summaryrefslogtreecommitdiffstats
Commit message (Collapse)AuthorAgeFilesLines
* cpuset: use css_task_iter_start/next/end() instead of css_scan_tasks()Tejun Heo2014-02-131-128/+58
| | | | | | | | | | | | | Now that css_task_iter_start/next_end() supports blocking while iterating, there's no reason to use css_scan_tasks() which is more cumbersome to use and scheduled to be removed. Convert all css_scan_tasks() usages in cpuset to css_task_iter_start/next/end(). This simplifies the code by removing heap allocation and callbacks. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: make css_set_lock a rwsem and rename it to css_set_rwsemTejun Heo2014-02-131-47/+57
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently there are two ways to walk tasks of a cgroup - css_task_iter_start/next/end() and css_scan_tasks(). The latter builds on the former but allows blocking while iterating. Unfortunately, the way css_scan_tasks() is implemented is rather nasty, it uses a priority heap of pointers to extract some number of tasks in task creation order and loops over them invoking the callback and repeats that until it reaches the end. It requires either preallocated heap or may fail under memory pressure, while unlikely to be problematic, the complexity is O(N^2), and in general just nasty. We're gonna convert all css_scan_users() to css_task_iter_start/next/end() and remove css_scan_users(). As css_scan_tasks() users may block, let's convert css_set_lock to a rwsem so that tasks can block during css_task_iter_*() is in progress. While this does increase the chance of possible deadlock scenarios, given the current usage, the probability is relatively low, and even if that happens, the right thing to do is updating the iteration in the similar way to css iterators so that it can handle blocking. Most conversions are trivial; however, task_cgroup_path() now expects to be called with css_set_rwsem locked instead of locking itself. This is because the function is called with RCU read lock held and rwsem locking should nest outside RCU read lock. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: reimplement cgroup_transfer_tasks() without using css_scan_tasks()Tejun Heo2014-02-131-11/+20
| | | | | | | | | | Reimplement cgroup_transfer_tasks() so that it repeatedly fetches the first task in the cgroup and then tranfers it. This achieves the same result without using css_scan_tasks() which is scheduled to be removed. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: implement cgroup_has_tasks() and unexport cgroup_task_count()Tejun Heo2014-02-134-6/+10
| | | | | | | | | | | | | | | | | | | | cgroup_task_count() read-locks css_set_lock and walks all tasks to count them and then returns the result. The only thing all the users want is determining whether the cgroup is empty or not. This patch implements cgroup_has_tasks() which tests whether cgroup->cset_links is empty, replaces all cgroup_task_count() usages and unexports it. Note that the test isn't synchronized. This is the same as before. The test has always been racy. This will help planned css_set locking update. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
* cgroup: relocate cgroup_enable_task_cg_lists()Tejun Heo2014-02-131-55/+48
| | | | | | | | | | Move it above so that prototype isn't necessary. Let's also move the definition of use_task_css_set_links next to it. This is purely cosmetic. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: enable task_cg_lists on the first cgroup mountTejun Heo2014-02-131-14/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | | Tasks are not linked on their css_sets until cgroup task iteration is actually used. This is to avoid incurring overhead on the fork and exit paths for systems which have cgroup compiled in but don't use it. This lazy binding also affects the task migration path. It has to be careful so that it doesn't link tasks to css_sets when task_cg_lists linking is not enabled yet. Unfortunately, this conditional linking in the migration path interferes with planned migration updates. This patch moves the lazy binding a bit earlier, to the first cgroup mount. It's a clear indication that cgroup is being used on the system and task_cg_lists linking is highly likely to be enabled soon anyway through "tasks" and "cgroup.procs" files. This allows cgroup_task_migrate() to always link @tsk->cg_list. Note that it may still race with cgroup_post_fork() but who wins that race is inconsequential. While at it, make use_task_css_set_links a bool, add sanity checks in cgroup_enable_task_cg_lists() and css_task_iter_start(), and update the former so that it's guaranteed and assumes to run only once. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: drop CGRP_ROOT_SUBSYS_BOUNDTejun Heo2014-02-132-26/+4
| | | | | | | | | | | | | | | | | Before kernfs conversion, due to the way super_block lookup works, cgroup roots were created and made visible before being fully initialized. This in turn required a special flag to mark that the root hasn't been fully initialized so that the destruction path can tell fully bound ones from half initialized. That flag is CGRP_ROOT_SUBSYS_BOUND and no longer necessary after the kernfs conversion as the lookup and creation of new root are atomic w.r.t. cgroup_mutex. This patch removes the flag and passes the requests subsystem mask to cgroup_setup_root() so that it can set the respective mask bits as subsystems are bound. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: disallow xattr, release_agent and name if sane_behaviorTejun Heo2014-02-132-13/+7
| | | | | | | | | | | Disallow more mount options if sane_behavior. Note that xattr used to generate warning. While at it, simplify option check in cgroup_mount() and update sane_behavior comment in cgroup.h. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* sun4M: add include of slab.h for kzallocStephen Rothwell2014-02-121-0/+2
