| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull KVM updates from Paolo Bonzini:
"ARM:
- support for SVE and Pointer Authentication in guests
- PMU improvements
POWER:
- support for direct access to the POWER9 XIVE interrupt controller
- memory and performance optimizations
x86:
- support for accessing memory not backed by struct page
- fixes and refactoring
Generic:
- dirty page tracking improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (155 commits)
kvm: fix compilation on aarch64
Revert "KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU"
kvm: x86: Fix L1TF mitigation for shadow MMU
KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible
KVM: PPC: Book3S: Remove useless checks in 'release' method of KVM device
KVM: PPC: Book3S HV: XIVE: Fix spelling mistake "acessing" -> "accessing"
KVM: PPC: Book3S HV: Make sure to load LPID for radix VCPUs
kvm: nVMX: Set nested_run_pending in vmx_set_nested_state after checks complete
tests: kvm: Add tests for KVM_SET_NESTED_STATE
KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS state before setting new state
tests: kvm: Add tests for KVM_CAP_MAX_VCPUS and KVM_CAP_MAX_CPU_ID
tests: kvm: Add tests to .gitignore
KVM: Introduce KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
KVM: Fix kvm_clear_dirty_log_protect off-by-(minus-)one
KVM: Fix the bitmap range to copy during clear dirty
KVM: arm64: Fix ptrauth ID register masking logic
KVM: x86: use direct accessors for RIP and RSP
KVM: VMX: Use accessors for GPRs outside of dedicated caching logic
KVM: x86: Omit caching logic for always-available GPRs
kvm, x86: Properly check whether a pfn is an MMIO or not
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Commit e45adf665a53 ("KVM: Introduce a new guest mapping API", 2019-01-31)
introduced a build failure on aarch64 defconfig:
$ make -j$(nproc) ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- O=out defconfig \
Image.gz
...
../arch/arm64/kvm/../../../virt/kvm/kvm_main.c:
In function '__kvm_map_gfn':
../arch/arm64/kvm/../../../virt/kvm/kvm_main.c:1763:9: error:
implicit declaration of function 'memremap'; did you mean 'memset_p'?
../arch/arm64/kvm/../../../virt/kvm/kvm_main.c:1763:46: error:
'MEMREMAP_WB' undeclared (first use in this function)
../arch/arm64/kvm/../../../virt/kvm/kvm_main.c:
In function 'kvm_vcpu_unmap':
../arch/arm64/kvm/../../../virt/kvm/kvm_main.c:1795:3: error:
implicit declaration of function 'memunmap'; did you mean 'vm_munmap'?
because these functions are declared in <linux/io.h> rather than <asm/io.h>,
and the former was being pulled in already on x86 but not on aarch64.
Reported-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| |\
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm updates for 5.2
- guest SVE support
- guest Pointer Authentication support
- Better discrimination of perf counters between host and guests
Conflicts:
include/uapi/linux/kvm.h
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
When a VCPU doesn't have pointer auth, we want to hide all four pointer
auth ID register fields from the guest, not just one of them.
Fixes: 384b40caa8af ("KVM: arm/arm64: Context-switch ptrauth registers")
Reported-by: Andrew Murray <andrew.murray@arm.com>
Fscked-up-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Tested-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The kvm_vcpu_pmu_{read,write}_evtype_direct functions do not handle
the cycle counter use-case, this leads to inaccurate counts and a
WARN message when using perf with the cycle counter (-e cycle).
Let's fix this by adding a use case for pmccfiltr_el0.
Fixes: 39e3406a090a ("arm64: KVM: Avoid isb's by using direct pmxevtyper sysreg")
Reported-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The interaction between the exclude_{host,guest} flags,
exclude_{user,kernel,hv} flags and presence of VHE can result in
different exception levels being filtered by the ARMv8 PMU. As this
can be confusing let's document how they work on arm64.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Upon entering or exiting a guest we may modify multiple PMU counters to
enable of disable EL0 filtering. We presently do this via the indirect
PMXEVTYPER_EL0 system register (where the counter we modify is selected
by PMSELR). With this approach it is necessary to order the writes via
isb instructions such that we select the correct counter before modifying
it.
Let's avoid potentially expensive instruction barriers by using the
direct PMEVTYPER<n>_EL0 registers instead.
