summaryrefslogtreecommitdiffstats
Commit message (Collapse)AuthorAgeFilesLines
* drivers/infiniband/sw/rdmavt/qp.c: use kmalloc_array_node()Johannes Thumshirn2017-11-161-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | Now that we have a NUMA-aware version of kmalloc_array() we can use it instead of kmalloc_node() without an overflow check in the size calculation. Link: http://lkml.kernel.org/r/20170927082038.3782-5-jthumshirn@suse.de Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Damien Le Moal <damien.lemoal@wdc.com> Cc: David Rientjes <rientjes@google.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Doug Ledford <dledford@redhat.com> Cc: Hal Rosenstock <hal.rosenstock@gmail.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mike Marciniszyn <infinipath@intel.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Santosh Shilimkar <santosh.shilimkar@oracle.com> Cc: Sean Hefty <sean.hefty@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* drivers/infiniband/hw/qib/qib_init.c: use kmalloc_array_node()Johannes Thumshirn2017-11-161-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | Now that we have a NUMA-aware version of kmalloc_array() we can use it instead of kmalloc_node() without an overflow check in the size calculation. Link: http://lkml.kernel.org/r/20170927082038.3782-4-jthumshirn@suse.de Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: Mike Marciniszyn <infinipath@intel.com> Cc: Doug Ledford <dledford@redhat.com> Cc: Sean Hefty <sean.hefty@intel.com> Cc: Hal Rosenstock <hal.rosenstock@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Damien Le Moal <damien.lemoal@wdc.com> Cc: David Rientjes <rientjes@google.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jens Axboe <axboe@kernel.dk> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Santosh Shilimkar <santosh.shilimkar@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* block/blk-mq.c: use kmalloc_array_node()Johannes Thumshirn2017-11-161-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | Now that we have a NUMA-aware version of kmalloc_array() we can use it instead of kmalloc_node() without an overflow check in the size calculation. Link: http://lkml.kernel.org/r/20170927082038.3782-3-jthumshirn@suse.de Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Damien Le Moal <damien.lemoal@wdc.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: "David S. Miller" <davem@davemloft.net> Cc: Doug Ledford <dledford@redhat.com> Cc: Hal Rosenstock <hal.rosenstock@gmail.com> Cc: Mike Marciniszyn <infinipath@intel.com> Cc: Santosh Shilimkar <santosh.shilimkar@oracle.com> Cc: Sean Hefty <sean.hefty@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* include/linux/slab.h: add kmalloc_array_node() and kcalloc_node()Johannes Thumshirn2017-11-161-0/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "Add kmalloc_array_node() and kcalloc_node()". Our current memeory allocation routines suffer form an API imbalance, for one we have kmalloc_array() and kcalloc() which check for overflows in size multiplication and we have kmalloc_node() and kzalloc_node() which allow for memory allocation on a certain NUMA node but don't check for eventual overflows. This patch (of 6): We have kmalloc_array() and kcalloc() wrappers on top of kmalloc() which ensure us overflow free multiplication for the size of a memory allocation but these implementations are not NUMA-aware. Likewise we have kmalloc_node() which is a NUMA-aware version of kmalloc() but the implementation is not aware of any possible overflows in eventual size calculations. Introduce a combination of the two above cases to have a NUMA-node aware version of kmalloc_array() and kcalloc(). Link: http://lkml.kernel.org/r/20170927082038.3782-2-jthumshirn@suse.de Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Hellwig <hch@lst.de> Cc: Christoph Lameter <cl@linux.com> Cc: Damien Le Moal <damien.lemoal@wdc.com> Cc: David Rientjes <rientjes@google.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Doug Ledford <dledford@redhat.com> Cc: Hal Rosenstock <hal.rosenstock@gmail.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mike Marciniszyn <infinipath@intel.