| | | | | | | | | This was being included implicitly via cgroup.h's inclusion of xattr.h (which has now been removed). Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Acked-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: Tejun Heo <tj@kernel.org>
* cgroup: remove cgroupfs_root->refcntTejun Heo2014-02-122-51/+39
| | | | | | | | | | | | | | | | | | | Currently, cgroupfs_root and its ->top_cgroup are separated reference counted and the latter's is ignored. There's no reason to do this separately. This patch removes cgroupfs_root->refcnt and destroys cgroupfs_root when the top_cgroup is released. * cgroup_put() updated to ignore cgroup_is_dead() test for top cgroups. cgroup_free_fn() updated to handle root destruction when releasing a top cgroup. * As root destruction is now bounced through cgroup destruction, it is asynchronous. Update cgroup_mount() so that it waits for pending release which is currently implemented using msleep(). Converting this to proper wait_queue isn't hard but likely unnecessary. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: rename cgroupfs_root->number_of_cgroups to ->nr_cgrps and make it ↵Tejun Heo2014-02-122-11/+9
| | | | | | | | | | | | | | | | | | | | | | | atomic_t root->number_of_cgroups is currently an integer protected with cgroup_mutex. Except for sanity checks and proc reporting, the only place it's used is to check whether the root has any child during remount; however, this is a bit flawed as the counter is not decremented when the cgroup is unlinked but when it's released, meaning that there could be an extended period where all cgroups are removed but remount is still not allowed because some internal objects are lingering. While not perfect either, it'd be better to use emptiness test on root->top_cgroup.children. This patch updates cgroup_remount() to test top_cgroup's children instead, which makes number_of_cgroups only actual usage statistics printing in proc implemented in proc_cgroupstats_show(). Let's shorten its name and make it an atomic_t so that we don't have to worry about its synchronization. It's purely auxiliary at this point. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: remove cgroup->nameTejun Heo2014-02-127-210/+110
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cgroup->name handling became quite complicated over time involving dedicated struct cgroup_name for RCU protection. Now that cgroup is on kernfs, we can drop all of it and simply use kernfs_name/path() and friends. Replace cgroup->name and all related code with kernfs name/path constructs. * Reimplement cgroup_name() and cgroup_path() as thin wrappers on top of kernfs counterparts, which involves semantic changes. pr_cont_cgroup_name() and pr_cont_cgroup_path() added. * cgroup->name handling dropped from cgroup_rename(). * All users of cgroup_name/path() updated to the new semantics. Users which were formatting the string just to printk them are converted to use pr_cont_cgroup_name/path() instead, which simplifies things quite a bit. As cgroup_name() no longer requires RCU read lock around it, RCU lockings which were protecting only cgroup_name() are removed. v2: Comment above oom_info_lock updated as suggested by Michal. v3: dummy_top doesn't have a kn associated and pr_cont_cgroup_name/path() ended up calling the matching kernfs functions with NULL kn leading to oops. Test for NULL kn and print "/" if so. This issue was reported by Fengguang Wu. v4: Rebased on top of 0ab02ca8f887 ("cgroup: protect modifications to cgroup_idr with cgroup_mutex"). Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
* cgroup: make cgroup hold onto its kernfs_nodeTejun Heo2014-02-121-7/+9
| | | | | | | | | | | | | | | cgroup currently releases its kernfs_node when it gets removed. While not buggy, this makes cgroup->kn access rules complicated than necessary and leads to things like get/put protection around kernfs_remove() in cgroup_destroy_locked(). In addition, we want to use kernfs_name/path() and friends but also want to be able to determine a cgroup's name between removal and release. This patch makes cgroup hold onto its kernfs_node until freed so that cgroup->kn is always accessible. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: simplify dynamic cftype addition and removalTejun Heo2014-02-121-55/+32
| | | | | | | | | | | | | | | | | | | | | | | | Dynamic cftype addition and removal using cgroup_add/rm_cftypes() respectively has been quite hairy due to vfs i_mutex. As i_mutex nests outside cgroup_mutex, cgroup_mutex has to be released and regrabbed on each iteration through the hierarchy complicating the process. Now that i_mutex is no longer in play, it can be simplified. * Just holding cgroup_tree_mutex is enough. No need to meddle with cgroup_mutex. * No reason to play the unlock - relock - check serial_nr dancing. Everything can be atomically while holding cgroup_tree_mutex. * cgroup_cfts_prepare() is replaced with direct locking of cgroup_tree_mutex. * cgroup_cfts_commit() no longer fiddles with locking. It just applies the cftypes change to the existing cgroups in the hierarchy. Renamed to cgroup_cfts_apply(). Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: remove cftype_setTejun Heo2014-02-122-45/+22
| | | | | | | | | | | | | | | | | cftype_set was added primarily to allow registering the same cftype array more than once for different subsystems. Nobody uses or needs such thing and it's already broken because each cftype has ->ss pointer which is initialized during registration. Let's add list_head ->node to cftype and use the first cftype entry in the array to link them instead of allocating separate cftype_set. While at it, trigger WARN if cft seems previously initialized during registration. This simplifies cftype handling a bit. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: relocate cgroup_rm_cftypes()Tejun Heo2014-02-121-35/+35
