| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
XEN has special page merge requirement, see xen_biovec_phys_mergeable().
We can't merge pages into one bvec simply for XEN.
So move XEN's specific check on page merge into __bio_try_merge_page(),
then abvoid to break XEN by multi-page bvec.
Cc: ris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: xen-devel@lists.xenproject.org
Cc: Omar Sandoval <osandov@fb.com>
Cc: Christoph Hellwig <hch@lst.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
xen_biovec_phys_mergeable() only needs .bv_page of the 2nd bio bvec
for checking if the two bvecs can be merged, so pass page to
xen_biovec_phys_mergeable() directly.
No function change.
Cc: ris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: xen-devel@lists.xenproject.org
Cc: Omar Sandoval <osandov@fb.com>
Cc: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The loop driver always declares the rotational flag of its device as
rotational, even when the device of the mapped file is nonrotational,
as is the case with SSDs or on tmpfs. This can confuse filesystem tools
which are SSD-aware; in my case I frequently forget to tell mkfs.btrfs
that my loop device on tmpfs is nonrotational, and that I really don't
need any automatic metadata redundancy.
The attached patch fixes this by introspecting the rotational flag of the
mapped file's underlying block device, if it exists. If the mapped file's
filesystem has no associated block device - as is the case on e.g. tmpfs -
we assume nonrotational storage. If there is a better way to identify such
non-devices I'd love to hear them.
Cc: Jens Axboe <axboe@kernel.dk>
Cc: linux-block@vger.kernel.org
Cc: holger@applied-asynchrony.com
Signed-off-by: Holger Hoffstätte <holger.hoffstaette@googlemail.com>
Signed-off-by: Gwendal Grignou <gwendal@chromium.org>
Signed-off-by: Benjamin Gordon <bmgordon@chromium.org>
Reviewed-by: Guenter Roeck <groeck@chromium.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
|
|
|
|
|
|
| |
The execution time of BFQ has been slightly lowered. Report the new
execution time in BFQ documentation.
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
bfq saves the state of a queue each time a merge occurs, to be
able to resume such a state when the queue is associated again
with its original process, on a split.
Unfortunately bfq does not save & restore also the weight of the
queue. If the weight is not correctly resumed when the queue is
recycled, then the weight of the recycled queue could differ
from the weight of the original queue.
This commit adds the missing save & resume of the weight.
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: Francesco Pollicino <fra.fra.800@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The function "bfq_log_bfqq" prints the pid of the process
associated with the queue passed as input.
Unfortunately, if the queue is shared, then more than one process
is associated with the queue. The pid that gets printed in this
case is the pid of one of the associated processes.
Which process gets printed depends on the exact sequence of merge
events the queue underwent. So printing such a pid is rather
useless and above all is often rather confusing because it
reports a random pid between those of the associated processes.
This commit addresses this issue by printing SHARED instead of a pid
if the queue is shared.
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: Francesco Pollicino <fra.fra.800@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If many bfq_queues belonging to the same group happen to be created
shortly after each other, then the processes associated with these
queues have typically a common goal. In particular, bursts of queue
creations are usually caused by services or applications that spawn
many parallel threads/processes. Examples are systemd during boot, or
git grep. If there are no other active queues, then, to help these
processes get their job done as soon as possible, the best thing to do
is to reach a high throughput. To this goal, it is usually better to
not grant either weight-raising or device idling to the queues
associated with these processes. And this is exactly what BFQ
currently does.
There is however a drawback: if, in contrast, some other queues are
already active, then the newly created queues must be protected from
the I/O flowing through the already existing queues. In this case, the
best thing to do is the opposite as in the other case: it is much
better to grant weight-raising and device idling to the newly-created
queues, if they deserve it. This commit addresses this issue by doing
so if there are already other active queues.
This change also helps eliminating false positives, which occur when
the newly-created queues do not belong to an actual large burst of
creations, but some background task (e.g., a service) happens to
trigger the creation of new queues in the middle, i.e., very close to
when the victim queues are created. These false positive may cause
total loss of control on process latencies.
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Sync random I/O is likely to be confused with soft real-time I/O,
because it is characterized by limited throughput and apparently
isochronous arrival pattern. To avoid false positives, this commits
prevents bfq_queues containing only random (seeky) I/O from being
tagged as soft real-time.
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To boost throughput with a set of processes doing interleaved I/O
(i.e., a set of processes whose individual I/O is random, but whose
merged cumulative I/O is sequential), BFQ merges the queues associated
with these processes, i.e., redirects the I/O of these processes into a
common, shared queue. In the shared queue, I/O requests are ordered by
their position on the medium, thus sequential I/O gets dispatched to
the device when the shared queue is served.
Queue merging costs execution time, because, to detect which queues to
merge, BFQ must maintain a list of the head I/O requests of active
queues, ordered by request positions. Measurements showed that this
costs about 10% of BFQ's total per-request processing time.
Request processing time becomes more and more critical as the speed of
the underlying storage device grows. Yet, fortunately, queue merging
is basically useless on the very devices that are so fast to make
request processing time critical. To reach a high throughput, these
devices must have many requests queued at the same time. But, in this
configuration, the internal scheduling algorithms of these devices do
also the job of queue merging: they reorder requests so as to obtain
as much as possible a sequential I/O pattern. As a consequence, with
processes doing interleaved I/O, the throughput reached by one such
device is likely to be the same, with and without queue merging.
