| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
| |
Since struct acpi_dock_ops and the code handling it don't have any
users any more after the previous changes, drop that structure and
the code related to it altogether.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Modify the SATA subsystem to add hotplug contexts to ACPI companions
of SATA devices and ports instead of registering special ACPI dock
operations using register_hotplug_dock_device().
That change will allow the entire code handling those special ACPI
dock operations to be dropped in the next commit.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
| |
In order to avoid the need to register special ACPI dock
operations for SATA devices add a .uevent() callback pointer to
struct acpi_hotplug_context and make dock_hotplug_event() use that
callback if available. Also rename the existing .event() callback
in struct acpi_hotplug_context to .notify() to avoid possible
confusion in the future.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of requiring a set of special dock operations to be registered
via register_hotplug_dock_device() for each ACPI dock device, it is
much more straightforward to use callback pointers from the devices'
hotplug contexts if available.
For this reason, modify dock_hotplug_event() to use callback pointers
from the hotplug contexts of ACPI devices and fall back to using the
special dock operarions only if those callbacks are missing. Also
make the ACPI-based PCI hotplug (ACPIPHP) subsystem set the .fixup
callback pointer in the hotplug contexts of devices handled by it to
a new function, acpiphp_post_dock_fixup(), so that the dock station
driver can use the callbacks from those contexts instead of special
dock operations registered via register_hotplug_dock_device().
Along with the above changes drop the ACPIPHP's dock operations that
are not necessary any more.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
|
|
|
|
|
|
| |
Rework the ACPI dock station driver to store ACPI device object
pointers instead of ACPI handles in its internal data structures.
The purpose is moslty to make subsequent simplifications possible,
but also this allows the overall code size to be reduced slightly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Currently, ACPIPHP does not add hotplug context to devices that
should be handled by the native PCI hotplug (PCIeHP) code. The
reason why was because PCIeHP didn't know about the devices'
connections with ACPI and would not clean up things properly
during an eject of an ACPI-backed device, for example.
However, after recent changes that made the ACPI core create struct
acpi_device objects for all namespace nodes regardless of the
underlying devices' status and added PCI rescan-remove locking to
both ACPIPHP and PCIeHP, that concern is not valid any more.
Namely, after those changes PCIeHP need not care about the ACPI
side of things any more and it should be serialized with respect to
ACPIPHP and they won't be running concurrently with each other in
any case.
For this reason, make ACPIPHP to add its hotplug context to
all devices with ACPI companions, even the ones that should be
handled by PCIeHP in principle. That may work around hotplug
issues on some systems where PCIeHP is supposed to work, but it
doesn't and the ACPI hotplug signaling works instead.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
The name of register_slot() doesn't really reflect what the function
is does, so rename it to acpiphp_add_context() and add a proper
kerneldoc comment to it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In order for the ACPI dock station code to be able to use the
callbacks pointed to by the ACPI device objects' hotplug contexts
add a .fixup() callback pointer to struct acpi_hotplug_context.
That callback will be useful to handle PCI devices located in
dock stations.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
After recent changes adding dock station handling to the ACPI hotplug
core, it is not necessary to clear the .event() pointer in the
ACPIPHP device hotplug context for dock stations any more, so don't
do that.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
To allow user space to check which ACPI device object the dock
station is represented by, make acpi_dock_add() indicate to
platform_device_register_full() which ACPI device object should
be the companion of the new platform device.
This also ensures that the ACPI device object in question will
not go away while the dock platform device is present (which is
always).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Since we already know what the device's PNP IDs are when
acpi_device_is_battery() is called, it is not necessary to run
acpi_get_object_info() for the device in that function. Instead, if
acpi_device_is_battery() is passed a pointer to a struct acpi_device
object, it can use the list of PNP IDs from that object, so make that
happen and modify the function's header accordingly
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The ACPI dock station code carries out an extra namespace scan
before the main one in order to find and register all of the dock
device objects. Then, it registers a notify handler for each of
them for handling dock events.
However, dock device objects need not be scanned for upfront. They
very well can be enumerated and registered during the first phase
of the main namespace scan, before attaching scan handlers and ACPI
drivers to ACPI device objects. Then, the dependent devices can be
added to the in the second phase. That makes it possible to drop
the extra namespace scan, so do it.
Moreover, it is not necessary to register notify handlers for all
of the dock stations' namespace nodes, becuase notifications may
be dispatched from the global notify handler for them. Do that and
drop two functions used for dock notify handling, acpi_dock_deferred_cb()
and dock_notify_handler(), that aren't necessary any more.