| | | | | | | | cftype handling is about to be revamped. Relocate cgroup_rm_cftypes() above cgroup_add_cftypes() in preparation. This is pure relocation. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: warn if "xattr" is specified with "sane_behavior"Tejun Heo2014-02-122-0/+5
| | | | | | | | | Mount option "xattr" is no longer necessary as it's enabled by default on kernfs. Warn if "xattr" is specified with "sane_behavior" so that the option can be removed in the future. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: convert to kernfsTejun Heo2014-02-113-785/+383
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cgroup filesystem code was derived from the original sysfs implementation which was heavily intertwined with vfs objects and locking with the goal of re-using the existing vfs infrastructure. That experiment turned out rather disastrous and sysfs switched, a long time ago, to distributed filesystem model where a separate representation is maintained which is queried by vfs. Unfortunately, cgroup stuck with the failed experiment all these years and accumulated even more problems over time. Locking and object lifetime management being entangled with vfs is probably the most egregious. vfs is never designed to be misused like this and cgroup ends up jumping through various convoluted dancing to make things work. Even then, operations across multiple cgroups can't be done safely as it'll deadlock with rename locking. Recently, kernfs is separated out from sysfs so that it can be used by users other than sysfs. This patch converts cgroup to use kernfs, which will bring the following benefits. * Separation from vfs internals. Locking and object lifetime management is contained in cgroup proper making things a lot simpler. This removes significant amount of locking convolutions, hairy object lifetime rules and the restriction on multi-cgroup operations. * Can drop a lot of code to implement filesystem interface as most are provided by kernfs. * Proper "severing" semantics, which allows controllers to not worry about lingering file accesses after offline. While the preceding patches did as much as possible to make the transition less painful, large part of the conversion has to be one discrete step making this patch rather large. The rest of the commit message lists notable changes in different areas. Overall ------- * vfs constructs replaced with kernfs ones. cgroup->dentry w/ ->kn, cgroupfs_root->sb w/ ->kf_root. * All dentry accessors are removed. Helpers to map from kernfs constructs are added. * All vfs plumbing around dentry, inode and bdi removed. * cgroup_mount() now directly looks for matching root and then proceeds to create a new one if not found. Synchronization and object lifetime ----------------------------------- * vfs inode locking removed. Among other things, this removes the need for the convolution in cgroup_cfts_commit(). Future patches will further simplify it. * vfs refcnting replaced with cgroup internal ones. cgroup->refcnt, cgroupfs_root->refcnt added. cgroup_put_root() now directly puts root->refcnt and when it reaches zero proceeds to destroy it thus merging cgroup_put_root() and the former cgroup_kill_sb(). Simliarly, cgroup_put() now directly schedules cgroup_free_rcu() when refcnt reaches zero. * Unlike before, kernfs objects don't hold onto cgroup objects. When cgroup destroys a kernfs node, all existing operations are drained and the association is broken immediately. The same for cgroupfs_roots and mounts. * All operations which come through kernfs guarantee that the associated cgroup is and stays valid for the duration of operation; however, there are two paths which need to find out the associated cgroup from dentry without going through kernfs - css_tryget_from_dir() and cgroupstats_build(). For these two, kernfs_node->priv is RCU managed so that they can dereference it under RCU read lock. File and directory handling --------------------------- * File and directory operations converted to kernfs_ops and kernfs_syscall_ops. * xattrs is implicitly supported by kernfs. No need to worry about it from cgroup. This means that "xattr" mount option is no longer necessary. A future patch will add a deprecated warning message when sane_behavior. * When cftype->max_write_len > PAGE_SIZE, it's necessary to make a private copy of one of the kernfs_ops to set its atomic_write_len. cftype->kf_ops is added and cgroup_init/exit_cftypes() are updated to handle it. * cftype->lockdep_key added so that kernfs lockdep annotation can be per cftype. * Inidividual file entries and open states are now managed by kernfs. No need to worry about them from cgroup. cfent, cgroup_open_file and their friends are removed. * kernfs_nodes are created deactivated and kernfs_activate() invocations added to places where creation of new nodes are committed. * cgroup_rmdir() uses kernfs_[un]break_active_protection() for self-removal. v2: - Li pointed out in an earlier patch that specifying "name=" during mount without subsystem specification should succeed if there's an existing hierarchy with a matching name although it should fail with -EINVAL if a new hierarchy should be created. Prior to the conversion, this used by handled by deferring failure from NULL return from cgroup_root_from_opts(), which was necessary because root was being created before checking for existing ones. Note that cgroup_root_from_opts() returned an ERR_PTR() value for error conditions which require immediate mount failure. As we now have separate search and creation steps, deferring failure from cgroup_root_from_opts() is no longer necessary. cgroup_root_from_opts() is updated to always return ERR_PTR() value on failure. - The logic to match existing roots is updated so that a mount attempt with a matching name but different subsys_mask are rejected. This was handled by a separate matching loop under the comment "Check for name clashes with existing mounts" but got lost during conversion. Merge the check into the main search loop. - Add __rcu __force casting in RCU_INIT_POINTER() in cgroup_destroy_locked() to avoid the sparse address space warning reported by kbuild test bot. Maybe we want an explicit interface to use kn->priv as RCU protected pointer? v3: Make CONFIG_CGROUPS select CONFIG_KERNFS. v4: Rebased on top of 0ab02ca8f887 ("cgroup: protect modifications to cgroup_idr with cgroup_mutex"). Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com> Cc: kbuild test robot fengguang.wu@intel.com>
* cgroup: relocate functions in preparation of kernfs conversionTejun Heo2014-02-111-115/+117
| | | | | | | | | | | Relocate cgroup_init/exit_root_id(), cgroup_free_root(), cgroup_kill_sb() and cgroup_file_name() in preparation of kernfs conversion. These are pure relocations to make kernfs conversion easier to follow. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: misc preps for kernfs conversionTejun Heo2014-02-112-38/+55
| | | | | | | | | | | | | | | | | | | | | | | | * Un-inline seq_css(). After kernfs conversion, the function will need to dereference internal data structures. * Add cgroup_get/put_root() and replace direct super_block->s_active manipulatinos with them. These will be converted to kernfs_root refcnting. * Add cgroup_get/put() and replace dget/put() on cgrp->dentry with them. These will be converted to kernfs refcnting. * Update current_css_set_cg_links_read() to use cgroup_name() instead of reaching into the dentry name. The end result is the same. These changes don't make functional differences but will make transition to kernfs easier. v2: Rebased on top of 0ab02ca8f887 ("cgroup: protect modifications to cgroup_idr with cgroup_mutex"). Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: introduce cgroup_ino()Tejun Heo2014-02-113-7/+15
| | | | | | | | | | | | | | | | | mm/memory-failure.c::hwpoison_filter_task() has been reaching into cgroup to extract the associated ino to be used as a filtering criterion. This is an implementation detail which shouldn't be depended upon from outside cgroup proper and is about to change with the scheduled kernfs conversion. This patch introduces a proper interface to determine the associated ino, cgroup_ino(), and updates hwpoison_filter_task() to use it instead of reaching directly into cgroup. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Wu Fengguang <fengguang.wu@intel.com>
* cgroup: introduce cgroup_init/exit_cftypes()Tejun Heo2014-02-111-7/+25
| | | | | | | | | | | | Factor out cft->ss initialization into cgroup_init_cftypes() from cgroup_add_cftypes() and add cft->ss clearing to cgroup_rm_cftypes() through cgroup_exit_cftypes(). This doesn't make any meaningful difference now but the two new functions will be expanded during kernfs transition. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: update the meaning of cftype->max_write_lenTejun Heo2014-02-114-19/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | cftype->max_write_len is used to extend the maximum size of writes. It's interpreted in such a way that the actual maximum size is one less than the specified value. The default size is defined by CGROUP_LOCAL_BUFFER_SIZE. Its interpretation is quite confusing - its value is decremented by 1 and then compared for equality with max size, which means that the actual default size is CGROUP_LOCAL_BUFFER_SIZE - 2, which is 62 chars. There's no point in having a limit that low. Update its definition so that it means the actual string length sans termination and anything below PAGE_SIZE-1 is treated as PAGE_SIZE-1. .max_write_len for "release_agent" is updated to PATH_MAX-1 and cgroup_release_agent_write() is updated so that the redundant strlen() check is removed and it uses strlcpy() instead of strcpy(). .max_write_len initializations in blk-throttle.c and cfq-iosched.c are no longer necessary and removed. The one in cpuset is kept unchanged as it's an approximated value to begin with. This will also make transition to kernfs smoother. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: make cgroup_subsys->base_cftypes use cgroup_add_cftypes()Tejun Heo2014-02-112-23/+9
| | | | | | | | | | | | | | | | | | | | | Currently, cgroup_subsys->base_cftypes registration is different from dynamic cftypes registartion. Instead of going through cgroup_add_cftypes(), cgroup_init_subsys() invokes cgroup_init_cftsets() which makes use of cgroup_subsys->base_cftset which doesn't involve dynamic allocation. While avoiding dynamic allocation is somewhat nice, having two separate paths for cftypes registration is nasty, especially as we're planning to add more operations during cftypes registration. This patch drops cgroup_init_cftsets() and cgroup_subsys->base_cftset and registers base_cftypes using cgroup_add_cftypes(). This is done as a separate step in cgroup_init() instead of a part of cgroup_init_subsys(). This is because cgroup_init_subsys() can be called very early during boot when kmalloc() isn't available yet. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: update cgroup name handlingTejun Heo2014-02-111-13/+22
| | | | | | | | | | | | | | Straightforward updates to cgroup name handling in preparation of kernfs conversion. * cgroup_alloc_name() is updated to take const char * isntead of dentry * for name source. * cgroup name formatting is separated out into cgroup_file_name(). While at it, buffer length protection is added. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: factor out cgroup_setup_root() from cgroup_mount()Tejun Heo2014-02-111-98/+113