In view of this fact, this commit disables queue merging, and all
related housekeeping, for non-rotational devices with internal
queueing. The total, single-lock-protected, per-request processing
time of BFQ drops to, e.g., 1.9 us on an Intel Core i7-2760QM@2.40GHz
(time measured with simple code instrumentation, and using the
throughput-sync.sh script of the S suite [1], in performance-profiling
mode). To put this result into context, the total,
single-lock-protected, per-request execution time of the lightest I/O
scheduler available in blk-mq, mq-deadline, is 0.7 us (mq-deadline is
~800 LOC, against ~10500 LOC for BFQ).
Disabling merging provides a further, remarkable benefit in terms of
throughput. Merging tends to make many workloads artificially more
uneven, mainly because of shared queues remaining non empty for
incomparably more time than normal queues. So, if, e.g., one of the
queues in a set of merged queues has a higher weight than a normal
queue, then the shared queue may inherit such a high weight and, by
staying almost always active, may force BFQ to perform I/O plugging
most of the time. This evidently makes it harder for BFQ to let the
device reach a high throughput.
As a practical example of this problem, and of the benefits of this
commit, we measured again the throughput in the nasty scenario
considered in previous commit messages: dbench test (in the Phoronix
suite), with 6 clients, on a filesystem with journaling, and with the
journaling daemon enjoying a higher weight than normal processes. With
this commit, the throughput grows from ~150 MB/s to ~200 MB/s on a
PLEXTOR PX-256M5 SSD. This is the same peak throughput reached by any
of the other I/O schedulers. As such, this is also likely to be the
maximum possible throughput reachable with this workload on this
device, because I/O is mostly random, and the other schedulers
basically just pass I/O requests to the drive as fast as possible.
[1] https://github.com/Algodev-github/S
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Francesco Pollicino <fra.fra.800@gmail.com>
Signed-off-by: Alessio Masola <alessio.masola@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The processes associated with a bfq_queue, say Q, may happen to
generate their cumulative I/O at a lower rate than the rate at which
the device could serve the same I/O. This is rather probable, e.g., if
only one process is associated with Q and the device is an SSD. It
results in Q becoming often empty while in service. If BFQ is not
allowed to switch to another queue when Q becomes empty, then, during
the service of Q, there will be frequent "service holes", i.e., time
intervals during which Q gets empty and the device can only consume
the I/O already queued in its hardware queues. This easily causes
considerable losses of throughput.
To counter this problem, BFQ implements a request injection mechanism,
which tries to fill the above service holes with I/O requests taken
from other bfq_queues. The hard part in this mechanism is finding the
right amount of I/O to inject, so as to both boost throughput and not
break Q's bandwidth and latency guarantees. To this goal, the current
version of this mechanism measures the bandwidth enjoyed by Q while it
is being served, and tries to inject the maximum possible amount of
extra service that does not cause Q's bandwidth to decrease too
much.
This solution has an important shortcoming. For bandwidth measurements
to be stable and reliable, Q must remain in service for a much longer
time than that needed to serve a single I/O request. Unfortunately,
this does not hold with many workloads. This commit addresses this
issue by changing the way the amount of injection allowed is
dynamically computed. It tunes injection as a function of the service
times of single I/O requests of Q, instead of Q's
bandwidth. Single-request service times are evidently meaningful even
if Q gets very few I/O requests completed while it is in service.
As a testbed for this new solution, we measured the throughput reached
by BFQ for one of the nastiest workloads and configurations for this
scheduler: the workload generated by the dbench test (in the Phoronix
suite), with 6 clients, on a filesystem with journaling, and with the
journaling daemon enjoying a higher weight than normal processes.
With this commit, the throughput grows from ~100 MB/s to ~150 MB/s on
a PLEXTOR PX-256M5.
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Francesco Pollicino <fra.fra.800@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In most cases, it is detrimental for throughput to plug I/O dispatch
when the in-service bfq_queue becomes temporarily empty (plugging is
performed to wait for the possible arrival, soon, of new I/O from the
in-service queue). There is however a case where plugging is needed
for service guarantees. If a bfq_queue, say Q, has a higher weight
than some other active bfq_queue, and is sync, i.e., contains sync
I/O, then, to guarantee that Q does receive a higher share of the
throughput than other lower-weight queues, it is necessary to plug I/O
dispatch when Q remains temporarily empty while being served.
For this reason, BFQ performs I/O plugging when some active bfq_queue
has a higher weight than some other active bfq_queue. But this is
unnecessarily overkill. In fact, if the in-service bfq_queue actually
has a weight lower than or equal to the other queues, then the queue
*must not* be guaranteed a higher share of the throughput than the
other queues. So, not plugging I/O cannot cause any harm to the
queue. And can boost throughput.
Taking advantage of this fact, this commit does not plug I/O for sync
bfq_queues with a weight lower than or equal to the weights of the
other queues. Here is an example of the resulting throughput boost
with the dbench workload, which is particularly nasty for BFQ. With
the dbench test in the Phoronix suite, BFQ reaches its lowest total
throughput with 6 clients on a filesystem with journaling, in case the
journaling daemon has a higher weight than normal processes. Before
this commit, the total throughput was ~80 MB/sec on a PLEXTOR PX-256M5,
after this commit it is ~100 MB/sec.
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If a sync bfq_queue has a higher weight than some other queue, and
remains temporarily empty while in service, then, to preserve the
bandwidth share of the queue, it is necessary to plug I/O dispatching
until a new request arrives for the queue. In addition, a timeout
needs to be set, to avoid waiting for ever if the process associated
with the queue has actually finished its I/O.
Even with the above timeout, the device is however not fed with new
I/O for a while, if the process has finished its I/O. If this happens
often, then throughput drops and latencies grow. For this reason, the
timeout is kept rather low: 8 ms is the current default.
