| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull iov_iter updates from Al Viro:
"A couple of iov_iter patches - Christoph's crapectomy (the last
remaining user of iov_for_each() went away with lustre, IIRC) and
Eric'c optimization of sanity checks"
* 'work.iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
iov_iter: optimize page_copy_sane()
uio: remove the unused iov_for_each macro
|
| |
| |
| |
| |
| | |
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| | |
We have many loops iterating over all of the end port numbers on a struct
ib_device, simplify them with a for_each helper.
Reviewed-by: Parav Pandit <parav@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Commit 2db76d7c3c6d ("lib/scatterlist: sg_page_iter: support sg lists w/o
backing pages") introduced the sg_page_iter_dma_address() function without
providing a way to use it in the general case. If the sg_dma_len() is not
equal to the sg length callers cannot safely use the
for_each_sg_page/sg_page_iter_dma_address combination.
Resolve this API mistake by providing a DMA specific iterator,
for_each_sg_dma_page(), that uses the right length so
sg_page_iter_dma_address() works as expected with all sglists.
A new iterator type is introduced to provide compile-time safety against
wrongly mixing accessors and iterators.
Acked-by: Christoph Hellwig <hch@lst.de> (for scatterlist)
Acked-by: Thomas Hellstrom <thellstrom@vmware.com>
Acked-by: Sakari Ailus <sakari.ailus@linux.intel.com> (ipu3-cio2)
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
|
|/
|
|
|
|
|
|
| |
Re-run the shell fragment that generated the original list. In particular
this adds the missing xarray related functions.
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
|
|
|
|
|
|
|
|
|
|
| |
There's no direct replacement for radix_tree_for_each_contig()
in the XArray API as it's an unusual thing to do. Instead,
open-code a loop using xas_next(). This removes the only user of
radix_tree_for_each_contig() so delete the iterator from the API and
the test suite code for it.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The true option causes this indenting for functions:
static struct something_very_very_long *
function(void *arg)
{
While a quick survey suggests that the usual Linux fallback is the GNU
style:
static struct something_very_very_long *
function(void *arg)
{
Eg as seen in:
kernel/cpu.c
kernel/fork.c
etc
Acked-by: Joe Perches <joe@perches.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
|
|
clang-format is a tool to format C/C++/... code according to a set of
rules and heuristics. Like most tools, it is not perfect nor covers
every single case, but it is good enough to be helpful.
In particular, it is useful for quickly re-formatting blocks of code
automatically, for reviewing full files in order to spot coding style
mistakes, typos and possible improvements. It is also handy for sorting
``#includes``, for aligning variables and macros, for reflowing text and
other similar tasks. It also serves as a teaching tool/guide for
newcomers.
The tool itself has been already included in the repositories of popular
Linux distributions for a long time. The rules in this file are
intended for clang-format >= 4, which is easily available in most
distributions.
This commit adds the configuration file that contains the rules that the
tool uses to know how to format the code according to the kernel coding
style. This gives us several advantages:
* clang-format works out of the box with reasonable defaults;
avoiding that everyone has to re-do the configuration.
* Everyone agrees (eventually) on what is the most useful default
configuration for most of the kernel.
* If it becomes commonplace among kernel developers, clang-format
may feel compelled to support us better. They already recognize
the Linux kernel and its style in their documentation and in one
of the style sub-options.
Some of clang-format's features relevant for the kernel are:
* Uses clang's tooling support behind the scenes to parse and rewrite
the code. It is not based on ad-hoc regexps.
* Supports reasonably well the Linux kernel coding style.
* Fast enough to be used at the press of a key.
* There are already integrations (either built-in or third-party)
for many common editors used by kernel developers (e.g. vim,
emacs, Sublime, Atom...) that allow you to format an entire file
or, more usefully, just your selection.
* Able to parse unified diffs -- you can, for instance, reformat
only the lines changed by a git commit.
* Able to reflow text comments as well.
* Widely supported and used by hundreds of developers in highly
complex projects and organizations (e.g. the LLVM project itself,
Chromium, WebKit, Google, Mozilla...). Therefore, it will be
supported for a long time.
See more information about the tool at:
https://clang.llvm.org/docs/ClangFormat.html
https://clang.llvm.org/docs/ClangFormatStyleOptions.html
Link: http://lkml.kernel.org/r/20180318171632.qfkemw3mwbcukth6@gmail.com
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|