| | | | | | | | | Factor out new root initialization into cgroup_setup_root() from cgroup_mount(). This makes it easier to follow and will ease kernfs conversion. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: restructure locking and error handling in cgroup_mount()Tejun Heo2014-02-111-33/+40
| | | | | | | | | | | | | | | | | | | | | | | | cgroup is scheduled to be converted to kernfs. After conversion, cgroup_mount() won't use the sget() machinery for finding out existing super_blocks but instead would do that directly. It'll search the existing cgroupfs_roots for a matching one and create a new one iff a match doesn't exist. To ease such conversion, this patch restructures locking and error handling of the function. cgroup_tree_mutex and cgroup_mutex are grabbed from the get-go and held until return. For now, due to the way vfs locks nest outside cgroup mutexes, the two cgroup mutexes are temporarily dropped across sget() and inode mutex locking, which looks quite ridiculous; however, these will be removed through kernfs conversion and structuring the code this way makes the conversion less painful. The error goto labels are consolidated to two. This looks unwieldy now but the next patch will factor out creation of new root into a separate function with accompanying error handling and it'll look a lot better. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: release cgroup_mutex over file removalsTejun Heo2014-02-111-5/+10
| | | | | | | | | | | | | | | | Now that cftypes and all tree modification operations are protected by cgroup_tree_mutex, we can drop cgroup_mutex while deleting files and directories. Drop cgroup_mutex over removals. This doesn't make any noticeable difference now but is to help kernfs conversion. In kernfs, removals are sync points which drain in-flight operations as those operations would grab cgroup_mutex, trying to delete under cgroup_mutex would deadlock. This can be resolved by just holding the outer cgroup_tree_mutex which nests outside both kernfs active reference and cgroup_mutex. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: introduce cgroup_tree_mutexTejun Heo2014-02-111-13/+53
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently cgroup uses combination of inode->i_mutex'es and cgroup_mutex for synchronization. With the scheduled kernfs conversion, i_mutex'es will be removed. Unfortunately, just using cgroup_mutex isn't possible. All kernfs file and syscall operations, most of which require grabbing cgroup_mutex, will be called with kernfs active ref held and, if we try to perform kernfs removals under cgroup_mutex, it can deadlock as kernfs_remove() tries to drain the target node. Let's introduce a new outer mutex, cgroup_tree_mutex, which protects stuff used during hierarchy changing operations - cftypes and all the operations which may affect the cgroupfs. It also covers css association and iteration. This allows cgroup_css(), for_each_css() and other css iterators to be called under cgroup_tree_mutex. The new mutex will nest above both kernfs's active ref protection and cgroup_mutex. By protecting tree modifications with a separate outer mutex, we can get rid of the forementioned deadlock condition. Actual file additions and removals now require cgroup_tree_mutex instead of cgroup_mutex. Currently, cgroup_tree_mutex is never used without cgroup_mutex; however, we'll soon add hierarchy modification sections which are only protected by cgroup_tree_mutex. In the future, we might want to make the locking more granular by better splitting the coverages of the two mutexes. For now, this should do. v2: Rebased on top of 0ab02ca8f887 ("cgroup: protect modifications to cgroup_idr with cgroup_mutex"). Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
* cgroup: improve css_from_dir() into css_tryget_from_dir()Tejun Heo2014-02-114-36/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | css_from_dir() returns the matching css (cgroup_subsys_state) given a dentry and subsystem. The function doesn't pin the css before returning and requires the caller to be holding RCU read lock or cgroup_mutex and handling pinning on the caller side. Given that users of the function are likely to want to pin the returned css (both existing users do) and that getting and putting css's are very cheap, there's no reason for the interface to be tricky like this. Rename css_from_dir() to css_tryget_from_dir() and make it try to pin the found css and return it only if pinning succeeded. The callers are updated so that they no longer do RCU locking and pinning around the function and just use the returned css. This will also ease converting cgroup to kernfs. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
* Merge branch 'cgroup/for-3.14-fixes' into cgroup/for-3.15Tejun Heo2014-02-112-16/+20
|\ | | | | | | | | | | | | | | Pull for-3.14-fixes to receive 0ab02ca8f887 ("cgroup: protect modifications to cgroup_idr with cgroup_mutex") prior to kernfs conversion series to avoid non-trivial conflicts. Signed-off-by: Tejun Heo <tj@kernel.org>