Unfortunately, such a low value may cause, on the opposite end, a
violation of bandwidth guarantees for a process that happens to issue
new I/O too late. The higher the system load, the higher the
probability that this happens to some process. This is a problem in
scenarios where service guarantees matter more than throughput. One
important case are weight-raised queues, which need to be granted a
very high fraction of the bandwidth.
To address this issue, this commit lower-bounds the plugging timeout
for weight-raised queues to 20 ms. This simple change provides
relevant benefits. For example, on a PLEXTOR PX-256M5S, with which
gnome-terminal starts in 0.6 seconds if there is no other I/O in
progress, the same applications starts in
- 0.8 seconds, instead of 1.2 seconds, if ten files are being read
sequentially in parallel
- 1 second, instead of 2 seconds, if, in parallel, five files are
being read sequentially, and five more files are being written
sequentially
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
|
|
|
|
|
|
|
|
|
| |
Replace BFQ_GROUP_IOSCHED_ENABLED with CONFIG_BFQ_GROUP_IOSCHED.
Code under these ifdefs never worked, something might be broken.
Fixes: 0471559c2fbd ("block, bfq: add/remove entity weights correctly")
Fixes: 73d58118498b ("block, bfq: consider also ioprio classes in symmetry detection")
Reviewed-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
| |
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull KVM fixes from Paolo Bonzini:
"A collection of x86 and ARM bugfixes, and some improvements to
documentation.
On top of this, a cleanup of kvm_para.h headers, which were exported
by some architectures even though they not support KVM at all. This is
responsible for all the Kbuild changes in the diffstat"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (28 commits)
Documentation: kvm: clarify KVM_SET_USER_MEMORY_REGION
KVM: doc: Document the life cycle of a VM and its resources
KVM: selftests: complete IO before migrating guest state
KVM: selftests: disable stack protector for all KVM tests
KVM: selftests: explicitly disable PIE for tests
KVM: selftests: assert on exit reason in CR4/cpuid sync test
KVM: x86: update %rip after emulating IO
x86/kvm/hyper-v: avoid spurious pending stimer on vCPU init
kvm/x86: Move MSR_IA32_ARCH_CAPABILITIES to array emulated_msrs
KVM: x86: Emulate MSR_IA32_ARCH_CAPABILITIES on AMD hosts
kvm: don't redefine flags as something else
kvm: mmu: Used range based flushing in slot_handle_level_range
KVM: export <linux/kvm_para.h> and <asm/kvm_para.h> iif KVM is supported
KVM: x86: remove check on nr_mmu_pages in kvm_arch_commit_memory_region()
kvm: nVMX: Add a vmentry check for HOST_SYSENTER_ESP and HOST_SYSENTER_EIP fields
KVM: SVM: Workaround errata#1096 (insn_len maybe zero on SMAP violation)
KVM: Reject device ioctls from processes other than the VM's creator
KVM: doc: Fix incorrect word ordering regarding supported use of APIs
KVM: x86: fix handling of role.cr4_pae and rename it to 'gpte_size'
KVM: nVMX: Do not inherit quadrant and invalid for the root shadow EPT
...
|
| |\
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-master
KVM/ARM fixes for 5.1
- Fix THP handling in the presence of pre-existing PTEs
- Honor request for PTE mappings even when THPs are available
- GICv4 performance improvement
- Take the srcu lock when writing to guest-controlled ITS data structures
- Reset the virtual PMU in preemptible context
- Various cleanups
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Some comments in virt/kvm/arm/mmu.c are outdated. Update them to
reflect the current state of the code.
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[maz: commit message tidy-up]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Fix sparse warnings:
arch/arm64/kvm/../../../virt/kvm/arm/vgic/vgic-its.c:1732:5: warning:
symbol 'vgic_its_has_attr_regs' was not declared. Should it be static?
arch/arm64/kvm/../../../virt/kvm/arm/vgic/vgic-its.c:1753:5: warning:
symbol 'vgic_its_attr_regs_access' was not declared. Should it be static?
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
[maz: fixed subject]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We rely on the mmu_notifier call backs to handle the split/merge
of huge pages and thus we are guaranteed that, while creating a
block mapping, either the entire block is unmapped at stage2 or it
is missing permission.
However, we miss a case where the block mapping is split for dirty
logging case and then could later be made block mapping, if we cancel the
dirty logging. This not only creates inconsistent TLB entries for
the pages in the the block, but also leakes the table pages for
PMD level.
Handle this corner case for the huge mappings at stage2 by
unmapping the non-huge mapping for the block. This could potentially
release the upper level table. So we need to restart the table walk
once we unmap the range.
Fixes : ad361f093c1e31d ("KVM: ARM: Support hugetlbfs backed huge pages")
Reported-by: Zheng Xiang <zhengxiang9@huawei.com>
Cc: Zheng Xiang <zhengxiang9@huawei.com>
Cc: Zenghui Yu <yuzenghui@huawei.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
commit 6794ad5443a2118 ("KVM: arm/arm64: Fix unintended stage 2 PMD mappings")
made the checks to skip huge mappings, stricter. However it introduced
a bug where we still use huge mappings, ignoring the flag to
use PTE mappings, by not reseting the vma_pagesize to PAGE_SIZE.
Also, the checks do not cover the PUD huge pages, that was
under review during the same period. This patch fixes both
the issues.
Fixes : 6794ad5443a2118 ("KVM: arm/arm64: Fix unintended stage 2 PMD mappings")
Reported-by: Zenghui Yu <yuzenghui@huawei.com>
Cc: Zenghui Yu <yuzenghui@huawei.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Calling kvm_is_visible_gfn() implies that we're parsing the memslots,
and doing this without the srcu lock is frown upon:
[12704.164532] =============================
[12704.164544] WARNING: suspicious RCU usage
[12704.164560] 5.1.0-rc1-00008-g600025238f51-dirty #16 Tainted: G W
[12704.164573] -----------------------------
[12704.164589] ./include/linux/kvm_host.h:605 suspicious rcu_dereference_check() usage!