Finally, some dock station objects have _HID objects matching the
ACPI container scan handler which causes it to claim those objects
and try to handle their hotplug, but that is not a good idea,
because those objects have their own special hotplug handling anyway.
For this reason, the hotplug_notify flag should not be set for ACPI
device objects representing dock stations and the container scan
handler should be made ignore those objects, so make that happen.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|\ \
| |/
|/| |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
After recent ACPI core changes acpi_bus_get_device() will always
succeed for dock station ACPI device objects, so show_docked()
should not use that function's return value as an indicator of
whether or not the dock device is present.
Make it use acpi_device_enumerated() for this purpose.
Fixes: 202317a573b2 (ACPI / scan: Add acpi_device objects for all device nodes in the namespace)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
After commit 202317a573b2 (ACPI / scan: Add acpi_device objects for
all device nodes in the namespace) acpi_bus_get_device() will always
return 0 for dock devices in dock_notify(), so the dock station
docking code under ACPI_NOTIFY_DEVICE_CHECK will never be executed
and docking will not work as a result of that.
Fix the problem by making dock_notify() use acpi_device_enumerated()
to check the presence of the device instead of checking the return
value of acpi_bus_get_device().
Fixes: 202317a573b2 (ACPI / scan: Add acpi_device objects for all device nodes in the namespace)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|\ \
| | |
| | |
| | |
| | | |
Conflicts:
drivers/pci/hotplug/acpiphp_glue.c
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Since acpi_device_hotplug() assumes that ACPI handles of device
objects passed to it will not become invalid while acpi_scan_lock
is being held, make acpiphp_disable_slot() acquire acpi_scan_lock,
because it generally causes _EJ0 to be executed for one of the
devices in the slot and that may cause its ACPI handle to become
invalid.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
| |\ \
| | | |
| | | |
| | | |
| | | | |
Conflicts:
drivers/acpi/scan.c
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Since the only existing caller of acpiphp_check_host_bridge(),
which is acpi_pci_root_scan_dependent(), already has a struct
acpi_device pointer needed to obtain the ACPIPHP context, it
doesn't make sense to execute acpi_bus_get_device() on its
handle in acpiphp_handle_to_bridge() just in order to get that
pointer back.
For this reason, modify acpiphp_check_host_bridge() to take
a struct acpi_device pointer as its argument and rearrange the
code accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Since acpi_bus_notify() is executed on all notifications for all
devices anyway, make it execute acpi_device_hotplug() for all
hotplug events instead of installing notify handlers pointing to
the same function for all hotplug devices.
This change reduces both the size and complexity of ACPI-based device
hotplug code. Moreover, since acpi_device_hotplug() only does
significant things for devices that have either an ACPI scan handler,
or a hotplug context with .eject() defined, and those devices
had notify handlers pointing to acpi_hotplug_notify_cb() installed
before anyway, this modification shouldn't change functionality.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Since acpi_hotplug_notify_cb() does not use its data argument any
more, the second argument of acpi_install_hotplug_notify_handler()
can be dropped, so do that and update its callers accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
To avoid the need to install a hotplug notify handler for each ACPI
namespace node representing a device and having a matching scan
handler, move the check whether or not the ejection of the given
device is enabled through its scan handler from acpi_hotplug_notify_cb()
to acpi_generic_hotplug_event(). Also, move the execution of
ACPI_OST_SC_EJECT_IN_PROGRESS _OST to acpi_generic_hotplug_event(),
because in acpi_hotplug_notify_cb() or in acpi_eject_store() we really
don't know whether or not the eject is going to be in progress (for
example, acpi_hotplug_execute() may still fail without queuing up the
work item).
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The ACPI-based PCI hotplug (ACPIPHP) code currently attaches its
hotplug context objects directly to ACPI namespace nodes representing
hotplug devices. However, after recent changes causing struct
acpi_device to be created for every namespace node representing a
device (regardless of its status), that is not necessary any more.
Moreover, it's vulnerable to the theoretical issue that the ACPI
handle passed in the context between handle_hotplug_event() and
hotplug_event_work() may become invalid in the meantime (as a
result of a concurrent table unload).