| * cgroup: protect modifications to cgroup_idr with cgroup_mutexLi Zefan2014-02-112-16/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Setup cgroupfs like this: # mount -t cgroup -o cpuacct xxx /cgroup # mkdir /cgroup/sub1 # mkdir /cgroup/sub2 Then run these two commands: # for ((; ;)) { mkdir /cgroup/sub1/tmp && rmdir /mnt/sub1/tmp; } & # for ((; ;)) { mkdir /cgroup/sub2/tmp && rmdir /mnt/sub2/tmp; } & After seconds you may see this warning: ------------[ cut here ]------------ WARNING: CPU: 1 PID: 25243 at lib/idr.c:527 sub_remove+0x87/0x1b0() idr_remove called for id=6 which is not allocated. ... Call Trace: [<ffffffff8156063c>] dump_stack+0x7a/0x96 [<ffffffff810591ac>] warn_slowpath_common+0x8c/0xc0 [<ffffffff81059296>] warn_slowpath_fmt+0x46/0x50 [<ffffffff81300aa7>] sub_remove+0x87/0x1b0 [<ffffffff810f3f02>] ? css_killed_work_fn+0x32/0x1b0 [<ffffffff81300bf5>] idr_remove+0x25/0xd0 [<ffffffff810f2bab>] cgroup_destroy_css_killed+0x5b/0xc0 [<ffffffff810f4000>] css_killed_work_fn+0x130/0x1b0 [<ffffffff8107cdbc>] process_one_work+0x26c/0x550 [<ffffffff8107eefe>] worker_thread+0x12e/0x3b0 [<ffffffff81085f96>] kthread+0xe6/0xf0 [<ffffffff81570bac>] ret_from_fork+0x7c/0xb0 ---[ end trace 2d1577ec10cf80d0 ]--- It's because allocating/removing cgroup ID is not properly synchronized. The bug was introduced when we converted cgroup_ida to cgroup_idr. While synchronization is already done inside ida_simple_{get,remove}(), users are responsible for concurrent calls to idr_{alloc,remove}(). tj: Refreshed on top of b58c89986a77 ("cgroup: fix error return from cgroup_create()"). Fixes: 4e96ee8e981b ("cgroup: convert cgroup_ida to cgroup_idr") Cc: <stable@vger.kernel.org> #3.12+ Reported-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
* | Merge branch 'driver-core-next' into cgroup/for-3.15Tejun Heo2014-02-0827-503/+847
|\ \ | | | | | | | | | | | | | | | | | | Pending kernfs conversion depends on kernfs improvements in driver-core-next. Pull it into for-3.15. Signed-off-by: Tejun Heo <tj@kernel.org>
| * | kernfs: add CONFIG_KERNFSTejun Heo2014-02-085-4/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As sysfs was kernfs's only user, kernfs has been piggybacking on CONFIG_SYSFS; however, kernfs is scheduled to grow a new user very soon. Introduce a separate config option CONFIG_KERNFS which is to be selected by kernfs users. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: linux-fsdevel@vger.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | sysfs, kobject: add sysfs wrapper for kernfs_enable_ns()Tejun Heo2014-02-082-1/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, kobject is invoking kernfs_enable_ns() directly. This is fine now as sysfs and kernfs are enabled and disabled together. If sysfs is disabled, kernfs_enable_ns() is switched to dummy implementation too and everything is fine; however, kernfs will soon have its own config option CONFIG_KERNFS and !SYSFS && KERNFS will be possible, which can make kobject call into non-dummy kernfs_enable_ns() with NULL kernfs_node pointers leading to an oops. Introduce sysfs_enable_ns() which is a wrapper around kernfs_enable_ns() so that it can be made a noop depending only on CONFIG_SYSFS regardless of the planned CONFIG_KERNFS. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | kernfs: implement kernfs_get_parent(), kernfs_name/path() and friendsTejun Heo2014-02-083-42/+203
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | kernfs_node->parent and ->name are currently marked as "published" indicating that kernfs users may access them directly; however, those fields may get updated by kernfs_rename[_ns]() and unrestricted access may lead to erroneous values or oops. Protect ->parent and ->name updates with a irq-safe spinlock kernfs_rename_lock and implement the following accessors for these fields. * kernfs_name() - format the node's name into the specified buffer * kernfs_path() - format the node's path into the specified buffer * pr_cont_kernfs_name() - pr_cont a node's name (doesn't need buffer) * pr_cont_kernfs_path() - pr_cont a node's path (doesn't need buffer) * kernfs_get_parent() - pin and return a node's parent All can be called under any context. The recursive sysfs_pathname() in fs/sysfs/dir.c is replaced with kernfs_path() and sysfs_rename_dir_ns() is updated to use kernfs_get_parent() instead of dereferencing parent directly. v2: Dummy definition of kernfs_path() for !CONFIG_KERNFS was missing static inline making it cause a lot of build warnings. Add it. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | kernfs: implement kernfs_node_from_dentry(), kernfs_root_from_sb() and ↵Tejun Heo2014-02-083-0/+48
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | kernfs_rename() Implement helpers to determine node from dentry and root from super_block. Also add a kernfs_rename_ns() wrapper which assumes NULL namespace. These generally make sense and will be used by cgroup. v2: Some dummy implementations for !CONFIG_SYSFS was missing. Fixed. Reported by kbuild test robot. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | kernfs: add kernfs_open_file->privTejun Heo2014-02-081-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | Add a private data field to be used by kernfs file operations. This generally makes sense and will be used by cgroup. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | kernfs: implement kernfs_ops->atomic_write_lenTejun Heo2014-02-082-20/+37
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A write to a kernfs_node is buffered through a kernel buffer. Writes <= PAGE_SIZE are performed atomically, while larger ones are executed in PAGE_SIZE chunks. While this is enough for sysfs, cgroup which is scheduled to be converted to use kernfs needs a bit more control over it. This patch adds kernfs_ops->atomic_write_len. If not set (zero), the behavior stays the same. If set, writes upto the size are executed atomically and larger writes are rejected with -E2BIG. A different implementation strategy would be allowing configuring chunking size while making the original write size available to the write method; however, such strategy, while being more complicated, doesn't really buy anything. If the write implementation has to handle chunking, the specific chunk size shouldn't matter all that much. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | kernfs: allow nodes to be created in the deactivated stateTejun Heo2014-02-083-10/+78