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Santosh Shilimkar <santosh.shilimkar@oracle.com> Cc: Sean Hefty <sean.hefty@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slub: fix sysfs duplicate filename creation when slub_debug=OMiles Chen2017-11-161-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When slub_debug=O is set. It is possible to clear debug flags for an "unmergeable" slab cache in kmem_cache_open(). It makes the "unmergeable" cache became "mergeable" in sysfs_slab_add(). These caches will generate their "unique IDs" by create_unique_id(), but it is possible to create identical unique IDs. In my experiment, sgpool-128, names_cache, biovec-256 generate the same ID ":Ft-0004096" and the kernel reports "sysfs: cannot create duplicate filename '/kernel/slab/:Ft-0004096'". To repeat my experiment, set disable_higher_order_debug=1, CONFIG_SLUB_DEBUG_ON=y in kernel-4.14. Fix this issue by setting unmergeable=1 if slub_debug=O and the the default slub_debug contains any no-merge flags. call path: kmem_cache_create() __kmem_cache_alias() -> we set SLAB_NEVER_MERGE flags here create_cache() __kmem_cache_create() kmem_cache_open() -> clear DEBUG_METADATA_FLAGS sysfs_slab_add() -> the slab cache is mergeable now sysfs: cannot create duplicate filename '/kernel/slab/:Ft-0004096' ------------[ cut here ]------------ WARNING: CPU: 0 PID: 1 at fs/sysfs/dir.c:31 sysfs_warn_dup+0x60/0x7c Modules linked in: CPU: 0 PID: 1 Comm: swapper/0 Tainted: G W 4.14.0-rc7ajb-00131-gd4c2e9f-dirty #123 Hardware name: linux,dummy-virt (DT) task: ffffffc07d4e0080 task.stack: ffffff8008008000 PC is at sysfs_warn_dup+0x60/0x7c LR is at sysfs_warn_dup+0x60/0x7c pc : lr : pstate: 60000145 Call trace: sysfs_warn_dup+0x60/0x7c sysfs_create_dir_ns+0x98/0xa0 kobject_add_internal+0xa0/0x294 kobject_init_and_add+0x90/0xb4 sysfs_slab_add+0x90/0x200 __kmem_cache_create+0x26c/0x438 kmem_cache_create+0x164/0x1f4 sg_pool_init+0x60/0x100 do_one_initcall+0x38/0x12c kernel_init_freeable+0x138/0x1d4 kernel_init+0x10/0xfc ret_from_fork+0x10/0x18 Link: http://lkml.kernel.org/r/1510365805-5155-1-git-send-email-miles.chen@mediatek.com Signed-off-by: Miles Chen <miles.chen@mediatek.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab, slub, slob: convert slab_flags_t to 32-bitAlexey Dobriyan2017-11-164-28/+28
| | | | | | | | | | | | | | | | | | | | | | | | struct kmem_cache::flags is "unsigned long" which is unnecessary on 64-bit as no flags are defined in the higher bits. Switch the field to 32-bit and save some space on x86_64 until such flags appear: add/remove: 0/0 grow/shrink: 0/107 up/down: 0/-657 (-657) function old new delta sysfs_slab_add 720 719 -1 ... check_object 699 676 -23 [akpm@linux-foundation.org: fix printk warning] Link: http://lkml.kernel.org/r/20171021100635.GA8287@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slab, slub, slob: add slab_flags_tAlexey Dobriyan2017-11-1615-81/+97
| | | | | | | | | | | | | | | | | Add sparse-checked slab_flags_t for struct kmem_cache::flags (SLAB_POISON, etc). SLAB is bloated temporarily by switching to "unsigned long", but only temporarily. Link: http://lkml.kernel.org/r/20171021100225.GA22428@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/slab.c: only set __GFP_RECLAIMABLE onceDavid Rientjes2017-11-161-2/+2
| | | | | | | | | | | | | | | | SLAB_RECLAIM_ACCOUNT is a permanent attribute of a slab cache. Set __GFP_RECLAIMABLE as part of its ->allocflags rather than check the cachep flag on every page allocation. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1710171527560.140898@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/slob.c: remove an unnecessary check for __GFP_ZEROMiles Chen2017-11-161-1/+1
| | | | | | | | | | | | | | Current flow guarantees a valid pointer when handling the __GFP_ZERO case. So remove the unnecessary NULL pointer check. Link: http://lkml.kernel.org/r/1507203141-11959-1-git-send-email-miles.chen@mediatek.com Signed-off-by: Miles Chen <miles.chen@mediatek.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: oom: show unreclaimable slab info when unreclaimable slabs > user memoryYang Shi2017-11-163-2/+67
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The kernel may panic when an oom happens without killable process sometimes it is caused by huge unreclaimable slabs used by kernel. Although kdump could help debug such problem, however, kdump is not available on all architectures and it might be malfunction sometime. And, since kernel already panic it is worthy capturing such information in dmesg to aid touble shooting. Print out unreclaimable slab info (used size and total size) which actual memory usage is not zero (num_objs * size != 0) when unreclaimable slabs amount is greater than total user memory (LRU pages). The output looks like: Unreclaimable slab info: Name Used Total rpc_buffers 31KB 31KB rpc_tasks 7KB 7KB ebitmap_node 1964KB 1964KB avtab_node 5024KB 5024KB xfs_buf 1402KB 1402KB xfs_ili 134KB 134KB xfs_efi_item 115KB 115KB xfs_efd_item 115KB 115KB xfs_buf_item 134KB 134KB xfs_log_item_desc 342KB 342KB xfs_trans 1412KB 1412KB xfs_ifork 212KB 212KB [yang.s@alibaba-inc.com: v11] Link: http://lkml.kernel.org/r/1507656303-103845-4-git-send-email-yang.s@alibaba-inc.com Link: http://lkml.kernel.org/r/1507152550-46205-4-git-send-email-yang.s@alibaba-inc.com Signed-off-by: Yang Shi <yang.s@alibaba-inc.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: slabinfo: remove CONFIG_SLABINFOYang Shi2017-11-165-15/+6