[12704.164602] other info that might help us debug this:
[12704.164616] rcu_scheduler_active = 2, debug_locks = 1
[12704.164631] 6 locks held by qemu-system-aar/13968:
[12704.164644] #0: 000000007ebdae4f (&kvm->lock){+.+.}, at: vgic_its_set_attr+0x244/0x3a0
[12704.164691] #1: 000000007d751022 (&its->its_lock){+.+.}, at: vgic_its_set_attr+0x250/0x3a0
[12704.164726] #2: 00000000219d2706 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[12704.164761] #3: 00000000a760aecd (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[12704.164794] #4: 000000000ef8e31d (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[12704.164827] #5: 000000007a872093 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[12704.164861] stack backtrace:
[12704.164878] CPU: 2 PID: 13968 Comm: qemu-system-aar Tainted: G W 5.1.0-rc1-00008-g600025238f51-dirty #16
[12704.164887] Hardware name: rockchip evb_rk3399/evb_rk3399, BIOS 2019.04-rc3-00124-g2feec69fb1 03/15/2019
[12704.164896] Call trace:
[12704.164910] dump_backtrace+0x0/0x138
[12704.164920] show_stack+0x24/0x30
[12704.164934] dump_stack+0xbc/0x104
[12704.164946] lockdep_rcu_suspicious+0xcc/0x110
[12704.164958] gfn_to_memslot+0x174/0x190
[12704.164969] kvm_is_visible_gfn+0x28/0x70
[12704.164980] vgic_its_check_id.isra.0+0xec/0x1e8
[12704.164991] vgic_its_save_tables_v0+0x1ac/0x330
[12704.165001] vgic_its_set_attr+0x298/0x3a0
[12704.165012] kvm_device_ioctl_attr+0x9c/0xd8
[12704.165022] kvm_device_ioctl+0x8c/0xf8
[12704.165035] do_vfs_ioctl+0xc8/0x960
[12704.165045] ksys_ioctl+0x8c/0xa0
[12704.165055] __arm64_sys_ioctl+0x28/0x38
[12704.165067] el0_svc_common+0xd8/0x138
[12704.165078] el0_svc_handler+0x38/0x78
[12704.165089] el0_svc+0x8/0xc
Make sure the lock is taken when doing this.
Fixes: bf308242ab98 ("KVM: arm/arm64: VGIC/ITS: protect kvm_read_guest() calls with SRCU lock")
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
When halting a guest, QEMU flushes the virtual ITS caches, which
amounts to writing to the various tables that the guest has allocated.
When doing this, we fail to take the srcu lock, and the kernel
shouts loudly if running a lockdep kernel:
[ 69.680416] =============================
[ 69.680819] WARNING: suspicious RCU usage
[ 69.681526] 5.1.0-rc1-00008-g600025238f51-dirty #18 Not tainted
[ 69.682096] -----------------------------
[ 69.682501] ./include/linux/kvm_host.h:605 suspicious rcu_dereference_check() usage!
[ 69.683225]
[ 69.683225] other info that might help us debug this:
[ 69.683225]
[ 69.683975]
[ 69.683975] rcu_scheduler_active = 2, debug_locks = 1
[ 69.684598] 6 locks held by qemu-system-aar/4097:
[ 69.685059] #0: 0000000034196013 (&kvm->lock){+.+.}, at: vgic_its_set_attr+0x244/0x3a0
[ 69.686087] #1: 00000000f2ed935e (&its->its_lock){+.+.}, at: vgic_its_set_attr+0x250/0x3a0
[ 69.686919] #2: 000000005e71ea54 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[ 69.687698] #3: 00000000c17e548d (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[ 69.688475] #4: 00000000ba386017 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[ 69.689978] #5: 00000000c2c3c335 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[ 69.690729]
[ 69.690729] stack backtrace:
[ 69.691151] CPU: 2 PID: 4097 Comm: qemu-system-aar Not tainted 5.1.0-rc1-00008-g600025238f51-dirty #18
[ 69.691984] Hardware name: rockchip evb_rk3399/evb_rk3399, BIOS 2019.04-rc3-00124-g2feec69fb1 03/15/2019
[ 69.692831] Call trace:
[ 69.694072] lockdep_rcu_suspicious+0xcc/0x110
[ 69.694490] gfn_to_memslot+0x174/0x190
[ 69.694853] kvm_write_guest+0x50/0xb0
[ 69.695209] vgic_its_save_tables_v0+0x248/0x330
[ 69.695639] vgic_its_set_attr+0x298/0x3a0
[ 69.696024] kvm_device_ioctl_attr+0x9c/0xd8
[ 69.696424] kvm_device_ioctl+0x8c/0xf8
[ 69.696788] do_vfs_ioctl+0xc8/0x960
[ 69.697128] ksys_ioctl+0x8c/0xa0
[ 69.697445] __arm64_sys_ioctl+0x28/0x38
[ 69.697817] el0_svc_common+0xd8/0x138
[ 69.698173] el0_svc_handler+0x38/0x78
[ 69.698528] el0_svc+0x8/0xc
The fix is to obviously take the srcu lock, just like we do on the
read side of things since bf308242ab98. One wonders why this wasn't
fixed at the same time, but hey...
Fixes: bf308242ab98 ("KVM: arm/arm64: VGIC/ITS: protect kvm_read_guest() calls with SRCU lock")
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The normal interrupt flow is not to enable the vgic when no virtual
interrupt is to be injected (i.e. the LRs are empty). But when a guest
is likely to use GICv4 for LPIs, we absolutely need to switch it on
at all times. Otherwise, VLPIs only get delivered when there is something
in the LRs, which doesn't happen very often.