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, kernfs_nodes are made visible to userland on creation, which makes it difficult for kernfs users to atomically succeed or fail creation of multiple nodes. In addition, if something fails after creating some nodes, the created nodes might already be in use and their active refs need to be drained for removal, which has the potential to introduce tricky reverse locking dependency on active_ref depending on how the error path is synchronized. This patch introduces per-root flag KERNFS_ROOT_CREATE_DEACTIVATED. If set, all nodes under the root are created in the deactivated state and stay invisible to userland until explicitly enabled by the new kernfs_activate() API. Also, nodes which have never been activated are guaranteed to bypass draining on removal thus allowing error paths to not worry about lockding dependency on active_ref draining. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | kernfs: add missing kernfs_active() checks in directory operationsTejun Heo2014-02-081-5/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | kernfs_iop_lookup(), kernfs_dir_pos() and kernfs_dir_next_pos() were missing kernfs_active() tests before using the found kernfs_node. As deactivated state is currently visible only while a node is being removed, this doesn't pose an actual problem. e.g. lookup succeeding on a deactivated node doesn't harm anything as the eventual file operations are gonna fail and those failures are indistinguishible from the cases in which the lookups had happened before the node was deactivated. However, we're gonna allow new nodes to be created deactivated and then activated explicitly by the kernfs user when it sees fit. This is to support atomically making multiple nodes visible to userland and thus those nodes must not be visible to userland before activated. Let's plug the lookup and readdir holes so that deactivated nodes are invisible to userland. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | kernfs: implement kernfs_syscall_ops->remount_fs() and ->show_options()Tejun Heo2014-02-082-0/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | Add two super_block related syscall callbacks ->remount_fs() and ->show_options() to kernfs_syscall_ops. These simply forward the matching super_operations. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | kernfs: rename kernfs_dir_ops to kernfs_syscall_opsTejun Heo2014-02-082-21/+22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We're gonna need non-dir syscall callbacks, which will make dir_ops a misnomer. Let's rename kernfs_dir_ops to kernfs_syscall_ops. This is pure rename. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | kernfs: invoke dir_ops while holding active ref of the target nodeTejun Heo2014-02-082-4/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | kernfs_dir_ops are currently being invoked without any active reference, which makes it tricky for the invoked operations to determine whether the objects associated those nodes are safe to access and will remain that way for the duration of such operations. kernfs already has active_ref mechanism to deal with this which makes the removal of a given node the synchronization point for gating the file operations. There's no reason for dir_ops to be any different. Update the dir_ops handling so that active_ref is held while the dir_ops are executing. This guarantees that while a dir_ops is executing the target nodes stay alive. As kernfs_dir_ops doesn't have any in-kernel user at this point, this doesn't affect anybody. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | sysfs, driver-core: remove unused {sysfs|device}_schedule_callback_owner()Tejun Heo2014-02-084-144/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | All device_schedule_callback_owner() users are converted to use device_remove_file_self(). Remove now unused {sysfs|device}_schedule_callback_owner(). Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | s390: use device_remove_file_self() instead of device_schedule_callback()Tejun Heo2014-02-084-27/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | driver-core now supports synchrnous self-deletion of attributes and the asynchrnous removal mechanism is scheduled for removal. Use it instead of device_schedule_callback(). * Conversions in arch/s390/pci/pci_sysfs.c and drivers/s390/block/dcssblk.c are straightforward. * drivers/s390/cio/ccwgroup.c is a bit more tricky because ccwgroup_notifier() was (ab)using device_schedule_callback() to purely obtain a process context to kick off ungroup operation which may block from a notifier callback. Rename ccwgroup_ungroup_callback() to ccwgroup_ungroup() and make it take ccwgroup_device * instead. The new function is now called directly from ccwgroup_ungroup_store(). ccwgroup_notifier() chain is updated to explicitly bounce through ccwgroup_device->ungroup_work. This also removes possible failure from memory pressure. Only compile-tested. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: linux-s390@vger.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | scsi: use device_remove_file_self() instead of device_schedule_callback()Tejun Heo2014-02-081-13/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | driver-core now supports synchrnous self-deletion of attributes and the asynchrnous removal mechanism is scheduled for removal. Use it instead of device_schedule_callback(). This makes "delete" behave synchronously. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: linux-scsi@vger.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | pci: use device_remove_file_self() instead of device_schedule_callback()Tejun Heo2014-02-081-14/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | driver-core now supports synchrnous self-deletion of attributes and the asynchrnous removal mechanism is scheduled for removal. Use it instead of device_schedule_callback(). This makes "remove" behave synchronously. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: linux-pci@vger.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | kernfs, sysfs, driver-core: implement kernfs_remove_self() and its wrappersTejun Heo2014-02-086-1/+194