In principle, this issue might be addressed by adding a non-empty
release handler for ACPIPHP hotplug context objects analogous to
acpi_scan_drop_device(), but that would duplicate the code in that
function and in acpi_device_del_work_fn(). For this reason, it's
better to modify ACPIPHP to attach its device hotplug contexts to
struct device objects representing hotplug devices and make it
use acpi_hotplug_notify_cb() as its notify handler. At the same
time, acpi_device_hotplug() can be modified to dispatch the new
.hp.event() callback pointing to acpiphp_hotplug_event() from ACPI
device objects associated with PCI devices or use the generic
ACPI device hotplug code for device objects with matching scan
handlers.
This allows the existing code duplication between ACPIPHP and the
ACPI core to be reduced too and makes further ACPI-based device
hotplug consolidation possible.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Subsequent changes will require the ACPI core to acquire the lock
protecting the ACPIPHP hotplug contexts, so move the definition of
the lock to the core and change its name to be more generic.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
There is a slight possibility for the ACPI device object pointed to
by adev in acpi_hotplug_notify_cb() to become invalid between the
acpi_bus_get_device() that it comes from and the subsequent dereference
of that pointer under get_device(). Namely, if acpi_scan_drop_device()
runs in parallel with acpi_hotplug_notify_cb(), acpi_device_del_work_fn()
queued up by it may delete the device object in question right after
a successful execution of acpi_bus_get_device() in acpi_bus_notify().
An analogous problem is present in acpi_bus_notify() where the device
pointer coming from acpi_bus_get_device() may become invalid before
it subsequent dereference in the "if" block.
To prevent that from happening, introduce a new function,
acpi_bus_get_acpi_device(), working analogously to acpi_bus_get_device()
except that it will grab a reference to the ACPI device object returned
by it and it will do that under the ACPICA's namespace mutex. Then,
make both acpi_hotplug_notify_cb() and acpi_bus_notify() use
acpi_bus_get_acpi_device() instead of acpi_bus_get_device() so as to
ensure that the pointers used by them will not become stale at one
point.
In addition to that, introduce acpi_bus_put_acpi_device() as a wrapper
around put_device() to be used along with acpi_bus_get_acpi_device()
and make the (new) users of the latter use acpi_bus_put_acpi_device()
too.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Introduce a new function, acpi_get_data_full(), working in analogy
with acpi_get_data() except that it can execute a callback provided
as its 4th argument right after acpi_ns_get_attached_data() has
returned a success.
That will allow Linux to reference count the object pointed to by
*data before the namespace mutex is released so as to ensure that it
will not be freed going forward until the reference to it acquired
by acpi_get_data_full() is dropped.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Since hotplug_event() can get the ACPI handle needed for debug
printouts from its context argument, there's no need to pass the
handle to it. Moreover, the second argument's type may be changed
to (struct acpiphp_context *), because that's what is always passed
to hotplug_event() as the second argument anyway.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Make hotplug_event() use acpi_handle_debug() instead of an open-coded
debug message printing and clean up the messages printed by it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
A few lines of code can be cut from hotplug_event() by defining
and initializing the slot variable at the top of the function,
so do that.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
After recent PCI core changes related to the rescan/remove locking,
the code sections under crit_sect mutexes from ACPIPHP slot objects
are always executed under the general PCI rescan/remove lock.
For this reason, the crit_sect mutexes are simply redundant, so drop
them.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
acpiphp_bus_add() is only called from one place, so move the code out
of it into that place and drop it. Also make that code use
func_to_acpi_device() to get the struct acpi_device pointer it needs
instead of calling acpi_bus_get_device() which may be costly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
After recent modifications of the ACPI core making it create a struct
acpi_device object for every namespace node representing a device
regardless of the current status of that device the ACPIPHP code
can store a struct acpi_device pointer instead of an ACPI handle
in struct acpiphp_context. This immediately makes it possible to
avoid making potentially costly calls to acpi_bus_get_device() in
two places and allows some more simplifications to be made going
forward.
The reason why that is correct is because ACPIPHP only installs
hotify handlers for namespace nodes that exist when
acpiphp_enumerate_slots() is called for their parent bridge.
That only happens if the parent bridge has an ACPI companion
associated with it, which means that the ACPI namespace scope
in question has been scanned already at that point. That, in
turn, means that struct acpi_device objects have been created
for all namespace nodes in that scope and pointers to those
objects can be stored directly instead of their ACPI handles.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
If a struct acpi_device pointer is passed to acpiphp_no_hotplug()
instead of an ACPI handle, the function won't need to call
acpi_bus_get_device(), which may be costly, any more. Then,
trim_stale_devices() can call acpiphp_no_hotplug() passing
the struct acpi_device object it already has directly to that
function.
