| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In 'fs/xfs/libxfs/xfs_trans_resv.c', the comment for transaction of removing a
directory entry writes:
/* fs/xfs/libxfs/xfs_trans_resv.c begin */
/*
* For removing a directory entry we can modify:
* the parent directory inode: inode size
* the removed inode: inode size
...
xfs_calc_remove_reservation(
struct xfs_mount *mp)
{
return XFS_DQUOT_LOGRES(mp) +
xfs_calc_iunlink_add_reservation(mp) +
max((xfs_calc_inode_res(mp, 1) +
...
/* fs/xfs/libxfs/xfs_trans_resv.c end */
There has 2 inode size of space to be reserverd, but the actual code
for inode reservation space writes.
There only count for 1 inode size to be reserved in
'xfs_calc_inode_res(mp, 1)', rather than 2.
Signed-off-by: hexiaole <hexiaole@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: remove redundant code citations]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cow fork
On a higly fragmented filesystem a Direct IO write can fail with -ENOSPC error
even though the filesystem has sufficient number of free blocks.
This occurs if the file offset range on which the write operation is being
performed has a delalloc extent in the cow fork and this delalloc extent
begins much before the Direct IO range.
In such a scenario, xfs_reflink_allocate_cow() invokes xfs_bmapi_write() to
allocate the blocks mapped by the delalloc extent. The extent thus allocated
may not cover the beginning of file offset range on which the Direct IO write
was issued. Hence xfs_reflink_allocate_cow() ends up returning -ENOSPC.
The following script reliably recreates the bug described above.
#!/usr/bin/bash
device=/dev/loop0
shortdev=$(basename $device)
mntpnt=/mnt/
file1=${mntpnt}/file1
file2=${mntpnt}/file2
fragmentedfile=${mntpnt}/fragmentedfile
punchprog=/root/repos/xfstests-dev/src/punch-alternating
errortag=/sys/fs/xfs/${shortdev}/errortag/bmap_alloc_minlen_extent
umount $device > /dev/null 2>&1
echo "Create FS"
mkfs.xfs -f -m reflink=1 $device > /dev/null 2>&1
if [[ $? != 0 ]]; then
echo "mkfs failed."
exit 1
fi
echo "Mount FS"
mount $device $mntpnt > /dev/null 2>&1
if [[ $? != 0 ]]; then
echo "mount failed."
exit 1
fi
echo "Create source file"
xfs_io -f -c "pwrite 0 32M" $file1 > /dev/null 2>&1
sync
echo "Create Reflinked file"
xfs_io -f -c "reflink $file1" $file2 &>/dev/null
echo "Set cowextsize"
xfs_io -c "cowextsize 16M" $file1 > /dev/null 2>&1
echo "Fragment FS"
xfs_io -f -c "pwrite 0 64M" $fragmentedfile > /dev/null 2>&1
sync
$punchprog $fragmentedfile
echo "Allocate block sized extent from now onwards"
echo -n 1 > $errortag
echo "Create 16MiB delalloc extent in CoW fork"
xfs_io -c "pwrite 0 4k" $file1 > /dev/null 2>&1
sync
echo "Direct I/O write at offset 12k"
xfs_io -d -c "pwrite 12k 8k" $file1
This commit fixes the bug by invoking xfs_bmapi_write() in a loop until disk
blocks are allocated for atleast the starting file offset of the Direct IO
write range.
Fixes: 3c68d44a2b49 ("xfs: allocate direct I/O COW blocks in iomap_begin")
Reported-and-Root-caused-by: Wengang Wang <wen.gang.wang@oracle.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: slight editing to make the locking less grody, and fix some style things]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Every now and then, I see the following hang during mount time
quotacheck when running fstests. Turning on KASAN seems to make it
happen somewhat more frequently. I've edited the backtrace for brevity.
XFS (sdd): Quotacheck needed: Please wait.
XFS: Assertion failed: bp->b_flags & _XBF_DELWRI_Q, file: fs/xfs/xfs_buf.c, line: 2411
------------[ cut here ]------------
WARNING: CPU: 0 PID: 1831409 at fs/xfs/xfs_message.c:104 assfail+0x46/0x4a [xfs]
CPU: 0 PID: 1831409 Comm: mount Tainted: G W 5.19.0-rc6-xfsx #rc6 09911566947b9f737b036b4af85e399e4b9aef64
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
RIP: 0010:assfail+0x46/0x4a [xfs]
Code: a0 8f 41 a0 e8 45 fe ff ff 8a 1d 2c 36 10 00 80 fb 01 76 0f 0f b6 f3 48 c7 c7 c0 f0 4f a0 e8 10 f0 02 e1 80 e3 01 74 02 0f 0b <0f> 0b 5b c3 48 8d 45 10 48 89 e2 4c 89 e6 48 89 1c 24 48 89 44 24
RSP: 0018:ffffc900078c7b30 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8880099ac000 RCX: 000000007fffffff
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffffa0418fa0
RBP: ffff8880197bc1c0 R08: 0000000000000000 R09: 000000000000000a
R10: 000000000000000a R11: f000000000000000 R12: ffffc900078c7d20
R13: 00000000fffffff5 R14: ffffc900078c7d20 R15: 0000000000000000
FS: 00007f0449903800(0000) GS:ffff88803ec00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005610ada631f0 CR3: 0000000014dd8002 CR4: 00000000001706f0
Call Trace:
<TASK>
xfs_buf_delwri_pushbuf+0x150/0x160 [xfs 4561f5b32c9bfb874ec98d58d0719464e1f87368]
xfs_qm_flush_one+0xd6/0x130 [xfs 4561f5b32c9bfb874ec98d58d0719464e1f87368]
xfs_qm_dquot_walk.isra.0+0x109/0x1e0 [xfs 4561f5b32c9bfb874ec98d58d0719464e1f87368]
xfs_qm_quotacheck+0x319/0x490 [xfs 4561f5b32c9bfb874ec98d58d0719464e1f87368]
xfs_qm_mount_quotas+0x65/0x2c0 [xfs 4561f5b32c9bfb874ec98d58d0719464e1f87368]
xfs_mountfs+0x6b5/0xab0 [xfs 4561f5b32c9bfb874ec98d58d0719464e1f87368]
xfs_fs_fill_super+0x781/0x990 [xfs 4561f5b32c9bfb874ec98d58d0719464e1f87368]
get_tree_bdev+0x175/0x280
vfs_get_tree+0x1a/0x80
path_mount+0x6f5/0xaa0
__x64_sys_mount+0x103/0x140
do_syscall_64+0x2b/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
I /think/ this can happen if xfs_qm_flush_one is racing with
xfs_qm_dquot_isolate (i.e. dquot reclaim) when the second function has
taken the dquot flush lock but xfs_qm_dqflush hasn't yet locked the
dquot buffer, let alone queued it to the delwri list. In this case,
flush_one will fail to get the dquot flush lock, but it can lock the
incore buffer, but xfs_buf_delwri_pushbuf will then trip over this
ASSERT, which checks that the buffer isn't on a delwri list. The hang
results because the _delwri_submit_buffers ignores non DELWRI_Q buffers,
which means that xfs_buf_iowait waits forever for an IO that has not yet
been scheduled.