Reported-by: Nianyao Tang <tangnianyao@huawei.com>
Tested-by: Shameerali Kolothum Thodi <shameerali.kolothum.thodi@huawei.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We've become very cautious to now always reset the vcpu when nothing
is loaded on the physical CPU. To do so, we now disable preemption
and do a kvm_arch_vcpu_put() to make sure we have all the state
in memory (and that it won't be loaded behind out back).
This now causes issues with resetting the PMU, which calls into perf.
Perf itself uses mutexes, which clashes with the lack of preemption.
It is worth realizing that the PMU is fully emulated, and that
no PMU state is ever loaded on the physical CPU. This means we can
perfectly reset the PMU outside of the non-preemptible section.
Fixes: e761a927bc9a ("KVM: arm/arm64: Reset the VCPU without preemption and vcpu state loaded")
Reported-by: Julien Grall <julien.grall@arm.com>
Tested-by: Julien Grall <julien.grall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The documentation does not mention how to delete a slot, add the
information.
Reported-by: Nathaniel McCallum <npmccallum@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The series to add memcg accounting to KVM allocations[1] states:
There are many KVM kernel memory allocations which are tied to the
life of the VM process and should be charged to the VM process's
cgroup.
While it is correct to account KVM kernel allocations to the cgroup of
the process that created the VM, it's technically incorrect to state
that the KVM kernel memory allocations are tied to the life of the VM
process. This is because the VM itself, i.e. struct kvm, is not tied to
the life of the process which created it, rather it is tied to the life
of its associated file descriptor. In other words, kvm_destroy_vm() is
not invoked until fput() decrements its associated file's refcount to
zero. A simple example is to fork() in Qemu and have the child sleep
indefinitely; kvm_destroy_vm() isn't called until Qemu closes its file
descriptor *and* the rogue child is killed.
The allocations are guaranteed to be *accounted* to the process which
created the VM, but only because KVM's per-{VM,vCPU} ioctls reject the
ioctl() with -EIO if kvm->mm != current->mm. I.e. the child can keep
the VM "alive" but can't do anything useful with its reference.
Note that because 'struct kvm' also holds a reference to the mm_struct
of its owner, the above behavior also applies to userspace allocations.
Given that mucking with a VM's file descriptor can lead to subtle and
undesirable behavior, e.g. memcg charges persisting after a VM is shut
down, explicitly document a VM's lifecycle and its impact on the VM's
resources.
Alternatively, KVM could aggressively free resources when the creating
process exits, e.g. via mmu_notifier->release(). However, mmu_notifier
isn't guaranteed to be available, and freeing resources when the creator
exits is likely to be error prone and fragile as KVM would need to
ensure that it only freed resources that are truly out of reach. In
practice, the existing behavior shouldn't be problematic as a properly
configured system will prevent a child process from being moved out of
the appropriate cgroup hierarchy, i.e. prevent hiding the process from
the OOM killer, and will prevent an unprivileged user from being able to
to hold a reference to struct kvm via another method, e.g. debugfs.
[1]https://patchwork.kernel.org/patch/10806707/
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Documentation/virtual/kvm/api.txt states:
NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
KVM_EXIT_EPR the corresponding operations are complete (and guest
state is consistent) only after userspace has re-entered the
kernel with KVM_RUN. The kernel side will first finish incomplete
operations and then check for pending signals. Userspace can
re-enter the guest with an unmasked signal pending to complete
pending operations.
Because guest state may be inconsistent, starting state migration after
an IO exit without first completing IO may result in test failures, e.g.
a proposed change to KVM's handling of %rip in its fast PIO handling[1]
will cause the new VM, i.e. the post-migration VM, to have its %rip set
to the IN instruction that triggered KVM_EXIT_IO, leading to a test
assertion due to a stage mismatch.
For simplicitly, require KVM_CAP_IMMEDIATE_EXIT to complete IO and skip
the test if it's not available. The addition of KVM_CAP_IMMEDIATE_EXIT
predates the state selftest by more than a year.
[1] https://patchwork.kernel.org/patch/10848545/
Fixes: fa3899add1056 ("kvm: selftests: add basic test for state save and restore")
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Since 4.8.3, gcc has enabled -fstack-protector by default. This is
problematic for the KVM selftests as they do not configure fs or gs
segments (the stack canary is pulled from fs:0x28). With the default
behavior, gcc will insert a stack canary on any function that creates
buffers of 8 bytes or more. As a result, ucall() will hit a triple
fault shutdown due to reading a bad fs segment when inserting its
stack canary, i.e. every test fails with an unexpected SHUTDOWN.
Fixes: 14c47b7530e2d ("kvm: selftests: introduce ucall")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
KVM selftests embed the guest "image" as a function in the test itself
and extract the guest code at runtime by manually parsing the elf
headers. The parsing is very simple and doesn't supporting fancy things
like position independent executables. Recent versions of gcc enable
pie by default, which results in triple fault shutdowns in the guest due
to the virtual address in the headers not matching up with the virtual
address retrieved from the function pointer.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
...so that the test doesn't end up in an infinite loop if it fails for
whatever reason, e.g. SHUTDOWN due to gcc inserting stack canary code
into ucall() and attempting to derefence a null segment.
Fixes: ca359066889f7 ("kvm: selftests: add cr4_cpuid_sync_test")
Cc: Wei Huang <wei@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Most (all?) x86 platforms provide a port IO based reset mechanism, e.g.