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Sometimes it's necessary to implement a node which wants to delete nodes including itself. This isn't straightforward because of kernfs active reference. While a file operation is in progress, an active reference is held and kernfs_remove() waits for all such references to drain before completing. For a self-deleting node, this is a deadlock as kernfs_remove() ends up waiting for an active reference that itself is sitting on top of. This currently is worked around in the sysfs layer using sysfs_schedule_callback() which makes such removals asynchronous. While it works, it's rather cumbersome and inherently breaks synchronicity of the operation - the file operation which triggered the operation may complete before the removal is finished (or even started) and the removal may fail asynchronously. If a removal operation is immmediately followed by another operation which expects the specific name to be available (e.g. removal followed by rename onto the same name), there's no way to make the latter operation reliable. The thing is there's no inherent reason for this to be asynchrnous. All that's necessary to do this synchronous is a dedicated operation which drops its own active ref and deactivates self. This patch implements kernfs_remove_self() and its wrappers in sysfs and driver core. kernfs_remove_self() is to be called from one of the file operations, drops the active ref the task is holding, removes the self node, and restores active ref to the dead node so that the ref is balanced afterwards. __kernfs_remove() is updated so that it takes an early exit if the target node is already fully removed so that the active ref restored by kernfs_remove_self() after removal doesn't confuse the deactivation path. This makes implementing self-deleting nodes very easy. The normal removal path doesn't even need to be changed to use kernfs_remove_self() for the self-deleting node. The method can invoke kernfs_remove_self() on itself before proceeding the normal removal path. kernfs_remove() invoked on the node by the normal deletion path will simply be ignored. This will replace sysfs_schedule_callback(). A subtle feature of sysfs_schedule_callback() is that it collapses multiple invocations - even if multiple removals are triggered, the removal callback is run only once. An equivalent effect can be achieved by testing the return value of kernfs_remove_self() - only the one which gets %true return value should proceed with actual deletion. All other instances of kernfs_remove_self() will wait till the enclosing kernfs operation which invoked the winning instance of kernfs_remove_self() finishes and then return %false. This trivially makes all users of kernfs_remove_self() automatically show correct synchronous behavior even when there are multiple concurrent operations - all "echo 1 > delete" instances will finish only after the whole operation is completed by one of the instances. Note that manipulation of active ref is implemented in separate public functions - kernfs_[un]break_active_protection(). kernfs_remove_self() is the only user at the moment but this will be used to cater to more complex cases. v2: For !CONFIG_SYSFS, dummy version kernfs_remove_self() was missing and sysfs_remove_file_self() had incorrect return type. Fix it. Reported by kbuild test bot. v3: kernfs_[un]break_active_protection() separated out from kernfs_remove_self() and exposed as public API. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | kernfs: remove KERNFS_REMOVEDTejun Heo2014-02-083-33/+37
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | KERNFS_REMOVED is used to mark half-initialized and dying nodes so that they don't show up in lookups and deny adding new nodes under or renaming it; however, its role overlaps that of deactivation. It's necessary to deny addition of new children while removal is in progress; however, this role considerably intersects with deactivation - KERNFS_REMOVED prevents new children while deactivation prevents new file operations. There's no reason to have them separate making things more complex than necessary. This patch removes KERNFS_REMOVED. * Instead of KERNFS_REMOVED, each node now starts its life deactivated. This means that we now use both atomic_add() and atomic_sub() on KN_DEACTIVATED_BIAS, which is INT_MIN. The compiler generates an overflow warnings when negating INT_MIN as the negation can't be represented as a positive number. Nothing is actually broken but let's bump BIAS by one to avoid the warnings for archs which negates the subtrahend.. * A new helper kernfs_active() which tests whether kn->active >= 0 is added for convenience and lockdep annotation. All KERNFS_REMOVED tests are replaced with negated kernfs_active() tests. * __kernfs_remove() is updated to deactivate, but not drain, all nodes in the subtree instead of setting KERNFS_REMOVED. This removes deactivation from kernfs_deactivate(), which is now renamed to kernfs_drain(). * Sanity check on KERNFS_REMOVED in kernfs_put() is replaced with checks on the active ref. * Some comment style updates in the affected area. v2: Reordered before removal path restructuring. kernfs_active() dropped and kernfs_get/put_active() used instead. RB_EMPTY_NODE() used in the lookup paths. v3: Reverted most of v2 except for creating a new node with KN_DEACTIVATED_BIAS. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>