As the change to counter type relates only to EL0 filtering we can rely
on the implicit instruction barrier which occurs when we transition from
EL2 to EL1 on entering the guest. On returning to userspace we can, at the
latest, rely on the implicit barrier between EL2 and EL0. We can also
depend on the explicit isb in armv8pmu_select_counter to order our write
against any other kernel changes by the PMU driver to the type register as
a result of preemption.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
With VHE different exception levels are used between the host (EL2) and
guest (EL1) with a shared exception level for userpace (EL0). We can take
advantage of this and use the PMU's exception level filtering to avoid
enabling/disabling counters in the world-switch code. Instead we just
modify the counter type to include or exclude EL0 at vcpu_{load,put} time.
We also ensure that trapped PMU system register writes do not re-enable
EL0 when reconfiguring the backing perf events.
This approach completely avoids blackout windows seen with !VHE.
Suggested-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Enable/disable event counters as appropriate when entering and exiting
the guest to enable support for guest or host only event counting.
For both VHE and non-VHE we switch the counters between host/guest at
EL2.
The PMU may be on when we change which counters are enabled however
we avoid adding an isb as we instead rely on existing context
synchronisation events: the eret to enter the guest (__guest_enter)
and eret in kvm_call_hyp for __kvm_vcpu_run_nvhe on returning.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Add support for the :G and :H attributes in perf by handling the
exclude_host/exclude_guest event attributes.
We notify KVM of counters that we wish to be enabled or disabled on
guest entry/exit and thus defer from starting or stopping events based
on their event attributes.
With !VHE we switch the counters between host/guest at EL2. We are able
to eliminate counters counting host events on the boundaries of guest
entry/exit when using :G by filtering out EL2 for exclude_host. When
using !exclude_hv there is a small blackout window at the guest
entry/exit where host events are not captured.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
In order to effeciently switch events_{guest,host} perf counters at
guest entry/exit we add bitfields to kvm_cpu_context for guest and host
events as well as accessors for updating them.
A function is also provided which allows the PMU driver to determine
if a counter should start counting when it is enabled. With exclude_host,
we may only start counting when entering the guest.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The virt/arm core allocates a kvm_cpu_context_t percpu, at present this is
a typedef to kvm_cpu_context and is used to store host cpu context. The
kvm_cpu_context structure is also used elsewhere to hold vcpu context.
In order to use the percpu to hold additional future host information we
encapsulate kvm_cpu_context in a new structure and rename the typedef and
percpu to match.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The armv8pmu_enable_event_counter function issues an isb instruction
after enabling a pair of counters - this doesn't provide any value
and is inconsistent with the armv8pmu_disable_event_counter.
In any case armv8pmu_enable_event_counter is always called with the
PMU stopped. Starting the PMU with armv8pmu_start results in an isb
instruction being issued prior to writing to PMCR_EL0.
Let's remove the unnecessary isb instruction.
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This patch advertises the capability of two cpu feature called address
pointer authentication and generic pointer authentication. These
capabilities depend upon system support for pointer authentication and
VHE mode.
The current arm64 KVM partially implements pointer authentication and
support of address/generic authentication are tied together. However,
separate ABI requirements for both of them is added so that any future
isolated implementation will not require any ABI changes.
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Now that the building blocks of pointer authentication are present, lets
add userspace flags KVM_ARM_VCPU_PTRAUTH_ADDRESS and
KVM_ARM_VCPU_PTRAUTH_GENERIC. These flags will enable pointer
authentication for the KVM guest on a per-vcpu basis through the ioctl
KVM_ARM_VCPU_INIT.
This features will allow the KVM guest to allow the handling of
pointer authentication instructions or to treat them as undefined
if not set.
Necessary documentations are added to reflect the changes done.
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
When pointer authentication is supported, a guest may wish to use it.
This patch adds the necessary KVM infrastructure for this to work, with
a semi-lazy context switch of the pointer auth state.
Pointer authentication feature is only enabled when VHE is built
in the kernel and present in the CPU implementation so only VHE code
paths are modified.
When we schedule a vcpu, we disable guest usage of pointer
authentication instructions and accesses to the keys. While these are
disabled, we avoid context-switching the keys. When we trap the guest
trying to use pointer authentication functionality, we change to eagerly
context-switching the keys, and enable the feature. The next time the
vcpu is scheduled out/in, we start again. However the host key save is
optimized and implemented inside ptrauth instruction/register access
trap.