Make those changes and update slot_no_hotplug() accordingly.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
If trim_stale_devices() calls acpi_bus_trim() directly, we can
save a potentially costly acpi_bus_get_device() invocation. After
making that change acpiphp_bus_trim() would only be called from one
place, so move the code from it to that place and drop it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The err label in register_slot() is only jumped to from one place,
so move the code under the label to that place and drop the label.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Add proper kerneldoc comments describing acpiphp_enumerate_slots()
and acpiphp_remove_slots().
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
After recent PCI core changes related to the rescan/remove locking,
the ACPIPHP's disable_slot() function is only called under the
general PCI rescan/remove lock, so it doesn't have to use
dev_in_slot() any more to avoid race conditions. Make it simply
walk the devices on the bus and drop the ones in the slot being
disabled and drop dev_in_slot() which has no more users.
Moreover, to avoid problems described in the changelog of commit
29ed1f29b68a (PCI: pciehp: Fix null pointer deref when hot-removing
SR-IOV device), make disable_slot() carry out the list walk in
reverse order.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
| |_|/
|/| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The ACPI specification (ACPI 5.0A, Section 6.3.7) says:
_STA may return bit 0 clear (not present) with bit 3 set (device is
functional). This case is used to indicate a valid device for which
no device driver should be loaded (for example, a bridge device.)
Children of this device may be present and valid. OSPM should
continue enumeration below a device whose _STA returns this bit
combination.
Evidently, some BIOSes follow that and return 0x0A from _STA, which
causes problems to happen when they trigger bus check or device check
notifications for those devices too. Namely, ACPIPHP thinks that they
are gone and may drop them, for example, if such a notification is
triggered during a resume from system suspend.
To fix that, modify ACPICA to regard devies as present and
functioning if _STA returns both the ACPI_STA_DEVICE_ENABLED
and ACPI_STA_DEVICE_FUNCTIONING bits set for them.
Reported-and-tested-by: Peter Wu <lekensteyn@gmail.com>
Cc: 3.12+ <stable@vger.kernel.org> # 3.12+
[rjw: Subject and changelog, minor code modifications]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
| | | |
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security
Pull SELinux fixes from James Morris.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security:
SELinux: Fix kernel BUG on empty security contexts.
selinux: add SOCK_DIAG_BY_FAMILY to the list of netlink message types
|
| |\ \ \
| | | | |
| | | | |
| | | | | |
into for-linus
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Setting an empty security context (length=0) on a file will
lead to incorrectly dereferencing the type and other fields
of the security context structure, yielding a kernel BUG.
As a zero-length security context is never valid, just reject
all such security contexts whether coming from userspace
via setxattr or coming from the filesystem upon a getxattr
request by SELinux.
Setting a security context value (empty or otherwise) unknown to
SELinux in the first place is only possible for a root process
(CAP_MAC_ADMIN), and, if running SELinux in enforcing mode, only
if the corresponding SELinux mac_admin permission is also granted
to the domain by policy. In Fedora policies, this is only allowed for
specific domains such as livecd for setting down security contexts
that are not defined in the build host policy.
Reproducer:
su
setenforce 0
touch foo
setfattr -n security.selinux foo
Caveat:
Relabeling or removing foo after doing the above may not be possible
without booting with SELinux disabled. Any subsequent access to foo
after doing the above will also trigger the BUG.
BUG output from Matthew Thode:
[ 473.893141] ------------[ cut here ]------------
[ 473.962110] kernel BUG at security/selinux/ss/services.c:654!