AFAICT, a reasonable solution here is to detect a dquot buffer that is
not on a DELWRI list, drop it, and return -EAGAIN to try the flush
again. It's not /that/ big of a deal if quotacheck writes the dquot
buffer repeatedly before we even set QUOTA_CHKD.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If a blkdev_issue_flush fails, fsync needs to report that to upper
levels. Modify xfs_file_fsync to capture the errors, while trying to
flush as much data and log updates to disk as possible.
If log writes cannot flush the data device, we need to shut down the log
immediately because we've violated a log invariant. Modify this code to
check the return value of blkdev_issue_flush as well.
This behavior seems to go back to about 2.6.15 or so, which makes this
fixes tag a bit misleading.
Link: https://elixir.bootlin.com/linux/v2.6.15/source/fs/xfs/xfs_vnodeops.c#L1187
Fixes: b5071ada510a ("xfs: remove xfs_blkdev_issue_flush")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
|
|
|
|
|
|
|
| |
delete extra space and tab in blank line, there is no functional change.
Reported-by: Hacash Robot <hacashRobot@santino.com>
Signed-off-by: Xie Shaowen <studentxswpy@163.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reproducer:
1. fallocate -l 100M image
2. mkfs.xfs -f image
3. mount image /mnt
4. setxattr("/mnt", "trusted.overlay.upper", NULL, 0, XATTR_CREATE)
5. char arg[32] = "\x01\xff\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x08\x00\x00\x00\xc6\x2a\xf7";
fd = open("/mnt", O_RDONLY|O_DIRECTORY);
ioctl(fd, _IOC(_IOC_READ|_IOC_WRITE, 0x58, 0x2c, 0x20), arg);
NULL pointer dereference will occur when race happens between xfs_getbmap()
and xfs_bmap_set_attrforkoff():
ioctl | setxattr
----------------------------|---------------------------
xfs_getbmap |
xfs_ifork_ptr |
xfs_inode_has_attr_fork |
ip->i_forkoff == 0 |
return NULL |
ifp == NULL |
| xfs_bmap_set_attrforkoff
| ip->i_forkoff > 0
xfs_inode_has_attr_fork |
ip->i_forkoff > 0 |
ifp == NULL |
ifp->if_format |
Fix this by locking i_lock before xfs_ifork_ptr().
Fixes: abbf9e8a4507 ("xfs: rewrite getbmap using the xfs_iext_* helpers")
Signed-off-by: ChenXiaoSong <chenxiaosong2@huawei.com>
Signed-off-by: Guo Xuenan <guoxuenan@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: added fixes tag]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
|
|
|
|
|
|
| |
Replace 'the the' with 'the' in the comment.
Signed-off-by: Slark Xiao <slark_xiao@163.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
|
|
|
|
|
|
| |
The double `the' is duplicated in line 552, remove one.
Signed-off-by: Xin Gao <gaoxin@cdjrlc.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I observed the following evidence of a memory leak while running xfs/399
from the xfs fsck test suite (edited for brevity):
XFS (sde): Metadata corruption detected at xfs_attr_shortform_verify_struct.part.0+0x7b/0xb0 [xfs], inode 0x1172 attr fork
XFS: Assertion failed: ip->i_af.if_u1.if_data == NULL, file: fs/xfs/libxfs/xfs_inode_fork.c, line: 315
------------[ cut here ]------------
WARNING: CPU: 2 PID: 91635 at fs/xfs/xfs_message.c:104 assfail+0x46/0x4a [xfs]
CPU: 2 PID: 91635 Comm: xfs_scrub Tainted: G W 5.19.0-rc7-xfsx #rc7 6e6475eb29fd9dda3181f81b7ca7ff961d277a40
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
RIP: 0010:assfail+0x46/0x4a [xfs]
Call Trace:
<TASK>
xfs_ifork_zap_attr+0x7c/0xb0
xfs_iformat_attr_fork+0x86/0x110
xfs_inode_from_disk+0x41d/0x480
xfs_iget+0x389/0xd70
xfs_bulkstat_one_int+0x5b/0x540
xfs_bulkstat_iwalk+0x1e/0x30
xfs_iwalk_ag_recs+0xd1/0x160
xfs_iwalk_run_callbacks+0xb9/0x180
xfs_iwalk_ag+0x1d8/0x2e0
xfs_iwalk+0x141/0x220
xfs_bulkstat+0x105/0x180
xfs_ioc_bulkstat.constprop.0.isra.0+0xc5/0x130
xfs_file_ioctl+0xa5f/0xef0
__x64_sys_ioctl+0x82/0xa0
do_syscall_64+0x2b/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
This newly-added assertion checks that there aren't any incore data
structures hanging off the incore fork when we're trying to reset its
contents. From the call trace, it is evident that iget was trying to
construct an incore inode from the ondisk inode, but the attr fork
verifier failed and we were trying to undo all the memory allocations
that we had done earlier.
The three assertions in xfs_ifork_zap_attr check that the caller has
already called xfs_idestroy_fork, which clearly has not been done here.
As the zap function then zeroes the pointers, we've effectively leaked
the memory.
The shortest change would have been to insert an extra call to
xfs_idestroy_fork, but it makes more sense to bundle the _idestroy_fork
call into _zap_attr, since all other callsites call _idestroy_fork
immediately prior to calling _zap_attr. IOWs, it eliminates one way to
fail.
Note: This change only applies cleanly to 2ed5b09b3e8f, since we just
reworked the attr fork lifetime. However, I think this memory leak has
existed since 0f45a1b20cd8, since the chain xfs_iformat_attr_fork ->
xfs_iformat_local -> xfs_init_local_fork will allocate
ifp->if_u1.if_data, but if xfs_ifork_verify_local_attr fails,
xfs_iformat_attr_fork will free i_afp without freeing any of the stuff
hanging off i_afp. The solution for older kernels I think is to add the
missing call to xfs_idestroy_fork just prior to calling kmem_cache_free.
Found by fuzzing a.sfattr.hdr.totsize = lastbit in xfs/399.
Fixes: 2ed5b09b3e8f ("xfs: make inode attribute forks a permanent part of struct xfs_inode")
Probably-Fixes: 0f45a1b20cd8 ("xfs: improve local fork verification")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Fix below kernel warning:
fs/xfs/scrub/repair.c:539:19: warning: variable 'agno' set but not used [-Wunused-but-set-variable]
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: sunliming <sunliming@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Darrick and Sachin Sant reported that xfs/435 and xfs/436 would
report an non-empty xfs_buf slab on module remove. This isn't easily
to reproduce, but is clearly a side effect of converting the buffer
caceh to RUC freeing and lockless lookups. Sachin bisected and
Darrick hit it when testing the patchset directly.
Turns out that the xfs_buf slab is not destroyed when all the other
XFS slab caches are destroyed. Instead, it's got it's own little
wrapper function that gets called separately, and so it doesn't have
an rcu_barrier() call in it that is needed to drain all the rcu
callbacks before the slab is destroyed.
Fix it by removing the xfs_buf_init/terminate wrappers that just
allocate and destroy the xfs_buf slab, and move them to the same
place that all the other slab caches are set up and destroyed.
Reported-and-tested-by: Sachin Sant <sachinp@linux.ibm.com>
Fixes: 298f34224506 ("xfs: lockless buffer lookup")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
|
|
|
|
|
|
|
| |
These NULL check are no long needed after commit 2ed5b09b3e8f ("xfs:
make inode attribute forks a permanent part of struct xfs_inode").