OUT 92h or CF9h. Userspace may emulate said mechanism, i.e. reset a
vCPU in response to KVM_EXIT_IO, without explicitly announcing to KVM
that it is doing a reset, e.g. Qemu jams vCPU state and resumes running.
To avoid corruping %rip after such a reset, commit 0967b7bf1c22 ("KVM:
Skip pio instruction when it is emulated, not executed") changed the
behavior of PIO handlers, i.e. today's "fast" PIO handling to skip the
instruction prior to exiting to userspace. Full emulation doesn't need
such tricks becase re-emulating the instruction will naturally handle
%rip being changed to point at the reset vector.
Updating %rip prior to executing to userspace has several drawbacks:
- Userspace sees the wrong %rip on the exit, e.g. if PIO emulation
fails it will likely yell about the wrong address.
- Single step exits to userspace for are effectively dropped as
KVM_EXIT_DEBUG is overwritten with KVM_EXIT_IO.
- Behavior of PIO emulation is different depending on whether it
goes down the fast path or the slow path.
Rather than skip the PIO instruction before exiting to userspace,
snapshot the linear %rip and cancel PIO completion if the current
value does not match the snapshot. For a 64-bit vCPU, i.e. the most
common scenario, the snapshot and comparison has negligible overhead
as VMCS.GUEST_RIP will be cached regardless, i.e. there is no extra
VMREAD in this case.
All other alternatives to snapshotting the linear %rip that don't
rely on an explicit reset announcenment suffer from one corner case
or another. For example, canceling PIO completion on any write to
%rip fails if userspace does a save/restore of %rip, and attempting to
avoid that issue by canceling PIO only if %rip changed then fails if PIO
collides with the reset %rip. Attempting to zero in on the exact reset
vector won't work for APs, which means adding more hooks such as the
vCPU's MP_STATE, and so on and so forth.
Checking for a linear %rip match technically suffers from corner cases,
e.g. userspace could theoretically rewrite the underlying code page and
expect a different instruction to execute, or the guest hardcodes a PIO
reset at 0xfffffff0, but those are far, far outside of what can be
considered normal operation.
Fixes: 432baf60eee3 ("KVM: VMX: use kvm_fast_pio_in for handling IN I/O")
Cc: <stable@vger.kernel.org>
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
When userspace initializes guest vCPUs it may want to zero all supported
MSRs including Hyper-V related ones including HV_X64_MSR_STIMERn_CONFIG/
HV_X64_MSR_STIMERn_COUNT. With commit f3b138c5d89a ("kvm/x86: Update SynIC
timers on guest entry only") we began doing stimer_mark_pending()
unconditionally on every config change.
The issue I'm observing manifests itself as following:
- Qemu writes 0 to STIMERn_{CONFIG,COUNT} MSRs and marks all stimers as
pending in stimer_pending_bitmap, arms KVM_REQ_HV_STIMER;
- kvm_hv_has_stimer_pending() starts returning true;
- kvm_vcpu_has_events() starts returning true;
- kvm_arch_vcpu_runnable() starts returning true;
- when kvm_arch_vcpu_ioctl_run() gets into
(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED) case:
- kvm_vcpu_block() gets in 'kvm_vcpu_check_block(vcpu) < 0' and returns
immediately, avoiding normal wait path;
- -EAGAIN is returned from kvm_arch_vcpu_ioctl_run() immediately forcing
userspace to retry.
So instead of normal wait path we get a busy loop on all secondary vCPUs
before they get INIT signal. This seems to be undesirable, especially given
that this happens even when Hyper-V extensions are not used.
Generally, it seems to be pointless to mark an stimer as pending in
stimer_pending_bitmap and arm KVM_REQ_HV_STIMER as the only thing
kvm_hv_process_stimers() will do is clear the corresponding bit. We may
just not mark disabled timers as pending instead.
Fixes: f3b138c5d89a ("kvm/x86: Update SynIC timers on guest entry only")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Since MSR_IA32_ARCH_CAPABILITIES is emualted unconditionally even if
host doesn't suppot it. We should move it to array emulated_msrs from
arry msrs_to_save, to report to userspace that guest support this msr.
Signed-off-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The CPUID flag ARCH_CAPABILITIES is unconditioinally exposed to host
userspace for all x86 hosts, i.e. KVM advertises ARCH_CAPABILITIES
regardless of hardware support under the pretense that KVM fully
emulates MSR_IA32_ARCH_CAPABILITIES. Unfortunately, only VMX hosts
handle accesses to MSR_IA32_ARCH_CAPABILITIES (despite KVM_GET_MSRS
also reporting MSR_IA32_ARCH_CAPABILITIES for all hosts).
Move the MSR_IA32_ARCH_CAPABILITIES handling to common x86 code so
that it's emulated on AMD hosts.
Fixes: 1eaafe91a0df4 ("kvm: x86: IA32_ARCH_CAPABILITIES is always supported")
Cc: stable@vger.kernel.org
Reported-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The function irqfd_wakeup() has flags defined as __poll_t and then it
has additional flags which is used for irqflags.
Redefine the inner flags variable as iflags so it does not shadow the
outer flags.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Replace kvm_flush_remote_tlbs with kvm_flush_remote_tlbs_with_address
in slot_handle_level_range. When range based flushes are not enabled
kvm_flush_remote_tlbs_with_address falls back to kvm_flush_remote_tlbs.
This changes the behavior of many functions that indirectly use
slot_handle_level_range, iff the range based flushes are enabled. The
only potential problem I see with this is that kvm->tlbs_dirty will be
cleared less often, however the only caller of slot_handle_level_range that
checks tlbs_dirty is kvm_mmu_notifier_invalidate_range_start which
checks it and does a kvm_flush_remote_tlbs after calling
kvm_unmap_hva_range anyway.