Pointer authentication consists of address authentication and generic
authentication, and CPUs in a system might have varied support for
either. Where support for either feature is not uniform, it is hidden
from guests via ID register emulation, as a result of the cpufeature
framework in the host.
Unfortunately, address authentication and generic authentication cannot
be trapped separately, as the architecture provides a single EL2 trap
covering both. If we wish to expose one without the other, we cannot
prevent a (badly-written) guest from intermittently using a feature
which is not uniformly supported (when scheduled on a physical CPU which
supports the relevant feature). Hence, this patch expects both type of
authentication to be present in a cpu.
This switch of key is done from guest enter/exit assembly as preparation
for the upcoming in-kernel pointer authentication support. Hence, these
key switching routines are not implemented in C code as they may cause
pointer authentication key signing error in some situations.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
[Only VHE, key switch in full assembly, vcpu_has_ptrauth checks
, save host key in ptrauth exception trap]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
[maz: various fixups]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
A per vcpu flag is added to check if pointer authentication is
enabled for the vcpu or not. This flag may be enabled according to
the necessary user policies and host capabilities.
This patch also adds a helper to check the flag.
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The existing documentation for which SVE register slice IDs are
considered out-of-range, and what happens when userspace tries to
access them, is cryptic.
This patch rewords the text with the aim of making it a bit easier to
understand.
No functional change.
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The current error code documentation for KVM_GET_ONE_REG and
KVM_SET_ONE_REG could be read as implying that all architectures
implement these error codes, or that KVM guarantees which error
code is returned in a particular situation.
Because this is not really the case, this patch waters down the
documentation explicitly to remove such guarantees.
EPERM is marked as arm64-specific, since for now arm64 really is
the only architecture that yields this error code for the
finalization-required case. Keeping this as a distinct error code
is useful however for debugging due to the statefulness of the API
in this instance.
No functional change.
Suggested-by: Andrew Jones <drjones@redhat.com>
Fixes: 395f562f2b4c ("KVM: Document errors for KVM_GET_ONE_REG and KVM_SET_ONE_REG")
Fixes: 50036ad06b7f ("KVM: arm64/sve: Document KVM API extensions for SVE")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Userspace is only supposed to use KVM_ARM_VCPU_FINALIZE when there
is some vcpu feature that can actually be finalized.
This means that documenting KVM_ARM_VCPU_FINALIZE as available or
not depending on the capabilities present is not helpful.
This patch amends the documentation to describe availability in
terms of which capability is required for each finalizable feature
instead.
In any case, userspace sees the same error (EINVAL) regardless of
whether the given feature is not present or KVM_ARM_VCPU_FINALIZE
is not implemented at all.
No functional change.
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Currently, the internal vcpu finalization functions use a different
name ("what") for the feature parameter than the name ("feature")
used in the documentation.
To avoid future confusion, this patch converts everything to use
the name "feature" consistently.
No functional change.
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Correct virtualization of SVE relies for correctness on code in
set_sve_vls() that verifies consistency between the set of vector
lengths requested by userspace and the set of vector lengths
available on the host.
However, the purpose of this code is not obvious, and not likely to
be apparent at all to people who do not have detailed knowledge of
the SVE system-level architecture.
This patch adds a suitable comment to explain what these checks are
for.
No functional change.
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
A complicated DIV_ROUND_UP() expression is currently written out
explicitly in multiple places in order to specify the size of the
bitmap exchanged with userspace to represent the value of the
KVM_REG_ARM64_SVE_VLS pseudo-register.
Userspace currently has no direct way to work this out either: for
documentation purposes, the size is just quoted as 8 u64s.
To make this more intuitive, this patch replaces these with a
single define, which is also exported to userspace as
KVM_ARM64_SVE_VLS_WORDS.
Since the number of words in a bitmap is just the index of the last
word used + 1, this patch expresses the bound that way instead.
This should make it clearer what is being expressed.
For userspace convenience, the minimum and maximum possible vector
lengths relevant to the KVM ABI are exposed to UAPI as
KVM_ARM64_SVE_VQ_MIN, KVM_ARM64_SVE_VQ_MAX. Since the only direct
use for these at present is manipulation of KVM_REG_ARM64_SVE_VLS,
no corresponding _VL_ macros are defined. They could be added
later if a need arises.