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The 'ctime', 'mtime', and 'atime' for inode is the type of
'xfs_timestamp_t', which is a 64-bit type:
/* fs/xfs/libxfs/xfs_format.h begin */
typedef __be64 xfs_timestamp_t;
/* fs/xfs/libxfs/xfs_format.h end */
When the 'bigtime' feature is disabled, this 64-bit type is splitted
into two parts of 32-bit, one part is encoded for seconds since
1970-01-01 00:00:00 UTC, the other part is encoded for nanoseconds
above the seconds, this two parts are the type of
'xfs_legacy_timestamp' and the min and max time value of this type are
defined as macros 'XFS_LEGACY_TIME_MIN' and 'XFS_LEGACY_TIME_MAX':
/* fs/xfs/libxfs/xfs_format.h begin */
struct xfs_legacy_timestamp {
__be32 t_sec; /* timestamp seconds */
__be32 t_nsec; /* timestamp nanoseconds */
};
#define XFS_LEGACY_TIME_MIN ((int64_t)S32_MIN)
#define XFS_LEGACY_TIME_MAX ((int64_t)S32_MAX)
/* fs/xfs/libxfs/xfs_format.h end */
/* include/linux/limits.h begin */
#define U32_MAX ((u32)~0U)
#define S32_MAX ((s32)(U32_MAX >> 1))
#define S32_MIN ((s32)(-S32_MAX - 1))
/* include/linux/limits.h end */
'XFS_LEGACY_TIME_MIN' is the min time value of the
'xfs_legacy_timestamp', that is -(2^31) seconds relative to the
1970-01-01 00:00:00 UTC, it can be converted to human-friendly time
value by 'date' command:
/* command begin */
[root@~]# date --utc -d '@0' +'%Y-%m-%d %H:%M:%S'
1970-01-01 00:00:00
[root@~]# date --utc -d "@`echo '-(2^31)'|bc`" +'%Y-%m-%d %H:%M:%S'
1901-12-13 20:45:52
[root@~]#
/* command end */
When 'bigtime' feature is enabled, this 64-bit type becomes a 64-bit
nanoseconds counter, with the start time value is the min time value of
'xfs_legacy_timestamp'(start time means the value of 64-bit nanoseconds
counter is 0). We have already caculated the min time value of
'xfs_legacy_timestamp', that is 1901-12-13 20:45:52 UTC, but the comment
for the start time value of inode with 'bigtime' feature enabled writes
the value is 1901-12-31 20:45:52 UTC:
/* fs/xfs/libxfs/xfs_format.h begin */
/*
* XFS Timestamps
* ==============
* When the bigtime feature is enabled, ondisk inode timestamps become an
* unsigned 64-bit nanoseconds counter. This means that the bigtime inode
* timestamp epoch is the start of the classic timestamp range, which is
* Dec 31 20:45:52 UTC 1901. ...
...
*/
/* fs/xfs/libxfs/xfs_format.h end */
That is a typo, and this patch corrects the typo, from 'Dec 31' to
'Dec 13'.
Suggested-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Xiaole He <hexiaole@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The kernel build robot reported a UAF error while running xfs/433
(edited somewhat for brevity):
BUG: KASAN: use-after-free in xfs_attr3_node_inactive (fs/xfs/xfs_attr_inactive.c:214) xfs
Read of size 4 at addr ffff88820ac2bd44 by task kworker/0:2/139
CPU: 0 PID: 139 Comm: kworker/0:2 Tainted: G S 5.19.0-rc2-00004-g7cf2b0f9611b #1
Hardware name: Hewlett-Packard p6-1451cx/2ADA, BIOS 8.15 02/05/2013
Workqueue: xfs-inodegc/sdb4 xfs_inodegc_worker [xfs]
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:107 (discriminator 1))
print_address_description+0x1f/0x200
print_report.cold (mm/kasan/report.c:430)
kasan_report (mm/kasan/report.c:162 mm/kasan/report.c:493)
xfs_attr3_node_inactive (fs/xfs/xfs_attr_inactive.c:214) xfs
xfs_attr3_root_inactive (fs/xfs/xfs_attr_inactive.c:296) xfs
xfs_attr_inactive (fs/xfs/xfs_attr_inactive.c:371) xfs
xfs_inactive (fs/xfs/xfs_inode.c:1781) xfs
xfs_inodegc_worker (fs/xfs/xfs_icache.c:1837 fs/xfs/xfs_icache.c:1860) xfs
process_one_work
worker_thread
kthread
ret_from_fork
</TASK>
Allocated by task 139:
kasan_save_stack (mm/kasan/common.c:39)
__kasan_slab_alloc (mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:469)
kmem_cache_alloc (mm/slab.h:750 mm/slub.c:3214 mm/slub.c:3222 mm/slub.c:3229 mm/slub.c:3239)
_xfs_buf_alloc (include/linux/instrumented.h:86 include/linux/atomic/atomic-instrumented.h:41 fs/xfs/xfs_buf.c:232) xfs
xfs_buf_get_map (fs/xfs/xfs_buf.c:660) xfs
xfs_buf_read_map (fs/xfs/xfs_buf.c:777) xfs
xfs_trans_read_buf_map (fs/xfs/xfs_trans_buf.c:289) xfs
xfs_da_read_buf (fs/xfs/libxfs/xfs_da_btree.c:2652) xfs
xfs_da3_node_read (fs/xfs/libxfs/xfs_da_btree.c:392) xfs
xfs_attr3_root_inactive (fs/xfs/xfs_attr_inactive.c:272) xfs
xfs_attr_inactive (fs/xfs/xfs_attr_inactive.c:371) xfs
xfs_inactive (fs/xfs/xfs_inode.c:1781) xfs
xfs_inodegc_worker (fs/xfs/xfs_icache.c:1837 fs/xfs/xfs_icache.c:1860) xfs
process_one_work
worker_thread
kthread
ret_from_fork
Freed by task 139:
kasan_save_stack (mm/kasan/common.c:39)
kasan_set_track (mm/kasan/common.c:45)
kasan_set_free_info (mm/kasan/generic.c:372)
__kasan_slab_free (mm/kasan/common.c:368 mm/kasan/common.c:328 mm/kasan/common.c:374)
kmem_cache_free (mm/slub.c:1753 mm/slub.c:3507 mm/slub.c:3524)
xfs_buf_rele (fs/xfs/xfs_buf.c:1040) xfs
xfs_attr3_node_inactive (fs/xfs/xfs_attr_inactive.c:210) xfs
xfs_attr3_root_inactive (fs/xfs/xfs_attr_inactive.c:296) xfs
xfs_attr_inactive (fs/xfs/xfs_attr_inactive.c:371) xfs
xfs_inactive (fs/xfs/xfs_inode.c:1781) xfs
xfs_inodegc_worker (fs/xfs/xfs_icache.c:1837 fs/xfs/xfs_icache.c:1860) xfs
process_one_work
worker_thread
kthread
ret_from_fork
I reproduced this for my own satisfaction, and got the same report,
along with an extra morsel:
The buggy address belongs to the object at ffff88802103a800
which belongs to the cache xfs_buf of size 432
The buggy address is located 396 bytes inside of
432-byte region [ffff88802103a800, ffff88802103a9b0)
I tracked this code down to:
error = xfs_trans_get_buf(*trans, mp->m_ddev_targp,
child_blkno,
XFS_FSB_TO_BB(mp, mp->m_attr_geo->fsbcount), 0,
&child_bp);
if (error)
return error;
error = bp->b_error;
That doesn't look right -- I think this should be dereferencing
child_bp, not bp. Looking through the codebase history, I think this
was added by commit 2911edb653b9 ("xfs: remove the mappedbno argument to
xfs_da_get_buf"), which replaced a call to xfs_da_get_buf with the
current call to xfs_trans_get_buf. Not sure why we trans_brelse'd @bp
earlier in the function, but I'm guessing it's to avoid pinning too many
buffers in memory while we inactivate the bottom of the attr tree.