| | | | | | | | | | | | | | | | | | | | | According to discussion with Christoph (https://marc.info/?l=linux-kernel&m=150695909709711&w=2), it sounds like it is pointless to keep CONFIG_SLABINFO around. This patch removes the CONFIG_SLABINFO config option, but /proc/slabinfo is still available. [yang.s@alibaba-inc.com: v11] Link: http://lkml.kernel.org/r/1507656303-103845-3-git-send-email-yang.s@alibaba-inc.com Link: http://lkml.kernel.org/r/1507152550-46205-3-git-send-email-yang.s@alibaba-inc.com Signed-off-by: Yang Shi <yang.s@alibaba-inc.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* tools: slabinfo: add "-U" option to show unreclaimable slabs onlyYang Shi2017-11-161-1/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "oom: capture unreclaimable slab info in oom message", v10. Recently we ran into a oom issue, kernel panic due to no killable process. The dmesg shows huge unreclaimable slabs used almost 100% memory, but kdump doesn't capture vmcore due to some reason. So, it may sound better to capture unreclaimable slab info in oom message when kernel panic to aid trouble shooting and cover the corner case. Since kernel already panic, so capturing more information sounds worthy and doesn't bother normal oom killer. With the patchset, tools/vm/slabinfo has a new option, "-U", to show unreclaimable slab only. And, oom will print all non zero (num_objs * size != 0) unreclaimable slabs in oom killer message. This patch (of 3): Add "-U" option to show unreclaimable slabs only. "-U" and "-S" together can tell us what unreclaimable slabs use the most memory to help debug huge unreclaimable slabs issue. Link: http://lkml.kernel.org/r/1507152550-46205-2-git-send-email-yang.s@alibaba-inc.com Signed-off-by: Yang Shi <yang.s@alibaba-inc.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* ocfs2: remove unneeded goto in ocfs2_reserve_cluster_bitmap_bits()Guozhonghua2017-11-161-4/+1
| | | | | | | | | | | Link: http://lkml.kernel.org/r/71604351584F6A4EBAE558C676F37CA4F3CDE3A9@H3CMLB14-EX.srv.huawei-3com.com Signed-off-by: guozhonghua <guozhonghua@h3c.com> Cc: Mark Fasheh <mfasheh@versity.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Cc: Joseph Qi <jiangqi903@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* ocfs2/dlm: get mle inuse only when it is initializedChangwei Ge2017-11-161-1/+3
| | | | | | | | | | | | | | | | When dlm_add_migration_mle returns -EEXIST, previously input mle will not be initialized. So we can't use its associated dlm object. And we truly don't need this mle for already launched migration progress, since oldmle has taken this role. Link: http://lkml.kernel.org/r/63ADC13FD55D6546B7DECE290D39E373CED7AA61@H3CMLB14-EX.srv.huawei-3com.com Signed-off-by: Changwei Ge <ge.changwei@h3c.com> Reviewed-by: Joseph Qi <jiangqi903@gmail.com> Cc: Mark Fasheh <mfasheh@versity.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* ocfs2: subsystem.su_mutex is required while accessing the item->ci_parentalex chen2017-11-161-8/+55
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The subsystem.su_mutex is required while accessing the item->ci_parent, otherwise, NULL pointer dereference to the item->ci_parent will be triggered in the following situation: add node delete node sys_write vfs_write configfs_write_file o2nm_node_store o2nm_node_local_write do_rmdir vfs_rmdir configfs_rmdir mutex_lock(&subsys->su_mutex); unlink_obj item->ci_group = NULL; item->ci_parent = NULL; to_o2nm_cluster_from_node node->nd_item.ci_parent->ci_parent BUG since of NULL pointer dereference to nd_item.ci_parent Moreover, the o2nm_cluster also should be protected by the subsystem.su_mutex. [alex.chen@huawei.com: v2] Link: http://lkml.kernel.org/r/59EEAA69.9080703@huawei.com Link: http://lkml.kernel.org/r/59E9B36A.10700@huawei.com Signed-off-by: Alex Chen <alex.chen@huawei.com> Reviewed-by: Jun Piao <piaojun@huawei.com> Reviewed-by: Joseph Qi <jiangqi903@gmail.com> Cc: Mark Fasheh <mfasheh@versity.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* ocfs2: ip_alloc_sem should be taken in ocfs2_get_block()alex chen2017-11-161-8/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ip_alloc_sem should be taken in ocfs2_get_block() when reading file in DIRECT mode to prevent concurrent access to extent tree with ocfs2_dio_end_io_write(), which may cause BUGON in the following situation: read file 'A' end_io of writing file 'A' vfs_read __vfs_read ocfs2_file_read_iter generic_file_read_iter ocfs2_direct_IO __blockdev_direct_IO do_blockdev_direct_IO do_direct_IO get_more_blocks ocfs2_get_block ocfs2_extent_map_get_blocks ocfs2_get_clusters ocfs2_get_clusters_nocache() ocfs2_search_extent_list return the index of record which contains the v_cluster, that is v_cluster > rec[i]->e_cpos. ocfs2_dio_end_io ocfs2_dio_end_io_write down_write(&oi->ip_alloc_sem); ocfs2_mark_extent_written ocfs2_change_extent_flag ocfs2_split_extent ... --> modify the rec[i]->e_cpos, resulting in v_cluster < rec[i]->e_cpos. BUG_ON(v_cluster < le32_to_cpu(rec->e_cpos)) [alex.chen@huawei.com: v3] Link: http://lkml.kernel.org/r/59EF3614.6050008@huawei.com Link: http://lkml.kernel.org/r/59EF3614.6050008@huawei.com Fixes: c15471f79506 ("ocfs2: fix sparse file & data ordering issue in direct io") Signed-off-by: Alex Chen <alex.chen@huawei.com> Reviewed-by: Jun Piao <piaojun@huawei.com> Reviewed-by: Joseph Qi <jiangqi903@gmail.com> Reviewed-by: Gang He <ghe@suse.com> Acked-by: Changwei Ge <ge.changwei@h3c.com> Cc: Mark Fasheh <mfasheh@versity.