Since use of DIV_ROUND_UP() was the only reason for including
<linux/kernel.h> in guest.c, this patch also removes that #include.
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
sve_reg_to_region() currently passes the result of
vcpu_sve_state_size() to array_index_nospec(), effectively
leading to a divide / modulo operation.
Currently the code bails out and returns -EINVAL if
vcpu_sve_state_size() turns out to be zero, in order to avoid going
ahead and attempting to divide by zero. This is reasonable, but it
should only happen if the kernel contains some other bug that
allowed this code to be reached without the vcpu having been
properly initialised.
To make it clear that this is a defence against bugs rather than
something that the user should be able to trigger, this patch marks
the check with WARN_ON().
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Currently, the way error codes are generated when processing the
SVE register access ioctls in a bit haphazard.
This patch refactors the code so that the behaviour is more
consistent: now, -EINVAL should be returned only for unrecognised
register IDs or when some other runtime error occurs. -ENOENT is
returned for register IDs that are recognised, but whose
corresponding register (or slice) does not exist for the vcpu.
To this end, in {get,set}_sve_reg() we now delegate the
vcpu_has_sve() check down into {get,set}_sve_vls() and
sve_reg_to_region(). The KVM_REG_ARM64_SVE_VLS special case is
picked off first, then sve_reg_to_region() plays the role of
exhaustively validating or rejecting the register ID and (where
accepted) computing the applicable register region as before.
sve_reg_to_region() is rearranged so that -ENOENT or -EPERM is not
returned prematurely, before checking whether reg->id is in a
recognised range.
-EPERM is now only returned when an attempt is made to access an
actually existing register slice on an unfinalized vcpu.
Fixes: e1c9c98345b3 ("KVM: arm64/sve: Add SVE support to register access ioctl interface")
Fixes: 9033bba4b535 ("KVM: arm64/sve: Add pseudo-register for the guest's vector lengths")
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
* Remove a few redundant blank lines that are stylistically
inconsistent with code already in guest.c and are just taking up
space.
* Delete a couple of pointless empty default cases from switch
statements whose behaviour is otherwise obvious anyway.
* Fix some typos and consolidate some redundantly duplicated
comments.
* Respell the slice index check in sve_reg_to_region() as "> 0"
to be more consistent with what is logically being checked here
(i.e., "is the slice index too large"), even though we don't try
to cope with multiple slices yet.
No functional change.
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Currently, the SVE register ID macros are not all defined in the
same way, and advertise the fact that FFR maps onto the nonexistent
predicate register P16. This is really just for kernel
convenience, and may lead userspace into bad habits.
Instead, this patch masks the ID macro arguments so that
architecturally invalid register numbers will not be passed through
any more, and uses a literal KVM_REG_ARM64_SVE_FFR_BASE macro to
define KVM_REG_ARM64_SVE_FFR(), similarly to the way the _ZREG()
and _PREG() macros are defined.
Rather than plugging in magic numbers for the number of Z- and P-
registers and the maximum possible number of register slices, this
patch provides definitions for those too. Userspace is going to
need them in any case, and it makes sense for them to come from
<uapi/asm/kvm.h>.
sve_reg_to_region() uses convenience constants that are defined in
a different way, and also makes use of the fact that the FFR IDs
are really contiguous with the P15 IDs, so this patch retains the
existing convenience constants in guest.c, supplemented with a
couple of sanity checks to check for consistency with the UAPI
header.
Fixes: e1c9c98345b3 ("KVM: arm64/sve: Add SVE support to register access ioctl interface")
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Because of the logic in kvm_arm_sys_reg_{get,set}_reg() and
sve_id_visibility(), we should never call
{get,set}_id_aa64zfr0_el1() for a vcpu where !vcpu_has_sve(vcpu).
To avoid the code giving the impression that it is valid for these
functions to be called in this situation, and to help the compiler
make the right optimisation decisions, this patch adds WARN_ON()
for these cases.
Given the way the logic is spread out, this seems preferable to
dropping the checks altogether.
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The vcpu finalization stubs kvm_arm_vcpu_finalize() and
kvm_arm_vcpu_is_finalized() are currently #defines for ARM, which
limits the type-checking that the compiler can do at runtime.