Hence we now have to get the buffer back.
I /think/ this was supposed to check child_bp->b_error and fail the rest
of the invalidation if child_bp had experienced any kind of IO or
corruption error. I bet the xfs_da3_node_read earlier in the loop will
catch most cases of incoming on-disk corruption which makes this check
mostly moot unless someone corrupts the buffer and the AIL pushes it out
to disk while the buffer's unlocked.
In the first case we'll never get to the bad check, and in the second
case the AIL will shut down the log, at which point there's no reason to
check b_error. Remove the check, and null out @bp to avoid this problem
in the future.
Cc: hch@lst.de
Reported-by: kernel test robot <oliver.sang@intel.com>
Fixes: 2911edb653b9 ("xfs: remove the mappedbno argument to xfs_da_get_buf")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.20-mergeB
xfs: make attr forks permanent
This series fixes a use-after-free bug that syzbot uncovered. The UAF
itself is a result of a race condition between getxattr and removexattr
because callers to getxattr do not necessarily take any sort of locks
before calling into the filesystem.
Although the race condition itself can be fixed through clever use of a
memory barrier, further consideration of the use cases of extended
attributes shows that most files always have at least one attribute, so
we might as well make them permanent.
v2: Minor tweaks suggested by Dave, and convert some more macros to
helper functions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
* tag 'make-attr-fork-permanent-5.20_2022-07-14' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux:
xfs: replace inode fork size macros with functions
xfs: replace XFS_IFORK_Q with a proper predicate function
xfs: use XFS_IFORK_Q to determine the presence of an xattr fork
xfs: make inode attribute forks a permanent part of struct xfs_inode
xfs: convert XFS_IFORK_PTR to a static inline helper
|
| |
| |
| |
| |
| |
| |
| | |
Replace the shouty macros here with typechecked helper functions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Replace this shouty macro with a real C function that has a more
descriptive name.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Modify xfs_ifork_ptr to return a NULL pointer if the caller asks for the
attribute fork but i_forkoff is zero. This eliminates the ambiguity
between i_forkoff and i_af.if_present, which should make it easier to
understand the lifetime of attr forks.
While we're at it, remove the if_present checks around calls to
xfs_idestroy_fork and xfs_ifork_zap_attr since they can both handle attr
forks that have already been torn down.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Syzkaller reported a UAF bug a while back:
==================================================================
BUG: KASAN: use-after-free in xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127
Read of size 4 at addr ffff88802cec919c by task syz-executor262/2958
CPU: 2 PID: 2958 Comm: syz-executor262 Not tainted
5.15.0-0.30.3-20220406_1406 #3
Hardware name: Red Hat KVM, BIOS 1.13.0-2.module+el8.3.0+7860+a7792d29
04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x82/0xa9 lib/dump_stack.c:106
print_address_description.constprop.9+0x21/0x2d5 mm/kasan/report.c:256
__kasan_report mm/kasan/report.c:442 [inline]
kasan_report.cold.14+0x7f/0x11b mm/kasan/report.c:459
xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127
xfs_attr_get+0x378/0x4c2 fs/xfs/libxfs/xfs_attr.c:159
xfs_xattr_get+0xe3/0x150 fs/xfs/xfs_xattr.c:36
__vfs_getxattr+0xdf/0x13d fs/xattr.c:399
cap_inode_need_killpriv+0x41/0x5d security/commoncap.c:300
security_inode_need_killpriv+0x4c/0x97 security/security.c:1408
dentry_needs_remove_privs.part.28+0x21/0x63 fs/inode.c:1912
dentry_needs_remove_privs+0x80/0x9e fs/inode.c:1908
do_truncate+0xc3/0x1e0 fs/open.c:56
handle_truncate fs/namei.c:3084 [inline]
do_open fs/namei.c:3432 [inline]
path_openat+0x30ab/0x396d fs/namei.c:3561
do_filp_open+0x1c4/0x290 fs/namei.c:3588
do_sys_openat2+0x60d/0x98c fs/open.c:1212
do_sys_open+0xcf/0x13c fs/open.c:1228
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0x0
RIP: 0033:0x7f7ef4bb753d
Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48
89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73
01 c3 48 8b 0d 1b 79 2c 00 f7 d8 64 89 01 48
RSP: 002b:00007f7ef52c2ed8 EFLAGS: 00000246 ORIG_RAX: 0000000000000055
RAX: ffffffffffffffda RBX: 0000000000404148 RCX: 00007f7ef4bb753d
RDX: 00007f7ef4bb753d RSI: 0000000000000000 RDI: 0000000020004fc0
RBP: 0000000000404140 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0030656c69662f2e
R13: 00007ffd794db37f R14: 00007ffd794db470 R15: 00007f7ef52c2fc0
</TASK>
Allocated by task 2953:
kasan_save_stack+0x19/0x38 mm/kasan/common.c:38
kasan_set_track mm/kasan/common.c:46 [inline]
set_alloc_info mm/kasan/common.c:434 [inline]
__kasan_slab_alloc+0x68/0x7c mm/kasan/common.c:467
kasan_slab_alloc include/linux/kasan.h:254 [inline]
slab_post_alloc_hook mm/slab.h:519 [inline]
slab_alloc_node mm/slub.c:3213 [inline]
slab_alloc mm/slub.c:3221 [inline]
kmem_cache_alloc+0x11b/0x3eb mm/slub.c:3226
kmem_cache_zalloc include/linux/slab.h:711 [inline]
xfs_ifork_alloc+0x25/0xa2 fs/xfs/libxfs/xfs_inode_fork.c:287
xfs_bmap_add_attrfork+0x3f2/0x9b1 fs/xfs/libxfs/xfs_bmap.c:1098
xfs_attr_set+0xe38/0x12a7 fs/xfs/libxfs/xfs_attr.c:746
xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59
__vfs_setxattr+0x11b/0x177 fs/xattr.c:180
__vfs_setxattr_noperm+0x128/0x5e0 fs/xattr.c:214
__vfs_setxattr_locked+0x1d4/0x258 fs/xattr.c:275
vfs_setxattr+0x154/0x33d fs/xattr.c:301
setxattr+0x216/0x29f fs/xattr.c:575
__do_sys_fsetxattr fs/xattr.c:632 [inline]
__se_sys_fsetxattr fs/xattr.c:621 [inline]
__x64_sys_fsetxattr+0x243/0x2fe fs/xattr.c:621
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0x0
Freed by task 2949:
kasan_save_stack+0x19/0x38 mm/kasan/common.c:38
kasan_set_track+0x1c/0x21 mm/kasan/common.c:46
kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:360
____kasan_slab_free mm/kasan/common.c:366 [inline]
____kasan_slab_free mm/kasan/common.c:328 [inline]
__kasan_slab_free+0xe2/0x10e mm/kasan/common.c:374
kasan_slab_free include/linux/kasan.h:230 [inline]