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* ocfs2: should wait dio before inode lock in ocfs2_setattr()alex chen2017-11-161-2/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | we should wait dio requests to finish before inode lock in ocfs2_setattr(), otherwise the following deadlock will happen: process 1 process 2 process 3 truncate file 'A' end_io of writing file 'A' receiving the bast messages ocfs2_setattr ocfs2_inode_lock_tracker ocfs2_inode_lock_full inode_dio_wait __inode_dio_wait -->waiting for all dio requests finish dlm_proxy_ast_handler dlm_do_local_bast ocfs2_blocking_ast ocfs2_generic_handle_bast set OCFS2_LOCK_BLOCKED flag dio_end_io dio_bio_end_aio dio_complete ocfs2_dio_end_io ocfs2_dio_end_io_write ocfs2_inode_lock __ocfs2_cluster_lock ocfs2_wait_for_mask -->waiting for OCFS2_LOCK_BLOCKED flag to be cleared, that is waiting for 'process 1' unlocking the inode lock inode_dio_end -->here dec the i_dio_count, but will never be called, so a deadlock happened. Link: http://lkml.kernel.org/r/59F81636.70508@huawei.com Signed-off-by: Alex Chen <alex.chen@huawei.com> Reviewed-by: Jun Piao <piaojun@huawei.com> Reviewed-by: Joseph Qi <jiangqi903@gmail.com> Acked-by: Changwei Ge <ge.changwei@h3c.com> Cc: Mark Fasheh <mfasheh@versity.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* ocfs2: clean up some unused function declarationspiaojun2017-11-161-3/+0
| | | | | | | | | | | | Link: http://lkml.kernel.org/r/59C5D7D6.9050106@huawei.com Signed-off-by: Jun Piao <piaojun@huawei.com> Reviewed-by: Alex Chen <alex.chen@huawei.com> Cc: Mark Fasheh <mfasheh@versity.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Cc: Joseph Qi <jiangqi903@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* ocfs2: fix cluster hang after a node diesChangwei Ge2017-11-161-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When a node dies, other live nodes have to choose a new master for an existed lock resource mastered by the dead node. As for ocfs2/dlm implementation, this is done by function - dlm_move_lockres_to_recovery_list which marks those lock rsources as DLM_LOCK_RES_RECOVERING and manages them via a list from which DLM changes lock resource's master later. So without invoking dlm_move_lockres_to_recovery_list, no master will be choosed after dlm recovery accomplishment since no lock resource can be found through ::resource list. What's worse is that if DLM_LOCK_RES_RECOVERING is not marked for lock resources mastered a dead node, it will break up synchronization among nodes. So invoke dlm_move_lockres_to_recovery_list again. Fixs: 'commit ee8f7fcbe638 ("ocfs2/dlm: continue to purge recovery lockres when recovery master goes down")' Link: http://lkml.kernel.org/r/63ADC13FD55D6546B7DECE290D39E373CED6E0F9@H3CMLB14-EX.srv.huawei-3com.com Signed-off-by: Changwei Ge <ge.changwei@h3c.com> Reported-by: Vitaly Mayatskih <v.mayatskih@gmail.com> Tested-by: Vitaly Mayatskikh <v.mayatskih@gmail.com> Cc: Mark Fasheh <mfasheh@versity.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Cc: Joseph Qi <jiangqi903@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* ocfs2: cleanup unused func declaration and assignmentpiaojun2017-11-162-4/+0
| | | | | | | | | | | Link: http://lkml.kernel.org/r/59E064BB.8000005@huawei.com Signed-off-by: Jun Piao <piaojun@huawei.com> Reviewed-by: Joseph Qi <jiangqi903@gmail.com> Cc: Mark Fasheh <mfasheh@versity.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* ocfs2: no need flush workqueue before destroying itpiaojun2017-11-163-5/+1
| | | | | | | | | | | | | destroy_workqueue() will do flushing work for us. Link: http://lkml.kernel.org/r/59E06476.3090502@huawei.com Signed-off-by: Jun Piao <piaojun@huawei.com> Reviewed-by: Joseph Qi <jiangqi903@gmail.com> Cc: Mark Fasheh <mfasheh@versity.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* ocfs2: remove unused declaration ocfs2_publish_get_mount_state()Guozhonghua2017-11-161-3/+0
