +impl<T, A> Iterator for IntoIter<T, A> +where + A: Allocator, +{ + type Item = T; + + /// # Examples + /// + /// ``` + /// let v = kernel::kvec![1, 2, 3]?; + /// let mut it = v.into_iter(); + /// + /// assert_eq!(it.next(), Some(1)); + /// assert_eq!(it.next(), Some(2)); + /// assert_eq!(it.next(), Some(3)); + /// assert_eq!(it.next(), None); + /// + /// # Ok::<(), Error>(()) + /// ``` + fn next(&mut self) -> Option<T> { + if self.len == 0 { + return None; + } + + let current = self.ptr; + + // SAFETY: We can't overflow; decreasing `self.len` by one every time we advance `self.ptr` + // by one guarantees that. + unsafe { self.ptr = self.ptr.add(1) }; + + self.len -= 1; + + // SAFETY: `current` is guaranteed to point at a valid element within the buffer. + Some(unsafe { current.read() }) + } + + /// # Examples + /// + /// ``` + /// let v: KVec<u32> = kernel::kvec![1, 2, 3]?; + /// let mut iter = v.into_iter(); + /// let size = iter.size_hint().0; + /// + /// iter.next(); + /// assert_eq!(iter.size_hint().0, size - 1); + /// + /// iter.next(); + /// assert_eq!(iter.size_hint().0, size - 2); + /// + /// iter.next(); + /// assert_eq!(iter.size_hint().0, size - 3); + /// + /// # Ok::<(), Error>(()) + /// ``` + fn size_hint(&self) -> (usize, Option<usize>) { + (self.len, Some(self.len)) + } +} + +impl<T, A> Drop for IntoIter<T, A> +where + A: Allocator, +{ + fn drop(&mut self) { + // SAFETY: `self.ptr` is guaranteed to be valid by the type invariant. + unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr, self.len)) }; + + // SAFETY: + // - `self.buf` was previously allocated with `A`. + // - `self.layout` matches the `ArrayLayout` of the preceding allocation. + unsafe { A::free(self.buf.cast(), self.layout.into()) }; + } +} + +impl<T, A> IntoIterator for Vec<T, A> +where + A: Allocator, +{ + type Item = T; + type IntoIter = IntoIter<T, A>; + + /// Consumes the `Vec<T, A>` and creates an `Iterator`, which moves each value out of the + /// vector (from start to end). + /// + /// # Examples + /// + /// ``` + /// let v = kernel::kvec![1, 2]?; + /// let mut v_iter = v.into_iter(); + /// + /// let first_element: Option<u32> = v_iter.next(); + /// + /// assert_eq!(first_element, Some(1)); + /// assert_eq!(v_iter.next(), Some(2)); + /// assert_eq!(v_iter.next(), None); + /// + /// # Ok::<(), Error>(()) + /// ``` + /// + /// ``` + /// let v = kernel::kvec![]; + /// let mut v_iter = v.into_iter(); + /// + /// let first_element: Option<u32> = v_iter.next(); + /// + /// assert_eq!(first_element, None); + /// + /// # Ok::<(), Error>(()) + /// ``` + #[inline] + fn into_iter(self) -> Self::IntoIter { + let buf = self.ptr; + let layout = self.layout; + let (ptr, len, _) = self.into_raw_parts(); + + IntoIter { + ptr, + buf, + len, + layout, + _p: PhantomData::<A>, + } + } +} |