slab_free_hook mm/slub.c:1700 [inline]
slab_free_freelist_hook mm/slub.c:1726 [inline]
slab_free mm/slub.c:3492 [inline]
kmem_cache_free+0xdc/0x3ce mm/slub.c:3508
xfs_attr_fork_remove+0x8d/0x132 fs/xfs/libxfs/xfs_attr_leaf.c:773
xfs_attr_sf_removename+0x5dd/0x6cb fs/xfs/libxfs/xfs_attr_leaf.c:822
xfs_attr_remove_iter+0x68c/0x805 fs/xfs/libxfs/xfs_attr.c:1413
xfs_attr_remove_args+0xb1/0x10d fs/xfs/libxfs/xfs_attr.c:684
xfs_attr_set+0xf1e/0x12a7 fs/xfs/libxfs/xfs_attr.c:802
xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59
__vfs_removexattr+0x106/0x16a fs/xattr.c:468
cap_inode_killpriv+0x24/0x47 security/commoncap.c:324
security_inode_killpriv+0x54/0xa1 security/security.c:1414
setattr_prepare+0x1a6/0x897 fs/attr.c:146
xfs_vn_change_ok+0x111/0x15e fs/xfs/xfs_iops.c:682
xfs_vn_setattr_size+0x5f/0x15a fs/xfs/xfs_iops.c:1065
xfs_vn_setattr+0x125/0x2ad fs/xfs/xfs_iops.c:1093
notify_change+0xae5/0x10a1 fs/attr.c:410
do_truncate+0x134/0x1e0 fs/open.c:64
handle_truncate fs/namei.c:3084 [inline]
do_open fs/namei.c:3432 [inline]
path_openat+0x30ab/0x396d fs/namei.c:3561
do_filp_open+0x1c4/0x290 fs/namei.c:3588
do_sys_openat2+0x60d/0x98c fs/open.c:1212
do_sys_open+0xcf/0x13c fs/open.c:1228
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0x0
The buggy address belongs to the object at ffff88802cec9188
which belongs to the cache xfs_ifork of size 40
The buggy address is located 20 bytes inside of
40-byte region [ffff88802cec9188, ffff88802cec91b0)
The buggy address belongs to the page:
page:00000000c3af36a1 refcount:1 mapcount:0 mapping:0000000000000000
index:0x0 pfn:0x2cec9
flags: 0xfffffc0000200(slab|node=0|zone=1|lastcpupid=0x1fffff)
raw: 000fffffc0000200 ffffea00009d2580 0000000600000006 ffff88801a9ffc80
raw: 0000000000000000 0000000080490049 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff88802cec9080: fb fb fb fc fc fa fb fb fb fb fc fc fb fb fb fb
ffff88802cec9100: fb fc fc fb fb fb fb fb fc fc fb fb fb fb fb fc
>ffff88802cec9180: fc fa fb fb fb fb fc fc fa fb fb fb fb fc fc fb
^
ffff88802cec9200: fb fb fb fb fc fc fb fb fb fb fb fc fc fb fb fb
ffff88802cec9280: fb fb fc fc fa fb fb fb fb fc fc fa fb fb fb fb
==================================================================
The root cause of this bug is the unlocked access to xfs_inode.i_afp
from the getxattr code paths while trying to determine which ILOCK mode
to use to stabilize the xattr data. Unfortunately, the VFS does not
acquire i_rwsem when vfs_getxattr (or listxattr) call into the
filesystem, which means that getxattr can race with a removexattr that's
tearing down the attr fork and crash:
xfs_attr_set: xfs_attr_get:
xfs_attr_fork_remove: xfs_ilock_attr_map_shared:
xfs_idestroy_fork(ip->i_afp);
kmem_cache_free(xfs_ifork_cache, ip->i_afp);
if (ip->i_afp &&
ip->i_afp = NULL;
xfs_need_iread_extents(ip->i_afp))
<KABOOM>
ip->i_forkoff = 0;
Regrettably, the VFS is much more lax about i_rwsem and getxattr than
is immediately obvious -- not only does it not guarantee that we hold
i_rwsem, it actually doesn't guarantee that we *don't* hold it either.
The getxattr system call won't acquire the lock before calling XFS, but
the file capabilities code calls getxattr with and without i_rwsem held
to determine if the "security.capabilities" xattr is set on the file.
Fixing the VFS locking requires a treewide investigation into every code
path that could touch an xattr and what i_rwsem state it expects or sets
up. That could take years or even prove impossible; fortunately, we
can fix this UAF problem inside XFS.
An earlier version of this patch used smp_wmb in xfs_attr_fork_remove to
ensure that i_forkoff is always zeroed before i_afp is set to null and
changed the read paths to use smp_rmb before accessing i_forkoff and
i_afp, which avoided these UAF problems. However, the patch author was
too busy dealing with other problems in the meantime, and by the time he
came back to this issue, the situation had changed a bit.
On a modern system with selinux, each inode will always have at least
one xattr for the selinux label, so it doesn't make much sense to keep
incurring the extra pointer dereference. Furthermore, Allison's
upcoming parent pointer patchset will also cause nearly every inode in
the filesystem to have extended attributes. Therefore, make the inode
attribute fork structure part of struct xfs_inode, at a cost of 40 more
bytes.
This patch adds a clunky if_present field where necessary to maintain
the existing logic of xattr fork null pointer testing in the existing
codebase. The next patch switches the logic over to XFS_IFORK_Q and it
all goes away.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We're about to make this logic do a bit more, so convert the macro to a
static inline function for better typechecking and fewer shouty macros.
No functional changes here.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.20-mergeB
xfs: lockless buffer cache lookups
Current work to merge the XFS inode life cycle with the VFS inode
life cycle is finding some interesting issues. If we have a path
that hits buffer trylocks fairly hard (e.g. a non-blocking
background inode freeing function), we end up hitting massive
contention on the buffer cache hash locks:
- 92.71% 0.05% [kernel] [k] xfs_inodegc_worker
- 92.67% xfs_inodegc_worker
- 92.13% xfs_inode_unlink
- 91.52% xfs_inactive_ifree
- 85.63% xfs_read_agi
- 85.61% xfs_trans_read_buf_map
- 85.59% xfs_buf_read_map
- xfs_buf_get_map
- 85.55% xfs_buf_find
- 72.87% _raw_spin_lock
- do_raw_spin_lock
71.86% __pv_queued_spin_lock_slowpath
- 8.74% xfs_buf_rele
- 7.88% _raw_spin_lock
- 7.88% do_raw_spin_lock
7.63% __pv_queued_spin_lock_slowpath
- 1.70% xfs_buf_trylock
- 1.68% down_trylock
- 1.41% _raw_spin_lock_irqsave
- 1.39% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.76% _raw_spin_unlock
0.75% do_raw_spin_unlock
This is basically hammering the pag->pag_buf_lock from lots of CPUs
doing trylocks at the same time. Most of the buffer trylock
operations ultimately fail after we've done the lookup, so we're
really hammering the buf hash lock whilst making no progress.