| | | | | | | | | | | | Link: http://lkml.kernel.org/r/71604351584F6A4EBAE558C676F37CA4D0743232@H3CMLB12-EX.srv.huawei-3com.com Signed-off-by: guozhonghua <guozhonghua@h3c.com> Acked-by: Changwei Ge <ge.changwei@h3c.com> Cc: Mark Fasheh <mfasheh@versity.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Junxiao Bi <junxiao.bi@oracle.com> Cc: Joseph Qi <jiangqi903@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* m32r: fix endianness constraintsGeert Uytterhoeven2017-11-161-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The m32r Kconfig provides both CPU_BIG_ENDIAN and CPU_LITTLE_ENDIAN configuration options. As they are user-selectable and independent, this allows invalid configurations: - All m32r defconfigs build a big endian kernel, but CPU_BIG_ENDIAN is not set, causing compiler warnings like: include/linux/byteorder/big_endian.h:7:2: warning: #warning inconsistent configuration, needs CONFIG_CPU_BIG_ENDIAN [-Wcpp] #warning inconsistent configuration, needs CONFIG_CPU_BIG_ENDIAN ^ - Since commit 5bdfca6435b82944 ("m32r: define CPU_BIG_ENDIAN"), building an allmodconfig or allyesconfig enables both CONFIG_CPU_BIG_ENDIAN and CONFIG_CPU_LITTLE_ENDIAN. While this did get rid of the warning above, both options are obviously mutually exclusive. Fix this by making only CPU_LITTLE_ENDIAN configurable by the user, as before, and by making sure exactly one of CPU_BIG_ENDIAN and CPU_LITTLE_ENDIAN is always enabled. Link: http://lkml.kernel.org/r/1509361505-18150-1-git-send-email-geert@linux-m68k.org Fixes: 5bdfca6435b82944 ("m32r: define CPU_BIG_ENDIAN") Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* bloat-o-meter: provide 3 different arguments for data, function and AllManinder Singh2017-11-161-34/+55
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch provides 3 new arguments for bloat-o-meter 1) -c -> for all (showing function and data differently) 2) -d -> data 3) -t -> function output: ./scripts/bloat-o-meter -c "file1" "file2" add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-152 (-152) Function old new delta main 412 260 -152 Total: Before=548, After=396, chg -27.74% ########################################################## add/remove: 1/0 grow/shrink: 1/0 up/down: 84/0 (84) Data old new delta arr - 64 +64 backtrace 60 80 +20 Total: Before=109, After=193, chg +77.06% ########################################################## add/remove: 0/1 grow/shrink: 0/0 up/down: 0/-64 (-64) RO Data old new delta arr 64 - -64 Total: Before=68, After=4, chg -94.12% [maninder1.s@samsung.com: v1 -> v2] Link: http://lkml.kernel.org/r/1506569402-24787-1-git-send-email-maninder1.s@samsung.com Link: http://lkml.kernel.org/r/1506336313-27187-1-git-send-email-maninder1.s@samsung.com Signed-off-by: Vaneet Narang <v.narang@samsung.com> Signed-off-by: Maninder Singh <maninder1.s@samsung.com> Cc: Amit Sahrawat <a.sahrawat@samsung.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Michal Marek <mmarek@suse.cz> Cc: <pankaj.m@samsung.com> Cc: <a.sahrawat@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge tag 'arm64-upstream' of ↵Linus Torvalds2017-11-1597-601/+7399
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "The big highlight is support for the Scalable Vector Extension (SVE) which required extensive ABI work to ensure we don't break existing applications by blowing away their signal stack with the rather large new vector context (<= 2 kbit per vector register). There's further work to be done optimising things like exception return, but the ABI is solid now. Much of the line count comes from some new PMU drivers we have, but they're pretty self-contained and I suspect we'll have more of them in future. Plenty of acronym soup here: - initial support for the Scalable Vector Extension (SVE) - improved handling for SError interrupts (required to handle RAS events) - enable GCC support for 128-bit integer types - remove kernel text addresses from backtraces and register dumps - use of WFE to implement long delay()s - ACPI IORT updates from Lorenzo Pieralisi - perf PMU driver for the Statistical Profiling Extension (SPE) - perf PMU driver for Hisilicon's system PMUs - misc cleanups and non-critical fixes" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits) arm64: Make ARMV8_DEPRECATED depend on SYSCTL arm64: Implement __lshrti3 library function arm64: support __int128 on gcc 5+ arm64/sve: Add documentation arm64/sve: Detect SVE and activate runtime support arm64/sve: KVM: Hide SVE from CPU features exposed to guests arm64/sve: KVM: Treat guest SVE use as undefined instruction execution arm64/sve: KVM: Prevent guests from using SVE arm64/sve: Add sysctl to set the default vector length for new processes arm64/sve: Add prctl controls for userspace vector length management arm64/sve: ptrace and ELF coredump support arm64/sve: Preserve SVE registers around EFI runtime service calls arm64/sve: Preserve SVE registers around kernel-mode NEON use arm64/sve: Probe SVE capabilities and usable vector lengths arm64: cpufeature: Move sys_caps_initialised declarations arm64/sve: Backend logic for setting the vector length arm64/sve: Signal handling support arm64/sve: Support vector length resetting for new processes arm64/sve: Core task context handling arm64/sve: Low-level CPU setup ...