[ 473.995314] invalid opcode: 0000 [#6] SMP
[ 474.027196] Modules linked in:
[ 474.058118] CPU: 0 PID: 8138 Comm: ls Tainted: G D I
3.13.0-grsec #1
[ 474.116637] Hardware name: Supermicro X8ST3/X8ST3, BIOS 2.0
07/29/10
[ 474.149768] task: ffff8805f50cd010 ti: ffff8805f50cd488 task.ti:
ffff8805f50cd488
[ 474.183707] RIP: 0010:[<ffffffff814681c7>] [<ffffffff814681c7>]
context_struct_compute_av+0xce/0x308
[ 474.219954] RSP: 0018:ffff8805c0ac3c38 EFLAGS: 00010246
[ 474.252253] RAX: 0000000000000000 RBX: ffff8805c0ac3d94 RCX:
0000000000000100
[ 474.287018] RDX: ffff8805e8aac000 RSI: 00000000ffffffff RDI:
ffff8805e8aaa000
[ 474.321199] RBP: ffff8805c0ac3cb8 R08: 0000000000000010 R09:
0000000000000006
[ 474.357446] R10: 0000000000000000 R11: ffff8805c567a000 R12:
0000000000000006
[ 474.419191] R13: ffff8805c2b74e88 R14: 00000000000001da R15:
0000000000000000
[ 474.453816] FS: 00007f2e75220800(0000) GS:ffff88061fc00000(0000)
knlGS:0000000000000000
[ 474.489254] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 474.522215] CR2: 00007f2e74716090 CR3: 00000005c085e000 CR4:
00000000000207f0
[ 474.556058] Stack:
[ 474.584325] ffff8805c0ac3c98 ffffffff811b549b ffff8805c0ac3c98
ffff8805f1190a40
[ 474.618913] ffff8805a6202f08 ffff8805c2b74e88 00068800d0464990
ffff8805e8aac860
[ 474.653955] ffff8805c0ac3cb8 000700068113833a ffff880606c75060
ffff8805c0ac3d94
[ 474.690461] Call Trace:
[ 474.723779] [<ffffffff811b549b>] ? lookup_fast+0x1cd/0x22a
[ 474.778049] [<ffffffff81468824>] security_compute_av+0xf4/0x20b
[ 474.811398] [<ffffffff8196f419>] avc_compute_av+0x2a/0x179
[ 474.843813] [<ffffffff8145727b>] avc_has_perm+0x45/0xf4
[ 474.875694] [<ffffffff81457d0e>] inode_has_perm+0x2a/0x31
[ 474.907370] [<ffffffff81457e76>] selinux_inode_getattr+0x3c/0x3e
[ 474.938726] [<ffffffff81455cf6>] security_inode_getattr+0x1b/0x22
[ 474.970036] [<ffffffff811b057d>] vfs_getattr+0x19/0x2d
[ 475.000618] [<ffffffff811b05e5>] vfs_fstatat+0x54/0x91
[ 475.030402] [<ffffffff811b063b>] vfs_lstat+0x19/0x1b
[ 475.061097] [<ffffffff811b077e>] SyS_newlstat+0x15/0x30
[ 475.094595] [<ffffffff8113c5c1>] ? __audit_syscall_entry+0xa1/0xc3
[ 475.148405] [<ffffffff8197791e>] system_call_fastpath+0x16/0x1b
[ 475.179201] Code: 00 48 85 c0 48 89 45 b8 75 02 0f 0b 48 8b 45 a0 48
8b 3d 45 d0 b6 00 8b 40 08 89 c6 ff ce e8 d1 b0 06 00 48 85 c0 49 89 c7
75 02 <0f> 0b 48 8b 45 b8 4c 8b 28 eb 1e 49 8d 7d 08 be 80 01 00 00 e8
[ 475.255884] RIP [<ffffffff814681c7>]
context_struct_compute_av+0xce/0x308
[ 475.296120] RSP <ffff8805c0ac3c38>
[ 475.328734] ---[ end trace f076482e9d754adc ]---
Reported-by: Matthew Thode <mthode@mthode.org>
Signed-off-by: Stephen Smalley <sds@tycho.nsa.gov>
Cc: stable@vger.kernel.org
Signed-off-by: Paul Moore <pmoore@redhat.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The SELinux AF_NETLINK/NETLINK_SOCK_DIAG socket class was missing the
SOCK_DIAG_BY_FAMILY definition which caused SELINUX_ERR messages when
the ss tool was run.
# ss
Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
u_str ESTAB 0 0 * 14189 * 14190
u_str ESTAB 0 0 * 14145 * 14144
u_str ESTAB 0 0 * 14151 * 14150
{...}
# ausearch -m SELINUX_ERR
----
time->Thu Jan 23 11:11:16 2014
type=SYSCALL msg=audit(1390493476.445:374):
arch=c000003e syscall=44 success=yes exit=40
a0=3 a1=7fff03aa11f0 a2=28 a3=0 items=0 ppid=1852 pid=1895
auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0
tty=pts0 ses=1 comm="ss" exe="/usr/sbin/ss"
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null)
type=SELINUX_ERR msg=audit(1390493476.445:374):
SELinux: unrecognized netlink message type=20 for sclass=32
Signed-off-by: Paul Moore <pmoore@redhat.com>
|
| | |\ \ \
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Linux 3.13
Conflicts:
security/selinux/hooks.c
Trivial merge issue in selinux_inet_conn_request() likely due to me
including patches that I sent to the stable folks in my next tree
resulting in the patch hitting twice (I think). Thankfully it was an
easy fix this time, but regardless, lesson learned, I will not do that
again.