The only reason for them to be #defines was to avoid reliance on
the definition of struct kvm_vcpu, which is not available here due
to circular #include problems. However, because these are stubs
containing no code, they don't need the definition of struct
kvm_vcpu after all; only a declaration is needed (which is
available already).
So in the interests of cleanliness, this patch converts them to
inline functions.
No functional change.
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The introduction of kvm_arm_init_arch_resources() looks like
premature factoring, since nothing else uses this hook yet and it
is not clear what will use it in the future.
For now, let's not pretend that this is a general thing:
This patch simply renames the function to kvm_arm_init_sve(),
retaining the arm stub version under the new name.
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Currently the meanings of sve_vq_map and the ancillary helpers
__bit_to_vq() and __vq_to_bit() are not clearly explained.
This patch makes the explanatory comment clearer, and removes the
duplicate comment from fpsimd.h.
The WARN_ON() currently present in __bit_to_vq() confuses the
intended use of this helper. Since these are low-level helpers not
intended for general-purpose use anyway, it is better not to make
guesses about how these functions will be used: rather, this patch
removes the WARN_ON() and relies on callers to use the helpers
sensibly.
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The introduction of the SVE registers to userspace started with a
refactoring of the way we expose any register via the ONE_REG
interface.
Unfortunately, this change doesn't exactly behave as expected
if the number of registers is non-zero and consider everything
to be an error. The visible result is that QEMU barfs very early
when creating vcpus.
Make sure we only exit early in case there is an actual error, rather
than a positive number of registers...
Fixes: be25bbb392fa ("KVM: arm64: Factor out core register ID enumeration")
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This patch adds sections to the KVM API documentation describing
the extensions for supporting the Scalable Vector Extension (SVE)
in guests.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
KVM_GET_ONE_REG and KVM_SET_ONE_REG return some error codes that
are not documented (but hopefully not surprising either). To give
an indication of what these may mean, this patch adds brief
documentation.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
To provide a uniform way to check for KVM SVE support amongst other
features, this patch adds a suitable capability KVM_CAP_ARM_SVE,
and reports it as present when SVE is available.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Now that all the pieces are in place, this patch offers a new flag
KVM_ARM_VCPU_SVE that userspace can pass to KVM_ARM_VCPU_INIT to
turn on SVE for the guest, on a per-vcpu basis.
As part of this, support for initialisation and reset of the SVE
vector length set and registers is added in the appropriate places,
as well as finally setting the KVM_ARM64_GUEST_HAS_SVE vcpu flag,
to turn on the SVE support code.
Allocation of the SVE register storage in vcpu->arch.sve_state is
deferred until the SVE configuration is finalized, by which time
the size of the registers is known.
Setting the vector lengths supported by the vcpu is considered
configuration of the emulated hardware rather than runtime
configuration, so no support is offered for changing the vector
lengths available to an existing vcpu across reset.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This patch adds a new pseudo-register KVM_REG_ARM64_SVE_VLS to
allow userspace to set and query the set of vector lengths visible
to the guest.
In the future, multiple register slices per SVE register may be
visible through the ioctl interface. Once the set of slices has
been determined we would not be able to allow the vector length set
to be changed any more, in order to avoid userspace seeing
inconsistent sets of registers. For this reason, this patch adds
support for explicit finalization of the SVE configuration via the
KVM_ARM_VCPU_FINALIZE ioctl.
Finalization is the proper place to allocate the SVE register state
storage in vcpu->arch.sve_state, so this patch adds that as
appropriate. The data is freed via kvm_arch_vcpu_uninit(), which
was previously a no-op on arm64.
To simplify the logic for determining what vector lengths can be
supported, some code is added to KVM init to work this out, in the
kvm_arm_init_arch_resources() hook.
The KVM_REG_ARM64_SVE_VLS pseudo-register is not exposed yet.
Subsequent patches will allow SVE to be turned on for guest vcpus,
making it visible.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Some aspects of vcpu configuration may be too complex to be
completed inside KVM_ARM_VCPU_INIT. Thus, there may be a
requirement for userspace to do some additional configuration
before various other ioctls will work in a consistent way.
In particular this will be the case for SVE, where userspace will
need to negotiate the set of vector lengths to be made available to
the guest before the vcpu becomes fully usable.