| * arm64: Make ARMV8_DEPRECATED depend on SYSCTLDave Martin2017-11-131-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If CONFIG_SYSCTL=n and CONFIG_ARMV8_DEPRECATED=y, the deprecated instruction emulation code currently leaks some memory at boot time, and won't have any runtime control interface. This does not feel like useful or intended behaviour... This patch adds a dependency on CONFIG_SYSCTL, so that such a kernel can't be built in the first place. It's probably not worth adding the error-handling / cleanup code that would be needed to deal with this otherwise: people who desperately need the emulation can still enable SYSCTL. Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64: Implement __lshrti3 library functionJason A. Donenfeld2017-11-131-0/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit fb8722735f50 ("arm64: support __int128 on gcc 5+") added support for the __int128 data type, but this breaks the build in some configurations where GCC ends up emitting calls to the __lshrti3 helper in libgcc, which results in a link error: kernel/sched/fair.o: In function `__calc_delta': fair.c:(.text+0xca0): undefined reference to `__lshrti3' kernel/time/timekeeping.o: In function `timekeeping_resume': timekeeping.c:(.text+0x3f60): undefined reference to `__lshrti3' make: *** [vmlinux] Error 1 Fix the build by providing an implementation of __lshrti3, like we do already for __ashlti3 and __ashrti3. Reported-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64: support __int128 on gcc 5+Jason A. Donenfeld2017-11-033-1/+62
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Versions of gcc prior to gcc 5 emitted a __multi3 function call when dealing with TI types, resulting in failures when trying to link to libgcc, and more generally, bad performance. However, since gcc 5, the compiler supports actually emitting fast instructions, which means we can at long last enable this option and receive the speedups. The gcc commit that added proper Aarch64 support is: https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=d1ae7bb994f49316f6f63e6173f2931e837a351d This commit appears to be part of the gcc 5 release. There are still a few instructions, __ashlti3 and __ashrti3, which require libgcc, which is fine. Rather than linking to libgcc, we simply provide them ourselves, since they're not that complicated. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: Add documentationDave Martin2017-11-032-0/+511
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds basic documentation of the user/kernel interface provided by the for SVE. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alan Hayward <alan.hayward@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Szabolcs Nagy <szabolcs.nagy@arm.com> Cc: linux-api@vger.kernel.org Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: Detect SVE and activate runtime supportDave Martin2017-11-038-6/+36
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch enables detection of hardware SVE support via the cpufeatures framework, and reports its presence to the kernel and userspace via the new ARM64_SVE cpucap and HWCAP_SVE hwcap respectively. Userspace can also detect SVE using ID_AA64PFR0_EL1, using the cpufeatures MRS emulation. When running on hardware that supports SVE, this enables runtime kernel support for SVE, and allows user tasks to execute SVE instructions and make of the of the SVE-specific user/kernel interface extensions implemented by this series. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: KVM: Hide SVE from CPU features exposed to guestsDave Martin2017-11-031-1/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | KVM guests cannot currently use SVE, because SVE is always configured to trap to EL2. However, a guest that sees SVE reported as present in ID_AA64PFR0_EL1 may legitimately expect that SVE works and try to use it. Instead of working, the guest will receive an injected undef exception, which may cause the guest to oops or go into a spin. To avoid misleading the guest into believing that SVE will work, this patch masks out the SVE field from ID_AA64PFR0_EL1 when a guest attempts to read this register. No support is explicitly added for ID_AA64ZFR0_EL1 either, so that is still emulated as reading as zero, which is consistent with SVE not being implemented. This is a temporary measure, and will be removed in a later series when full KVM support for SVE is implemented. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: KVM: Treat guest SVE use as undefined instruction executionDave Martin2017-11-031-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | When trapping forbidden attempts by a guest to use SVE, we want the guest to see a trap consistent with SVE not being implemented. This patch injects an undefined instruction exception into the guest in response to such an exception. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: KVM: Prevent guests from using SVEDave Martin2017-11-037-6/+53
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Until KVM has full SVE support, guests must not be allowed to execute SVE instructions. This patch enables the necessary traps, and also ensures that the traps are disabled again on exit from the guest so that the host can still use SVE if it wants to. On guest exit, high bits of the SVE Zn registers may have been clobbered as a side-effect the execution of FPSIMD instructions in the guest. The existing KVM host FPSIMD restore code is not sufficient to restore these bits, so this patch explicitly marks the CPU as not containing cached vector state for any task, thus forcing a reload on the next return to userspace. This is an interim measure, in advance of adding full SVE awareness to KVM. This marking of cached vector state in the CPU as invalid is done using __this_cpu_write(fpsimd_last_state, NULL) in fpsimd.c. Due to the repeated use of this rather obscure operation, it makes sense to factor it out as a separate helper with a clearer name. This patch factors it out as fpsimd_flush_cpu_state(), and ports all callers to use it. As a side effect of this refactoring, a this_cpu_write() in fpsimd_cpu_pm_notifier() is changed to __this_cpu_write(). This should be fine, since cpu_pm_enter() is supposed to be called only with interrupts disabled. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: Add sysctl to set the default vector length for new processesDave Martin2017-11-031-1/+61
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Because of the effect of SVE on the size of the signal frame, the default vector length used for new processes involves a tradeoff between performance of SVE-enabled software on the one hand, and reliability of non-SVE-aware software on the other hand. For this reason, the best choice depends on the repertoire of userspace software in use and is thus best left up to distro maintainers, sysadmins and developers. If CONFIG_SYSCTL and CONFIG_PROC_SYSCTL are enabled, this patch exposes the default vector length in /proc/sys/abi/sve_default_vector_length, where boot scripts or the adventurous can poke it. In common with other arm64 ABI sysctls, this control is currently global: setting it requires CAP_SYS_ADMIN in the root user namespace, but the value set is effective for subsequent execs in all namespaces. The control only affects _new_ processes, however: changing it does not affect the vector length of any existing process. The intended usage model is that if userspace is known to be fully SVE-tolerant (or a developer is curious to find out) then this parameter can be cranked up during system startup. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: Add prctl controls for userspace vector length managementDave Martin2017-11-035-0/+84