|
|\ \ \ \ \ \
| |/ / / / /
|/| | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs fixes from Al Viro:
"A couple of fixes, both -stable fodder. The O_SYNC bug is fairly
old..."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fix a kmap leak in virtio_console
fix O_SYNC|O_APPEND syncing the wrong range on write()
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
While we are at it, don't do kmap() under kmap_atomic(), *especially*
for a page we'd allocated with GFP_KERNEL. It's spelled "page_address",
and had that been more than that, we'd have a real trouble - kmap_high()
can block, and doing that while holding kmap_atomic() is a Bad Idea(tm).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
It actually goes back to 2004 ([PATCH] Concurrent O_SYNC write support)
when sync_page_range() had been introduced; generic_file_write{,v}() correctly
synced
pos_after_write - written .. pos_after_write - 1
but generic_file_aio_write() synced
pos_before_write .. pos_before_write + written - 1
instead. Which is not the same thing with O_APPEND, obviously.
A couple of years later correct variant had been killed off when
everything switched to use of generic_file_aio_write().
All users of generic_file_aio_write() are affected, and the same bug
has been copied into other instances of ->aio_write().
The fix is trivial; the only subtle point is that generic_write_sync()
ought to be inlined to avoid calculations useless for the majority of
calls.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|\ \ \ \ \ \
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
"This is a small collection of fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix data corruption when reading/updating compressed extents
Btrfs: don't loop forever if we can't run because of the tree mod log
btrfs: reserve no transaction units in btrfs_ioctl_set_features
btrfs: commit transaction after setting label and features
Btrfs: fix assert screwup for the pending move stuff
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
When using a mix of compressed file extents and prealloc extents, it
is possible to fill a page of a file with random, garbage data from
some unrelated previous use of the page, instead of a sequence of zeroes.
A simple sequence of steps to get into such case, taken from the test
case I made for xfstests, is:
_scratch_mkfs
_scratch_mount "-o compress-force=lzo"
$XFS_IO_PROG -f -c "pwrite -S 0x06 -b 18670 266978 18670" $SCRATCH_MNT/foobar
$XFS_IO_PROG -c "falloc 26450 665194" $SCRATCH_MNT/foobar
$XFS_IO_PROG -c "truncate 542872" $SCRATCH_MNT/foobar
$XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foobar
This results in the following file items in the fs tree:
item 4 key (257 INODE_ITEM 0) itemoff 15879 itemsize 160
inode generation 6 transid 6 size 542872 block group 0 mode 100600
item 5 key (257 INODE_REF 256) itemoff 15863 itemsize 16
inode ref index 2 namelen 6 name: foobar
item 6 key (257 EXTENT_DATA 0) itemoff 15810 itemsize 53
extent data disk byte 0 nr 0 gen 6
extent data offset 0 nr 24576 ram 266240
extent compression 0
item 7 key (257 EXTENT_DATA 24576) itemoff 15757 itemsize 53
prealloc data disk byte 12849152 nr 241664 gen 6
prealloc data offset 0 nr 241664
item 8 key (257 EXTENT_DATA 266240) itemoff 15704 itemsize 53
extent data disk byte 12845056 nr 4096 gen 6
extent data offset 0 nr 20480 ram 20480
extent compression 2
item 9 key (257 EXTENT_DATA 286720) itemoff 15651 itemsize 53
prealloc data disk byte 13090816 nr 405504 gen 6
prealloc data offset 0 nr 258048
The on disk extent at offset 266240 (which corresponds to 1 single disk block),
contains 5 compressed chunks of file data. Each of the first 4 compress 4096
bytes of file data, while the last one only compresses 3024 bytes of file data.
Therefore a read into the file region [285648 ; 286720[ (length = 4096 - 3024 =
1072 bytes) should always return zeroes (our next extent is a prealloc one).
The solution here is the compression code path to zero the remaining (untouched)
bytes of the last page it uncompressed data into, as the information about how
much space the file data consumes in the last page is not known in the upper layer
fs/btrfs/extent_io.c:__do_readpage(). In __do_readpage we were correctly zeroing
the remainder of the page but only if it corresponds to the last page of the inode
and if the inode's size is not a multiple of the page size.
This would cause not only returning random data on reads, but also permanently
storing random data when updating parts of the region that should be zeroed.
For the example above, it means updating a single byte in the region [285648 ; 286720[
would store that byte correctly but also store random data on disk.
A test case for xfstests follows soon.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
|