Tested: Ran all kvm-unit-tests on a Intel Haswell machine with and
without this patch. The patch introduced no new failures.
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
I do not see any consistency about headers_install of <linux/kvm_para.h>
and <asm/kvm_para.h>.
According to my analysis of Linux 5.1-rc1, there are 3 groups:
[1] Both <linux/kvm_para.h> and <asm/kvm_para.h> are exported
alpha, arm, hexagon, mips, powerpc, s390, sparc, x86
[2] <asm/kvm_para.h> is exported, but <linux/kvm_para.h> is not
arc, arm64, c6x, h8300, ia64, m68k, microblaze, nios2, openrisc,
parisc, sh, unicore32, xtensa
[3] Neither <linux/kvm_para.h> nor <asm/kvm_para.h> is exported
csky, nds32, riscv
This does not match to the actual KVM support. At least, [2] is
half-baked.
Nor do arch maintainers look like they care about this. For example,
commit 0add53713b1c ("microblaze: Add missing kvm_para.h to Kbuild")
exported <asm/kvm_para.h> to user-space in order to fix an in-kernel
build error.
We have two ways to make this consistent:
[A] export both <linux/kvm_para.h> and <asm/kvm_para.h> for all
architectures, irrespective of the KVM support
[B] Match the header export of <linux/kvm_para.h> and <asm/kvm_para.h>
to the KVM support
My first attempt was [A] because the code looks cleaner, but Paolo
suggested [B].
So, this commit goes with [B].
For most architectures, <asm/kvm_para.h> was moved to the kernel-space.
I changed include/uapi/linux/Kbuild so that it checks generated
asm/kvm_para.h as well as check-in ones.
After this commit, there will be two groups:
[1] Both <linux/kvm_para.h> and <asm/kvm_para.h> are exported
arm, arm64, mips, powerpc, s390, x86
[2] Neither <linux/kvm_para.h> nor <asm/kvm_para.h> is exported
alpha, arc, c6x, csky, h8300, hexagon, ia64, m68k, microblaze,
nds32, nios2, openrisc, parisc, riscv, sh, sparc, unicore32, xtensa
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
* nr_mmu_pages would be non-zero only if kvm->arch.n_requested_mmu_pages is
non-zero.
* nr_mmu_pages is always non-zero, since kvm_mmu_calculate_mmu_pages()
never return zero.
Based on these two reasons, we can merge the two *if* clause and use the
return value from kvm_mmu_calculate_mmu_pages() directly. This simplify
the code and also eliminate the possibility for reader to believe
nr_mmu_pages would be zero.
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
fields
According to section "Checks on VMX Controls" in Intel SDM vol 3C, the
following check is performed on vmentry of L2 guests:
On processors that support Intel 64 architecture, the IA32_SYSENTER_ESP
field and the IA32_SYSENTER_EIP field must each contain a canonical
address.
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Errata#1096:
On a nested data page fault when CR.SMAP=1 and the guest data read
generates a SMAP violation, GuestInstrBytes field of the VMCB on a
VMEXIT will incorrectly return 0h instead the correct guest
instruction bytes .
Recommend Workaround:
To determine what instruction the guest was executing the hypervisor
will have to decode the instruction at the instruction pointer.
The recommended workaround can not be implemented for the SEV
guest because guest memory is encrypted with the guest specific key,
and instruction decoder will not be able to decode the instruction
bytes. If we hit this errata in the SEV guest then log the message
and request a guest shutdown.
Reported-by: Venkatesh Srinivas <venkateshs@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
KVM's API requires thats ioctls must be issued from the same process
that created the VM. In other words, userspace can play games with a
VM's file descriptors, e.g. fork(), SCM_RIGHTS, etc..., but only the
creator can do anything useful. Explicitly reject device ioctls that
are issued by a process other than the VM's creator, and update KVM's
API documentation to extend its requirements to device ioctls.
Fixes: 852b6d57dc7f ("kvm: add device control API")
Cc: <stable@vger.kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Per Paolo[1], instantiating multiple VMs in a single process is legal;
but this conflicts with KVM's API documentation, which states:
The only supported use is one virtual machine per process, and one
vcpu per thread.
However, an earlier section in the documentation states:
Only run VM ioctls from the same process (address space) that was used
to create the VM.
and:
Only run vcpu ioctls from the same thread that was used to create the
vcpu.
This suggests that the conflicting documentation is simply an incorrect
ordering of of words, i.e. what's really meant is that a virtual machine
can't be shared across multiple processes and a vCPU can't be shared
across multiple threads.
Tweak the blurb on issuing ioctls to use a more assertive tone, and
rewrite the "supported use" sentence to reference said blurb instead of
poorly restating it in different terms.
Opportunistically add missing punctuation.
[1] https://lkml.kernel.org/r/f23265d4-528e-3bd4-011f-4d7b8f3281db@redhat.com
Fixes: 9c1b96e34717 ("KVM: Document basic API")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
[Improve notes on asynchronous ioctl]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The cr4_pae flag is a bit of a misnomer, its purpose is really to track
whether the guest PTE that is being shadowed is a 4-byte entry or an
8-byte entry. Prior to supporting nested EPT, the size of the gpte was
reflected purely by CR4.PAE. KVM fudged things a bit for direct sptes,
but it was mostly harmless since the size of the gpte never mattered.
Now that a spte may be tracking an indirect EPT entry, relying on
CR4.PAE is wrong and ill-named.
For direct shadow pages, force the gpte_size to '1' as they are always
8-byte entries; EPT entries can only be 8-bytes and KVM always uses
8-byte entries for NPT and its identity map (when running with EPT but
not unrestricted guest).