In order to provide an explicit way for userspace to confirm that
it has finished setting up a particular vcpu feature, this patch
adds a new ioctl KVM_ARM_VCPU_FINALIZE.
When userspace has opted into a feature that requires finalization,
typically by means of a feature flag passed to KVM_ARM_VCPU_INIT, a
matching call to KVM_ARM_VCPU_FINALIZE is now required before
KVM_RUN or KVM_GET_REG_LIST is allowed. Individual features may
impose additional restrictions where appropriate.
No existing vcpu features are affected by this, so current
userspace implementations will continue to work exactly as before,
with no need to issue KVM_ARM_VCPU_FINALIZE.
As implemented in this patch, KVM_ARM_VCPU_FINALIZE is currently a
placeholder: no finalizable features exist yet, so ioctl is not
required and will always yield EINVAL. Subsequent patches will add
the finalization logic to make use of this ioctl for SVE.
No functional change for existing userspace.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This patch adds a kvm_arm_init_arch_resources() hook to perform
subarch-specific initialisation when starting up KVM.
This will be used in a subsequent patch for global SVE-related
setup on arm64.
No functional change.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
KVM will need to interrogate the set of SVE vector lengths
available on the system.
This patch exposes the relevant bits to the kernel, along with a
sve_vq_available() helper to check whether a particular vector
length is supported.
__vq_to_bit() and __bit_to_vq() are not intended for use outside
these functions: now that these are exposed outside fpsimd.c, they
are prefixed with __ in order to provide an extra hint that they
are not intended for general-purpose use.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This patch includes the SVE register IDs in the list returned by
KVM_GET_REG_LIST, as appropriate.
On a non-SVE-enabled vcpu, no new IDs are added.
On an SVE-enabled vcpu, IDs for the FPSIMD V-registers are removed
from the list, since userspace is required to access the Z-
registers instead in order to access the V-register content. For
the variably-sized SVE registers, the appropriate set of slice IDs
are enumerated, depending on the maximum vector length for the
vcpu.
As it currently stands, the SVE architecture never requires more
than one slice to exist per register, so this patch adds no
explicit support for enumerating multiple slices. The code can be
extended straightforwardly to support this in the future, if
needed.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This patch adds the following registers for access via the
KVM_{GET,SET}_ONE_REG interface:
* KVM_REG_ARM64_SVE_ZREG(n, i) (n = 0..31) (in 2048-bit slices)
* KVM_REG_ARM64_SVE_PREG(n, i) (n = 0..15) (in 256-bit slices)
* KVM_REG_ARM64_SVE_FFR(i) (in 256-bit slices)
In order to adapt gracefully to future architectural extensions,
the registers are logically divided up into slices as noted above:
the i parameter denotes the slice index.
This allows us to reserve space in the ABI for future expansion of
these registers. However, as of today the architecture does not
permit registers to be larger than a single slice, so no code is
needed in the kernel to expose additional slices, for now. The
code can be extended later as needed to expose them up to a maximum
of 32 slices (as carved out in the architecture itself) if they
really exist someday.
The registers are only visible for vcpus that have SVE enabled.
They are not enumerated by KVM_GET_REG_LIST on vcpus that do not
have SVE.
Accesses to the FPSIMD registers via KVM_REG_ARM_CORE is not
allowed for SVE-enabled vcpus: SVE-aware userspace can use the
KVM_REG_ARM64_SVE_ZREG() interface instead to access the same
register state. This avoids some complex and pointless emulation
in the kernel to convert between the two views of these aliased
registers.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
In order to avoid the pointless complexity of maintaining two ioctl
register access views of the same data, this patch blocks ioctl
access to the FPSIMD V-registers on vcpus that support SVE.
This will make it more straightforward to add SVE register access
support.
Since SVE is an opt-in feature for userspace, this will not affect
existing users.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
In preparation for adding logic to filter out some KVM_REG_ARM_CORE
registers from the KVM_GET_REG_LIST output, this patch factors out
the core register enumeration into a separate function and rebuilds
num_core_regs() on top of it.
This may be a little more expensive (depending on how good a job
the compiler does of specialising the code), but KVM_GET_REG_LIST
is not a hot path.
This will make it easier to consolidate ID filtering code in one
place.
No functional change.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
arch/arm64/kvm/guest.c uses the string functions, but the
corresponding header is not included.
