summaryrefslogtreecommitdiffstats
path: root/tools/lib
diff options
context:
space:
mode:
Diffstat (limited to 'tools/lib')
-rw-r--r--tools/lib/perf/Documentation/libperf-counting.txt14
-rw-r--r--tools/lib/perf/Documentation/libperf-sampling.txt13
-rw-r--r--tools/lib/perf/Documentation/libperf.txt4
3 files changed, 17 insertions, 14 deletions
diff --git a/tools/lib/perf/Documentation/libperf-counting.txt b/tools/lib/perf/Documentation/libperf-counting.txt
index cae9757f49c1..8b75efcd67ce 100644
--- a/tools/lib/perf/Documentation/libperf-counting.txt
+++ b/tools/lib/perf/Documentation/libperf-counting.txt
@@ -7,13 +7,13 @@ libperf-counting - counting interface
DESCRIPTION
-----------
-The counting interface provides API to meassure and get count for specific perf events.
+The counting interface provides API to measure and get count for specific perf events.
The following test tries to explain count on `counting.c` example.
It is by no means complete guide to counting, but shows libperf basic API for counting.
-The `counting.c` comes with libbperf package and can be compiled and run like:
+The `counting.c` comes with libperf package and can be compiled and run like:
[source,bash]
--
@@ -26,7 +26,8 @@ count 176242, enabled 176242, run 176242
It requires root access, because of the `PERF_COUNT_SW_CPU_CLOCK` event,
which is available only for root.
-The `counting.c` example monitors two events on the current process and displays their count, in a nutshel it:
+The `counting.c` example monitors two events on the current process and displays
+their count, in a nutshell it:
* creates events
* adds them to the event list
@@ -152,7 +153,7 @@ Configure event list with the thread map and open events:
--
Both events are created as disabled (note the `disabled = 1` assignment above),
-so we need to enable the whole list explicitely (both events).
+so we need to enable the whole list explicitly (both events).
From this moment events are counting and we can do our workload.
@@ -167,7 +168,8 @@ When we are done we disable the events list.
79 perf_evlist__disable(evlist);
--
-Now we need to get the counts from events, following code iterates throught the events list and read counts:
+Now we need to get the counts from events, following code iterates through the
+events list and read counts:
[source,c]
--
@@ -178,7 +180,7 @@ Now we need to get the counts from events, following code iterates throught the
85 }
--
-And finaly cleanup.
+And finally cleanup.
We close the whole events list (both events) and remove it together with the threads map:
diff --git a/tools/lib/perf/Documentation/libperf-sampling.txt b/tools/lib/perf/Documentation/libperf-sampling.txt
index d71a7b4fcf5f..d6ca24f6ef78 100644
--- a/tools/lib/perf/Documentation/libperf-sampling.txt
+++ b/tools/lib/perf/Documentation/libperf-sampling.txt
@@ -8,13 +8,13 @@ libperf-sampling - sampling interface
DESCRIPTION
-----------
-The sampling interface provides API to meassure and get count for specific perf events.
+The sampling interface provides API to measure and get count for specific perf events.
The following test tries to explain count on `sampling.c` example.
It is by no means complete guide to sampling, but shows libperf basic API for sampling.
-The `sampling.c` comes with libbperf package and can be compiled and run like:
+The `sampling.c` comes with libperf package and can be compiled and run like:
[source,bash]
--
@@ -33,7 +33,8 @@ cpu 0, pid 4465, tid 4470, ip 7f84fe0ebebf, period 176
It requires root access, because it uses hardware cycles event.
-The `sampling.c` example profiles/samples all CPUs with hardware cycles, in a nutshel it:
+The `sampling.c` example profiles/samples all CPUs with hardware cycles, in a
+nutshell it:
- creates events
- adds them to the event list
@@ -90,7 +91,7 @@ Once the setup is complete we start by defining cycles event using the `struct p
36 };
--
-Next step is to prepare cpus map.
+Next step is to prepare CPUs map.
In this case we will monitor all the available CPUs:
@@ -152,7 +153,7 @@ Once the events list is open, we can create memory maps AKA perf ring buffers:
--
The event is created as disabled (note the `disabled = 1` assignment above),
-so we need to enable the events list explicitely.
+so we need to enable the events list explicitly.
From this moment the cycles event is sampling.
@@ -212,7 +213,7 @@ Each sample needs to get parsed:
106 cpu, pid, tid, ip, period);
--
-And finaly cleanup.
+And finally cleanup.
We close the whole events list (both events) and remove it together with the threads map:
diff --git a/tools/lib/perf/Documentation/libperf.txt b/tools/lib/perf/Documentation/libperf.txt
index 5a6bb512789d..0c74c30ed23a 100644
--- a/tools/lib/perf/Documentation/libperf.txt
+++ b/tools/lib/perf/Documentation/libperf.txt
@@ -29,7 +29,7 @@ SYNOPSIS
void libperf_init(libperf_print_fn_t fn);
--
-*API to handle cpu maps:*
+*API to handle CPU maps:*
[source,c]
--
@@ -217,7 +217,7 @@ Following objects are key to the libperf interface:
[horizontal]
-struct perf_cpu_map:: Provides a cpu list abstraction.
+struct perf_cpu_map:: Provides a CPU list abstraction.
struct perf_thread_map:: Provides a thread list abstraction.