Likewise, nested EPT entries are always 8-bytes. Nested EPT presents a
unique scenario as the size of the entries are not dictated by CR4.PAE,
but neither is the shadow page a direct map. To handle this scenario,
set cr0_wp=1 and smap_andnot_wp=1, an otherwise impossible combination,
to denote a nested EPT shadow page. Use the information to avoid
incorrectly zapping an unsync'd indirect page in __kvm_sync_page().
Providing a consistent and accurate gpte_size fixes a bug reported by
Vitaly where fast_cr3_switch() always fails when switching from L2 to
L1 as kvm_mmu_get_page() would force role.cr4_pae=0 for direct pages,
whereas kvm_calc_mmu_role_common() would set it according to CR4.PAE.
Fixes: 7dcd575520082 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed")
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Explicitly zero out quadrant and invalid instead of inheriting them from
the root_mmu. Functionally, this patch is a nop as we (should) never
set quadrant for a direct mapped (EPT) root_mmu and nested EPT is only
allowed if EPT is used for L1, and the root_mmu will never be invalid at
this point.
Explicitly setting flags sets the stage for repurposing the legacy
paging bits in role, e.g. nxe, cr0_wp, and sm{a,e}p_andnot_wp, at which
point 'smm' would be the only flag to be inherited from root_mmu.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"A pile of x86 updates:
- Prevent exceeding he valid physical address space in the /dev/mem
limit checks.
- Move all header content inside the header guard to prevent compile
failures.
- Fix the bogus __percpu annotation in this_cpu_has() which makes
sparse very noisy.
- Disable switch jump tables completely when retpolines are enabled.
- Prevent leaking the trampoline address"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/realmode: Make set_real_mode_mem() static inline
x86/cpufeature: Fix __percpu annotation in this_cpu_has()
x86/mm: Don't exceed the valid physical address space
x86/retpolines: Disable switch jump tables when retpolines are enabled
x86/realmode: Don't leak the trampoline kernel address
x86/boot: Fix incorrect ifdeffery scope
x86/resctrl: Remove unused variable
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Remove the unused @size argument and move it into a header file, so it
can be inlined.
[ bp: Massage. ]
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-efi <linux-efi@vger.kernel.org>
Cc: platform-driver-x86@vger.kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190328114233.27835-1-mcroce@redhat.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
&cpu_info.x86_capability is __percpu, and the second argument of
x86_this_cpu_test_bit() is expected to be __percpu. Don't cast the
__percpu away and then implicitly add it again. This gets rid of 106
lines of sparse warnings with the kernel config I'm using.
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190328154948.152273-1-jannh@google.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
valid_phys_addr_range() is used to sanity check the physical address range
of an operation, e.g., access to /dev/mem. It uses __pa(high_memory)
internally.
If memory is populated at the end of the physical address space, then
__pa(high_memory) is outside of the physical address space because:
high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
For the comparison in valid_phys_addr_range() this is not an issue, but if
CONFIG_DEBUG_VIRTUAL is enabled, __pa() maps to __phys_addr(), which
verifies that the resulting physical address is within the valid physical
address space of the CPU. So in the case that memory is populated at the
end of the physical address space, this is not true and triggers a
VIRTUAL_BUG_ON().
Use __pa(high_memory - 1) to prevent the conversion from going beyond
the end of valid physical addresses.
Fixes: be62a3204406 ("x86/mm: Limit mmap() of /dev/mem to valid physical addresses")
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Craig Bergstrom <craigb@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hans Verkuil <hans.verkuil@cisco.com>
Cc: Mauro Carvalho Chehab <mchehab@s-opensource.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sander Eikelenboom <linux@eikelenboom.it>
Cc: Sean Young <sean@mess.org>
Link: https://lkml.kernel.org/r/20190326001817.15413-2-rcampbell@nvidia.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Commit ce02ef06fcf7 ("x86, retpolines: Raise limit for generating indirect
calls from switch-case") raised the limit under retpolines to 20 switch
cases where gcc would only then start to emit jump tables, and therefore
effectively disabling the emission of slow indirect calls in this area.
After this has been brought to attention to gcc folks [0], Martin Liska
has then fixed gcc to align with clang by avoiding to generate switch jump
tables entirely under retpolines. This is taking effect in gcc starting
from stable version 8.4.0. Given kernel supports compilation with older
versions of gcc where the fix is not being available or backported anymore,
we need to keep the extra KBUILD_CFLAGS around for some time and generally
set the -fno-jump-tables to align with what more recent gcc is doing
automatically today.
More than 20 switch cases are not expected to be fast-path critical, but
it would still be good to align with gcc behavior for versions < 8.4.0 in
order to have consistency across supported gcc versions. vmlinux size is
slightly growing by 0.27% for older gcc. This flag is only set to work
around affected gcc, no change for clang.
[0] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86952
Suggested-by: Martin Liska <mliska@suse.cz>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Björn Töpel<bjorn.topel@intel.com>
Cc: Magnus Karlsson <magnus.karlsson@intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: H.J. Lu <hjl.tools@gmail.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: David S. Miller <davem@davemloft.net>
Link: https://lkml.kernel.org/r/20190325135620.14882-1-daniel@iogearbox.net
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Since commit
ad67b74d2469 ("printk: hash addresses printed with %p")
at boot "____ptrval____" is printed instead of the trampoline addresses:
Base memory trampoline at [(____ptrval____)] 99000 size 24576
Remove the print as we don't want to leak kernel addresses and this
statement is not needed anymore.
Fixes: ad67b74d2469d9b8 ("printk: hash addresses printed with %p")
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190326203046.20787-1-mcroce@redhat.com
|