We seem to get away with this for now, but for completeness this
patch adds the #include, in preparation for adding yet more
memset() calls.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The Arm SVE architecture defines registers that are up to 2048 bits
in size (with some possibility of further future expansion).
In order to avoid the need for an excessively large number of
ioctls when saving and restoring a vcpu's registers, this patch
adds a #define to make support for individual 2048-bit registers
through the KVM_{GET,SET}_ONE_REG ioctl interface official. This
will allow each SVE register to be accessed in a single call.
There are sufficient spare bits in the register id size field for
this change, so there is no ABI impact, providing that
KVM_GET_REG_LIST does not enumerate any 2048-bit register unless
userspace explicitly opts in to the relevant architecture-specific
features.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
In order to give each vcpu its own view of the SVE registers, this
patch adds context storage via a new sve_state pointer in struct
vcpu_arch. An additional member sve_max_vl is also added for each
vcpu, to determine the maximum vector length visible to the guest
and thus the value to be configured in ZCR_EL2.LEN while the vcpu
is active. This also determines the layout and size of the storage
in sve_state, which is read and written by the same backend
functions that are used for context-switching the SVE state for
host tasks.
On SVE-enabled vcpus, SVE access traps are now handled by switching
in the vcpu's SVE context and disabling the trap before returning
to the guest. On other vcpus, the trap is not handled and an exit
back to the host occurs, where the handle_sve() fallback path
reflects an undefined instruction exception back to the guest,
consistently with the behaviour of non-SVE-capable hardware (as was
done unconditionally prior to this patch).
No SVE handling is added on non-VHE-only paths, since VHE is an
architectural and Kconfig prerequisite of SVE.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This patch adds the necessary support for context switching ZCR_EL1
for each vcpu.
ZCR_EL1 is trapped alongside the FPSIMD/SVE registers, so it makes
sense for it to be handled as part of the guest FPSIMD/SVE context
for context switch purposes instead of handling it as a general
system register. This means that it can be switched in lazily at
the appropriate time. No effort is made to track host context for
this register, since SVE requires VHE: thus the hosts's value for
this register lives permanently in ZCR_EL2 and does not alias the
guest's value at any time.
The Hyp switch and fpsimd context handling code is extended
appropriately.
Accessors are added in sys_regs.c to expose the SVE system
registers and ID register fields. Because these need to be
conditionally visible based on the guest configuration, they are
implemented separately for now rather than by use of the generic
system register helpers. This may be abstracted better later on
when/if there are more features requiring this model.
ID_AA64ZFR0_EL1 is RO-RAZ for MRS/MSR when SVE is disabled for the
guest, but for compatibility with non-SVE aware KVM implementations
the register should not be enumerated at all for KVM_GET_REG_LIST
in this case. For consistency we also reject ioctl access to the
register. This ensures that a non-SVE-enabled guest looks the same
to userspace, irrespective of whether the kernel KVM implementation
supports SVE.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Some optional features of the Arm architecture add new system
registers that are not present in the base architecture.
Where these features are optional for the guest, the visibility of
these registers may need to depend on some runtime configuration,
such as a flag passed to KVM_ARM_VCPU_INIT.
For example, ZCR_EL1 and ID_AA64ZFR0_EL1 need to be hidden if SVE
is not enabled for the guest, even though these registers may be
present in the hardware and visible to the host at EL2.
Adding special-case checks all over the place for individual
registers is going to get messy as the number of conditionally-
visible registers grows.
In order to help solve this problem, this patch adds a new sysreg
method visibility() that can be used to hook in any needed runtime
visibility checks. This method can currently return
REG_HIDDEN_USER to inhibit enumeration and ioctl access to the
register for userspace, and REG_HIDDEN_GUEST to inhibit runtime
access by the guest using MSR/MRS. Wrappers are added to allow
these flags to be conveniently queried.
This approach allows a conditionally modified view of individual
system registers such as the CPU ID registers, in addition to
completely hiding register where appropriate.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Architecture features that are conditionally visible to the guest
will require run-time checks in the ID register accessor functions.
In particular, read_id_reg() will need to perform checks in order
to generate the correct emulated value for certain ID register
fields such as ID_AA64PFR0_EL1.SVE for example.
This patch propagates vcpu into read_id_reg() so that future
patches can add run-time checks on the guest configuration here.
For now, there is no functional change.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|