We can also see significant spinlock traffic on the same lock just
under normal operation when lots of tasks are accessing metadata
from the same AG, so let's avoid all this by creating a lookup fast
path which leverages the rhashtable's ability to do RCU protected
lookups.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
* tag 'xfs-buf-lockless-lookup-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
xfs: lockless buffer lookup
xfs: remove a superflous hash lookup when inserting new buffers
xfs: reduce the number of atomic when locking a buffer after lookup
xfs: merge xfs_buf_find() and xfs_buf_get_map()
xfs: break up xfs_buf_find() into individual pieces
xfs: rework xfs_buf_incore() API
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Now that we have a standalone fast path for buffer lookup, we can
easily convert it to use rcu lookups. When we continually hammer the
buffer cache with trylock lookups, we end up with a huge amount of
lock contention on the per-ag buffer hash locks:
- 92.71% 0.05% [kernel] [k] xfs_inodegc_worker
- 92.67% xfs_inodegc_worker
- 92.13% xfs_inode_unlink
- 91.52% xfs_inactive_ifree
- 85.63% xfs_read_agi
- 85.61% xfs_trans_read_buf_map
- 85.59% xfs_buf_read_map
- xfs_buf_get_map
- 85.55% xfs_buf_find
- 72.87% _raw_spin_lock
- do_raw_spin_lock
71.86% __pv_queued_spin_lock_slowpath
- 8.74% xfs_buf_rele
- 7.88% _raw_spin_lock
- 7.88% do_raw_spin_lock
7.63% __pv_queued_spin_lock_slowpath
- 1.70% xfs_buf_trylock
- 1.68% down_trylock
- 1.41% _raw_spin_lock_irqsave
- 1.39% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.76% _raw_spin_unlock
0.75% do_raw_spin_unlock
This is basically hammering the pag->pag_buf_lock from lots of CPUs
doing trylocks at the same time. Most of the buffer trylock
operations ultimately fail after we've done the lookup, so we're
really hammering the buf hash lock whilst making no progress.
We can also see significant spinlock traffic on the same lock just
under normal operation when lots of tasks are accessing metadata
from the same AG, so let's avoid all this by converting the lookup
fast path to leverages the rhashtable's ability to do rcu protected
lookups.
We avoid races with the buffer release path by using
atomic_inc_not_zero() on the buffer hold count. Any buffer that is
in the LRU will have a non-zero count, thereby allowing the lockless
fast path to be taken in most cache hit situations. If the buffer
hold count is zero, then it is likely going through the release path
so in that case we fall back to the existing lookup miss slow path.
The slow path will then do an atomic lookup and insert under the
buffer hash lock and hence serialise correctly against buffer
release freeing the buffer.
The use of rcu protected lookups means that buffer handles now need
to be freed by RCU callbacks (same as inodes). We still free the
buffer pages before the RCU callback - we won't be trying to access
them at all on a buffer that has zero references - but we need the
buffer handle itself to be present for the entire rcu protected read
side to detect a zero hold count correctly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Currently on the slow path insert we repeat the initial hash table
lookup before we attempt the insert, resulting in a two traversals
of the hash table to ensure the insert is valid. The rhashtable API
provides a method for an atomic lookup and insert operation, so we
can avoid one of the hash table traversals by using this method.
Adapted from a large patch containing this optimisation by Christoph
Hellwig.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Avoid an extra atomic operation in the non-trylock case by only
doing a trylock if the XBF_TRYLOCK flag is set. This follows the
pattern in the IO path with NOWAIT semantics where the
"trylock-fail-lock" path showed 5-10% reduced throughput compared to
just using single lock call when not under NOWAIT conditions. So
make that same change here, too.
See commit 942491c9e6d6 ("xfs: fix AIM7 regression") for details.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[hch: split from a larger patch]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Now that we factored xfs_buf_find(), we can start separating into
distinct fast and slow paths from xfs_buf_get_map(). We start by
moving the lookup map and perag setup to _get_map(), and then move
all the specifics of the fast path lookup into xfs_buf_lookup()
and call it directly from _get_map(). We the move all the slow path
code to xfs_buf_find_insert(), which is now also called directly
from _get_map(). As such, xfs_buf_find() now goes away.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
xfs_buf_find() is made up of three main parts: lookup, insert and
locking. The interactions with xfs_buf_get_map() require it to be
called twice - once for a pure lookup, and again on lookup failure
so the insert path can be run. We want to simplify this down a lot,
so split it into a fast path lookup, a slow path insert and a "lock
the found buffer" helper. This will then let us integrate these
operations more effectively into xfs_buf_get_map() in future
patches.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Make it consistent with the other buffer APIs to return a error and
the buffer is placed in a parameter.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|\ \ \
| |_|/
|/| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.20-mergeB
xfs: introduce in-memory inode unlink log items
To facilitate future improvements in inode logging and improving
inode cluster buffer locking order consistency, we need a new
mechanism for defering inode cluster buffer modifications during
unlinked list modifications.
The unlinked inode list buffer locking is complex. The unlinked
list is unordered - we add to the tail, remove from where-ever the
inode is in the list. Hence we might need to lock two inode buffers
here (previous inode in list and the one being removed). While we
can order the locking of these buffers correctly within the confines
of the unlinked list, there may be other inodes that need buffer
locking in the same transaction. e.g. O_TMPFILE being linked into a
directory also modifies the directory inode.
Hence we need a mechanism for defering unlinked inode list updates
until a point where we know that all modifications have been made
and all that remains is to lock and modify the cluster buffers.
We can do this by first observing that we serialise unlinked list
modifications by holding the AGI buffer lock. IOWs, the AGI is going
to be locked until the transaction commits any time we modify the
unlinked list. Hence it doesn't matter when in the unlink
transactions that we actually load, lock and modify the inode
cluster buffer.
We add an in-memory unlinked inode log item to defer the inode
cluster buffer update to transaction commit time where it can be
ordered with all the other inode cluster operations that need to be
done. Essentially all we need to do is record the inodes that need
to have their unlinked list pointer updated in a new log item that
we attached to the transaction.
This log item exists purely for the purpose of delaying the update
of the unlinked list pointer until the inode cluster buffer can be
locked in the correct order around the other inode cluster buffers.
It plays no part in the actual commit, and there's no change to
anything that is written to the log. i.e. the inode cluster buffers
still have to be fully logged here (not just ordered) as log
recovery depedends on this to replay mods to the unlinked inode
list.
Hence if we add a "precommit" hook into xfs_trans_commit()
to run a "precommit" operation on these iunlink log items, we can
delay the locking, modification and logging of the inode cluster
buffer until after all other modifications have been made. The
precommit hook reuires us to sort the items that are going to be run
so that we can lock precommit items in the correct order as we
perform the modifications they describe.
To make this unlinked inode list processing simpler and easier to
implement as a log item, we need to change the way we track the
unlinked list in memory. Starting from the observation that an inode
on the unlinked list is pinned in memory by the VFS, we can use the
xfs_inode itself to track the unlinked list. To do this efficiently,
we want the unlinked list to be a double linked list. The problem
here is that we need a list per AGI unlinked list, and there are 64
of these per AGI. The approach taken in this patchset is to shadow
the AGI unlinked list heads in the perag, and link inodes by agino,
hence requiring only 8 extra bytes per inode to track this state.