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds two arm64-specific prctls, to permit userspace to control its vector length: * PR_SVE_SET_VL: set the thread's SVE vector length and vector length inheritance mode. * PR_SVE_GET_VL: get the same information. Although these prctls resemble instruction set features in the SVE architecture, they provide additional control: the vector length inheritance mode is Linux-specific and nothing to do with the architecture, and the architecture does not permit EL0 to set its own vector length directly. Both can be used in portable tools without requiring the use of SVE instructions. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> [will: Fixed up prctl constants to avoid clash with PDEATHSIG] Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: ptrace and ELF coredump supportDave Martin2017-11-035-9/+482
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch defines and implements a new regset NT_ARM_SVE, which describes a thread's SVE register state. This allows a debugger to manipulate the SVE state, as well as being included in ELF coredumps for post-mortem debugging. Because the regset size and layout are dependent on the thread's current vector length, it is not possible to define a C struct to describe the regset contents as is done for existing regsets. Instead, and for the same reasons, NT_ARM_SVE is based on the freeform variable-layout approach used for the SVE signal frame. Additionally, to reduce debug overhead when debugging threads that might or might not have live SVE register state, NT_ARM_SVE may be presented in one of two different formats: the old struct user_fpsimd_state format is embedded for describing the state of a thread with no live SVE state, whereas a new variable-layout structure is embedded for describing live SVE state. This avoids a debugger needing to poll NT_PRFPREG in addition to NT_ARM_SVE, and allows existing userspace code to handle the non-SVE case without too much modification. For this to work, NT_ARM_SVE is defined with a fixed-format header of type struct user_sve_header, which the recipient can use to figure out the content, size and layout of the reset of the regset. Accessor macros are defined to allow the vector-length-dependent parts of the regset to be manipulated. Signed-off-by: Alan Hayward <alan.hayward@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Okamoto Takayuki <tokamoto@jp.fujitsu.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: Preserve SVE registers around EFI runtime service callsDave Martin2017-11-031-6/+61
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The EFI runtime services ABI allows EFI to make free use of the FPSIMD registers during EFI runtime service calls, subject to the callee-save requirements of the AArch64 procedure call standard. However, the SVE architecture allows upper bits of the SVE vector registers to be zeroed as a side-effect of FPSIMD V-register writes. This means that the SVE vector registers must be saved in their entirety in order to avoid data loss: non-SVE-aware EFI implementations cannot restore them correctly. The non-IRQ case is already handled gracefully by kernel_neon_begin(). For the IRQ case, this patch allocates a suitable per-CPU stash buffer for the full SVE register state and uses it to preserve the affected registers around EFI calls. It is currently unclear how the EFI runtime services ABI will be clarified with respect to SVE, so it safest to assume that the predicate registers and FFR must be saved and restored too. No attempt is made to restore the restore the vector length after a call, for now. It is deemed rather insane for EFI to change it, and contemporary EFI implementations certainly won't. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: Preserve SVE registers around kernel-mode NEON useDave Martin2017-11-031-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Kernel-mode NEON will corrupt the SVE vector registers, due to the way they alias the FPSIMD vector registers in the hardware. This patch ensures that any live SVE register content for the task is saved by kernel_neon_begin(). The data will be restored in the usual way on return to userspace. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: Probe SVE capabilities and usable vector lengthsDave Martin2017-11-036-3/+223
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch uses the cpufeatures framework to determine common SVE capabilities and vector lengths, and configures the runtime SVE support code appropriately. ZCR_ELx is not really a feature register, but it is convenient to use it as a template for recording the maximum vector length supported by a CPU, using the LEN field. This field is similar to a feature field in that it is a contiguous bitfield for which we want to determine the minimum system-wide value. This patch adds ZCR as a pseudo-register in cpuinfo/cpufeatures, with appropriate custom code to populate it. Finding the minimum supported value of the LEN field is left to the cpufeatures framework in the usual way. The meaning of ID_AA64ZFR0_EL1 is not architecturally defined yet, so for now we just require it to be zero. Note that much of this code is dormant and SVE still won't be used yet, since system_supports_sve() remains hardwired to false. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64: cpufeature: Move sys_caps_initialised declarationsDave Martin2017-11-031-15/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | update_cpu_features() currently cannot tell whether it is being called during early or late secondary boot. This doesn't desperately matter for anything it currently does. However, SVE will need to know here whether the set of available vector lengths is known or still to be determined when booting a CPU, so that it can be updated appropriately. This patch simply moves the sys_caps_initialised stuff to the top of the file so that it can be used more widely. There doesn't seem to be a more obvious place to put it. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: Backend logic for setting the vector lengthDave Martin2017-11-033-1/+149
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch implements the core logic for changing a task's vector length on request from userspace. This will be used by the ptrace and prctl frontends that are implemented in later patches. The SVE architecture permits, but does not require, implementations to support vector lengths that are not a power of two. To handle this, logic is added to check a requested vector length against a possibly sparse bitmap of available vector lengths at runtime, so that the best supported value can be chosen. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: Signal handling supportDave Martin2017-11-034-19/+206