We can then use the agino pointers for lockless inode cache lookups
to retreive the inode. The aginos in the inode are modified only
under the AGI lock, just like the cluster buffer pointers, so we
don't need any extra locking here. The i_next_unlinked field tracks
the on-disk value of the unlinked list, and the i_prev_unlinked is a
purely in-memory pointer that enables us to efficiently remove
inodes from the middle of the list.
This results in moving a lot of the unlink modification work into
the precommit operations on the unlink log item. Tracking all the
unlinked inodes in the inodes themselves also gets rid of the
unlinked list reference hash table that is used to track this back
pointer relationship. This greatly simplifies the the unlinked list
modification code, and removes memory allocations in this hot path
to track back pointers. This, overall, slightly reduces the CPU
overhead of the unlink path.
The result of this log item means that we move all the actual
manipulation of objects to be logged out of the iunlink path and
into the iunlink item. This allows for future optimisation of this
mechanism without needing changes to high level unlink path, as
well as making the unlink lock ordering predictable and synchronised
with other operations that may require inode cluster locking.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
* tag 'xfs-iunlink-item-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
xfs: add in-memory iunlink log item
xfs: add log item precommit operation
xfs: combine iunlink inode update functions
xfs: clean up xfs_iunlink_update_inode()
xfs: double link the unlinked inode list
xfs: introduce xfs_iunlink_lookup
xfs: refactor xlog_recover_process_iunlinks()
xfs: track the iunlink list pointer in the xfs_inode
xfs: factor the xfs_iunlink functions
xfs: flush inode gc workqueue before clearing agi bucket
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Now that we have a clean operation to update the di_next_unlinked
field of inode cluster buffers, we can easily defer this operation
to transaction commit time so we can order the inode cluster buffer
locking consistently.
To do this, we introduce a new in-memory log item to track the
unlinked list item modification that we are going to make. This
follows the same observations as the in-memory double linked list
used to track unlinked inodes in that the inodes on the list are
pinned in memory and cannot go away, and hence we can simply
reference them for the duration of the transaction without needing
to take active references or pin them or look them up.
This allows us to pass the xfs_inode to the transaction commit code
along with the modification to be made, and then order the logged
modifications via the ->iop_sort and ->iop_precommit operations
for the new log item type. As this is an in-memory log item, it
doesn't have formatting, CIL or AIL operational hooks - it exists
purely to run the inode unlink modifications and is then removed
from the transaction item list and freed once the precommit
operation has run.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
For inodes that are dirty, we have an attached cluster buffer that
we want to use to track the dirty inode through the AIL.
Unfortunately, locking the cluster buffer and adding it to the
transaction when the inode is first logged in a transaction leads to
buffer lock ordering inversions.
The specific problem is ordering against the AGI buffer. When
modifying unlinked lists, the buffer lock order is AGI -> inode
cluster buffer as the AGI buffer lock serialises all access to the
unlinked lists. Unfortunately, functionality like xfs_droplink()
logs the inode before calling xfs_iunlink(), as do various directory
manipulation functions. The inode can be logged way down in the
stack as far as the bmapi routines and hence, without a major
rewrite of lots of APIs there's no way we can avoid the inode being
logged by something until after the AGI has been logged.
As we are going to be using ordered buffers for inode AIL tracking,
there isn't a need to actually lock that buffer against modification
as all the modifications are captured by logging the inode item
itself. Hence we don't actually need to join the cluster buffer into
the transaction until just before it is committed. This means we do
not perturb any of the existing buffer lock orders in transactions,
and the inode cluster buffer is always locked last in a transaction
that doesn't otherwise touch inode cluster buffers.
We do this by introducing a precommit log item method. This commit
just introduces the mechanism; the inode item implementation is in
followup commits.
The precommit items need to be sorted into consistent order as we
may be locking multiple items here. Hence if we have two dirty
inodes in cluster buffers A and B, and some other transaction has
two separate dirty inodes in the same cluster buffers, locking them
in different orders opens us up to ABBA deadlocks. Hence we sort the
items on the transaction based on the presence of a sort log item
method.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Combine the logging of the inode unlink list update into the
calling function that looks up the buffer we end up logging. These
do not need to be separate functions as they are both short, simple
operations and there's only a single call path through them. This
new function will end up being the core of the iunlink log item
processing...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We no longer need to have this function return the previous next
agino value from the on-disk inode as we have it in the in-core
inode now.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Now we have forwards traversal via the incore inode in place, we now
need to add back pointers to the incore inode to entirely replace
the back reference cache. We use the same lookup semantics and
constraints as for the forwards pointer lookups during unlinks, and
so we can look up any inode in the unlinked list directly and update
the list pointers, forwards or backwards, at any time.
The only wrinkle in converting the unlinked list manipulations to
use in-core previous pointers is that log recovery doesn't have the
incore inode state built up so it can't just read in an inode and
release it to finish off the unlink. Hence we need to modify the
traversal in recovery to read one inode ahead before we
release the inode at the head of the list. This populates the
next->prev relationship sufficient to be able to replay the unlinked
list and hence greatly simplify the runtime code.
This recovery algorithm also requires that we actually remove inodes
from the unlinked list one at a time as background inode
inactivation will result in unlinked list removal racing with the
building of the in-memory unlinked list state. We could serialise
this by holding the AGI buffer lock when constructing the in memory
state, but all that does is lockstep background processing with list
building. It is much simpler to flush the inodegc immediately after
releasing the inode so that it is unlinked immediately and there is
no races present at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
When an inode is on an unlinked list during normal operation, it is
guaranteed to be pinned in memory as it is either referenced by the
current unlink operation or it has a open file descriptor that
references it and has it pinned in memory. Hence to look up an inode
on the unlinked list, we can do a direct inode cache lookup and
always expect the lookup to succeed.
Add a function to do this lookup based on the agino that we use to
link the chain of unlinked inodes together so we can begin the
conversion the unlinked list manipulations to use in-memory inodes
rather than inode cluster buffers and remove the backref cache.
Use this lookup function to replace the on-disk inode buffer walk
when removing inodes from the unlinked list with an in-core inode
unlinked list walk.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
For upcoming changes to the way inode unlinked list processing is
done, the structure of recovery needs to change slightly. We also
really need to untangle the messy error handling in list recovery
so that actions like emptying the bucket on inode lookup failure
are associated with the bucket list walk failing, not failing
to look up the inode.
Refactor the recovery code now to keep the re-organisation seperate
to the algorithm changes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Having direct access to the i_next_unlinked pointer in unlinked
inodes greatly simplifies the processing of inodes on the unlinked
list. We no longer need to look up the inode buffer just to find
next inode in the list if the xfs_inode is in memory. These
improvements will be realised over upcoming patches as other
dependencies on the inode buffer for unlinked list processing are
removed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Prep work that separates the locking that protects the unlinked list
from the actual operations being performed. This also helps document
the fact they are performing list insert and remove operations. No
functional code change.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
In the procedure of recover AGI unlinked lists, if something bad
happenes on one of the unlinked inode in the bucket list, we would call
xlog_recover_clear_agi_bucket() to clear the whole unlinked bucket list,
not the unlinked inodes after the bad one. If we have already added some
inodes to the gc workqueue before the bad inode in the list, we could
get below error when freeing those inodes, and finaly fail to complete
the log recover procedure.
XFS (ram0): Internal error xfs_iunlink_remove at line 2456 of file
fs/xfs/xfs_inode.c. Caller xfs_ifree+0xb0/0x360 [xfs]
The problem is xlog_recover_clear_agi_bucket() clear the bucket list, so
the gc worker fail to check the agino in xfs_verify_agino(). Fix this by
flush workqueue before clearing the bucket.
Fixes: ab23a7768739 ("xfs: per-cpu deferred inode inactivation queues")
Signed-off-by: Zhang Yi <yi.zhang@huawei.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
At line 1561, variable "state" is being compared
with NULL every loop iteration.
-------------------------------------------------------------------
1561 for (i = 0; state != NULL && i < state->path.active; i++) {
1562 xfs_trans_brelse(args->trans, state->path.blk[i].bp);
1563 state->path.blk[i].bp = NULL;
1564 }
-------------------------------------------------------------------
However, it cannot be NULL.
----------------------------------------
1546 state = xfs_da_state_alloc(args);
----------------------------------------
xfs_da_state_alloc calls kmem_cache_zalloc. kmem_cache_zalloc is
called with __GFP_NOFAIL flag and, therefore, it cannot return NULL.
--------------------------------------------------------------------------
struct xfs_da_state *
xfs_da_state_alloc(
struct xfs_da_args *args)
{
struct xfs_da_state *state;
state = kmem_cache_zalloc(xfs_da_state_cache, GFP_NOFS | __GFP_NOFAIL);
state->args = args;
state->mp = args->dp->i_mount;
return state;
}
--------------------------------------------------------------------------
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Signed-off-by: Andrey Strachuk <strochuk@ispras.ru>
Fixes: 4d0cdd2bb8f0 ("xfs: clean up xfs_attr_node_hasname")
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We got a report that "renameat2() with flags=RENAME_WHITEOUT doesn't
apply an SELinux label on xfs" as it does on other filesystems
(for example, ext4 and tmpfs.) While I'm not quite sure how labels
may interact w/ whiteout files, leaving them as unlabeled seems
inconsistent at best. Now that xfs_init_security is not static,
rename it to xfs_inode_init_security per dchinner's suggestion.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|\| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.20-mergeA
xfs: per-ag conversions for 5.20
This series drives the perag down into the AGI, AGF and AGFL access
routines and unifies the perag structure initialisation with the
high level AG header read functions. This largely replaces the
xfs_mount/agno pair that is passed to all these functions with a
perag, and in most places we already have a perag ready to pass in.
There are a few places where perags need to be grabbed before
reading the AG header buffers - some of these will need to be driven
to higher layers to ensure we can run operations on AGs without
getting stuck part way through waiting on a perag reference.
The latter section of this patchset moves some of the AG geometry
information from the xfs_mount to the xfs_perag, and starts
converting code that requires geometry validation to use a perag
instead of a mount and having to extract the AGNO from the object
location. This also allows us to store the AG size in the perag and
then we can stop having to compare the agno against sb_agcount to
determine if the AG is the last AG and so has a runt size. This
greatly simplifies some of the type validity checking we do and
substantially reduces the CPU overhead of type validity checking. It
also cuts over 1.2kB out of the binary size.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
* tag 'xfs-perag-conv-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
xfs: make is_log_ag() a first class helper
xfs: replace xfs_ag_block_count() with perag accesses
xfs: Pre-calculate per-AG agino geometry
xfs: Pre-calculate per-AG agbno geometry
xfs: pass perag to xfs_alloc_read_agfl
xfs: pass perag to xfs_alloc_put_freelist
xfs: pass perag to xfs_alloc_get_freelist
xfs: pass perag to xfs_read_agf
xfs: pass perag to xfs_read_agi
xfs: pass perag to xfs_alloc_read_agf()
xfs: kill xfs_alloc_pagf_init()
xfs: pass perag to xfs_ialloc_read_agi()
xfs: kill xfs_ialloc_pagi_init()
xfs: make last AG grow/shrink perag centric
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We check if an ag contains the log in many places, so make this
a first class XFS helper by lifting it to fs/xfs/libxfs/xfs_ag.h and
renaming it xfs_ag_contains_log(). The convert all the places that
check if the AG contains the log to use this helper.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Many of the places that call xfs_ag_block_count() have a perag
available. These places can just read pag->block_count directly
instead of calculating the AG block count from first principles.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
There is a lot of overhead in functions like xfs_verify_agino() that
repeatedly calculate the geometry limits of an AG. These can be
pre-calculated as they are static and the verification context has
a per-ag context it can quickly reference.
In the case of xfs_verify_agino(), we now always have a perag
context handy, so we can store the minimum and maximum agino values
in the AG in the perag. This means we don't have to calculate
it on every call and it can be inlined in callers if we move it
to xfs_ag.h.
xfs_verify_agino_or_null() gets the same perag treatment.
xfs_agino_range() is moved to xfs_ag.c as it's not really a type
function, and it's use is largely restricted as the first and last
aginos can be grabbed straight from the perag in most cases.
Note that we leave the original xfs_verify_agino in place in
xfs_types.c as a static function as other callers in that file do
not have per-ag contexts so still need to go the long way. It's been
renamed to xfs_verify_agno_agino() to indicate it takes both an agno
and an agino to differentiate it from new function.
$ size --totals fs/xfs/built-in.a
text data bss dec hex filename
before 1482185 329588 572 1812345 1ba779 (TOTALS)
after 1481937 329588 572 1812097 1ba681 (TOTALS)
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
There is a lot of overhead in functions like xfs_verify_agbno() that
repeatedly calculate the geometry limits of an AG. These can be
pre-calculated as they are static and the verification context has
a per-ag context it can quickly reference.
In the case of xfs_verify_agbno(), we now always have a perag
context handy, so we can store the AG length and the minimum valid
block in the AG in the perag. This means we don't have to calculate
it on every call and it can be inlined in callers if we move it
to xfs_ag.h.
Move xfs_ag_block_count() to xfs_ag.c because it's really a
per-ag function and not an XFS type function. We need a little
bit of rework that is specific to xfs_initialise_perag() to allow
growfs to calculate the new perag sizes before we've updated the
primary superblock during the grow (chicken/egg situation).
Note that we leave the original xfs_verify_agbno in place in
xfs_types.c as a static function as other callers in that file do
not have per-ag contexts so still need to go the long way. It's been
renamed to xfs_verify_agno_agbno() to indicate it takes both an agno
and an agbno to differentiate it from new function.
Future commits will make similar changes for other per-ag geometry
validation functions.
Further:
$ size --totals fs/xfs/built-in.a
text data bss dec hex filename
before 1483006 329588 572 1813166 1baaae (TOTALS)
after 1482185 329588 572 1812345 1ba779 (TOTALS)
This rework reduces the binary size by ~820 bytes, indicating
that much less work is being done to bounds check the agbno values
against on per-ag geometry information.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We have the perag in most places we call xfs_alloc_read_agfl, so
pass the perag instead of a mount/agno pair.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
It's available in all callers, so pass it in so that the perag can
be passed further down the stack.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
It's available in all callers, so pass it in so that the perag can
be passed further down the stack.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We have the perag in most places we call xfs_read_agf, so pass the
perag instead of a mount/agno pair.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We have the perag in most palces we call xfs_read_agi, so pass the
perag instead of a mount/agno pair.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|