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch implements support for saving and restoring the SVE registers around signals. A fixed-size header struct sve_context is always included in the signal frame encoding the thread's vector length at the time of signal delivery, optionally followed by a variable-layout structure encoding the SVE registers. Because of the need to preserve backwards compatibility, the FPSIMD view of the SVE registers is always dumped as a struct fpsimd_context in the usual way, in addition to any sve_context. The SVE vector registers are dumped in full, including bits 127:0 of each register which alias the corresponding FPSIMD vector registers in the hardware. To avoid any ambiguity about which alias to restore during sigreturn, the kernel always restores bits 127:0 of each SVE vector register from the fpsimd_context in the signal frame (which must be present): userspace needs to take this into account if it wants to modify the SVE vector register contents on return from a signal. FPSR and FPCR, which are used by both FPSIMD and SVE, are not included in sve_context because they are always present in fpsimd_context anyway. For signal delivery, a new helper fpsimd_signal_preserve_current_state() is added to update _both_ the FPSIMD and SVE views in the task struct, to make it easier to populate this information into the signal frame. Because of the redundancy between the two views of the state, only one is updated otherwise. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Dave Martin <Dave.Martin@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: Support vector length resetting for new processesDave Martin2017-11-033-4/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It's desirable to be able to reset the vector length to some sane default for new processes, since the new binary and its libraries may or may not be SVE-aware. This patch tracks the desired post-exec vector length (if any) in a new thread member sve_vl_onexec, and adds a new thread flag TIF_SVE_VL_INHERIT to control whether to inherit or reset the vector length. Currently these are inactive. Subsequent patches will provide the capability to configure them. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: Core task context handlingDave Martin2017-11-038-11/+407
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds the core support for switching and managing the SVE architectural state of user tasks. Calls to the existing FPSIMD low-level save/restore functions are factored out as new functions task_fpsimd_{save,load}(), since SVE now dynamically may or may not need to be handled at these points depending on the kernel configuration, hardware features discovered at boot, and the runtime state of the task. To make these decisions as fast as possible, const cpucaps are used where feasible, via the system_supports_sve() helper. The SVE registers are only tracked for threads that have explicitly used SVE, indicated by the new thread flag TIF_SVE. Otherwise, the FPSIMD view of the architectural state is stored in thread.fpsimd_state as usual. When in use, the SVE registers are not stored directly in thread_struct due to their potentially large and variable size. Because the task_struct slab allocator must be configured very early during kernel boot, it is also tricky to configure it correctly to match the maximum vector length provided by the hardware, since this depends on examining secondary CPUs as well as the primary. Instead, a pointer sve_state in thread_struct points to a dynamically allocated buffer containing the SVE register data, and code is added to allocate and free this buffer at appropriate times. TIF_SVE is set when taking an SVE access trap from userspace, if suitable hardware support has been detected. This enables SVE for the thread: a subsequent return to userspace will disable the trap accordingly. If such a trap is taken without sufficient system- wide hardware support, SIGILL is sent to the thread instead as if an undefined instruction had been executed: this may happen if userspace tries to use SVE in a system where not all CPUs support it for example. The kernel will clear TIF_SVE and disable SVE for the thread whenever an explicit syscall is made by userspace. For backwards compatibility reasons and conformance with the spirit of the base AArch64 procedure call standard, the subset of the SVE register state that aliases the FPSIMD registers is still preserved across a syscall even if this happens. The remainder of the SVE register state logically becomes zero at syscall entry, though the actual zeroing work is currently deferred until the thread next tries to use SVE, causing another trap to the kernel. This implementation is suboptimal: in the future, the fastpath case may be optimised to zero the registers in-place and leave SVE enabled for the task, where beneficial. TIF_SVE is also cleared in the following slowpath cases, which are taken as reasonable hints that the task may no longer use SVE: * exec * fork and clone Code is added to sync data between thread.fpsimd_state and thread.sve_state whenever enabling/disabling SVE, in a manner consistent with the SVE architectural programmer's model. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Alex Bennée <alex.bennee@linaro.org> [will: added #include to fix allnoconfig build] [will: use enable_daif in do_sve_acc] Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: Low-level CPU setupDave Martin2017-11-031-1/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | To enable the kernel to use SVE, SVE traps from EL1 to EL2 must be disabled. To take maximum advantage of the hardware, the full available vector length also needs to be enabled for EL1 by programming ZCR_EL2.LEN. (The kernel will program ZCR_EL1.LEN as required, but this cannot override the limit set by ZCR_EL2.) This patch makes the appropriate changes to the EL2 early setup code. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: Signal frame and context structure definitionDave Martin2017-11-031-1/+116
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch defines the representation that will be used for the SVE register state in the signal frame, and implements support for saving and restoring the SVE registers around signals. The same layout will also be used for the in-kernel task state. Due to the variability of the SVE vector length, it is not possible to define a fixed C struct to describe all the registers. Instead, Macros are defined in sigcontext.h to facilitate access to the parts of the structure. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: Kconfig update and conditional compilation supportDave Martin2017-11-032-0/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds CONFIG_ARM64_SVE to control building of SVE support into the kernel, and adds a stub predicate system_supports_sve() to control conditional compilation and runtime SVE support. system_supports_sve() just returns false for now: it will be replaced with a non-trivial implementation in a later patch, once SVE support is complete enough to be enabled safely. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: Low-level SVE architectural state manipulation functionsDave Martin2017-11-033-0/+170
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Manipulating the SVE architectural state, including the vector and predicate registers, first-fault register and the vector length, requires the use of dedicated instructions added by SVE. This patch adds suitable assembly functions for saving and restoring the SVE registers and querying the vector length. Setting of the vector length is done as part of register restore. Since people building kernels may not all get an SVE-enabled toolchain for a while, this patch uses macros that generate explicit opcodes in place of assembler mnemonics. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64/sve: System register and exception syndrome definitionsDave Martin2017-11-034-1/+25
| | | | | | | | | | | | | | | | | | | | | | | | | | The SVE architecture adds some system registers, ID register fields and a dedicated ESR exception class. This patch adds the appropriate definitions that will be needed by the kernel. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * arm64: fpsimd: Simplify uses of {set,clear}_ti_thread_flag()Dave Martin2017-11-031-4/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The existing FPSIMD context switch code contains a couple of instances of {set,clear}_ti_thread(task_thread_info(task)). Since there are thread flag manipulators that operate directly on task_struct, this verbosity isn't strictly needed. For consistency, this patch simplifies the affected calls. This should have no impact on behaviour. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>