| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add two compatibles for binman entries, as a starting point for the
schema.
Note that, after discussion on v2, we decided to keep the existing
meaning of label so as not to require changes to existing userspace
software when moving to use binman nodes to specify the firmware
layout.
Note also that, after discussion on v6, we decided to use the same
'fixed-partition' schema for the binman features, so this version
adds a new 'binman.yaml' file providing the new compatibles to the
existing partition.yaml binding.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20240412153249.100787-2-sjg@chromium.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add three properties for controlling alignment of partitions, aka
'entries' in fixed-partition.
For now there is no explicit mention of hierarchy, so a 'section' is
just the 'fixed-partitions' node.
These new properties are inputs to the Binman packaging process, but are
also needed if the firmware is repacked, to ensure that alignment
constraints are not violated. Therefore they are provided as part of
the schema.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20240412153249.100787-1-sjg@chromium.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is an effort to get rid of all multiplications from allocation
functions in order to prevent integer overflows [1][2].
As the "info" variable is a pointer to "struct sa_info" and this
structure ends in a flexible array:
struct sa_info {
[...]
struct sa_subdev_info subdev[];
};
the preferred way in the kernel is to use the struct_size() helper to
do the arithmetic instead of the calculation "size + size * count" in
the kzalloc() function.
This way, the code is more readable and safer.
This code was detected with the help of Coccinelle, and audited and
modified manually.
Link: https://www.kernel.org/doc/html/latest/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments [1]
Link: https://github.com/KSPP/linux/issues/160 [2]
Signed-off-by: Erick Archer <erick.archer@outlook.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/AS8PR02MB7237AC633B0D1D2EBD3C40E98B392@AS8PR02MB7237.eurprd02.prod.outlook.com
|
|
|
|
|
|
|
|
|
|
| |
The comment is related to the non-error case, make it more clear
by inverting the condition. It also makes code neater at the end.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Pratyush Yadav <pratyush@kernel.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20240325151150.3368658-1-andriy.shevchenko@linux.intel.com
|
|
|
|
|
|
|
|
|
|
|
|
| |
The value of an arithmetic expression directory * master->erasesize is
subject to overflow due to a failure to cast operands to a larger data
type before perfroming arithmetic
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Signed-off-by: Denis Arefev <arefev@swemel.ru>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20240315093758.20790-1-arefev@swemel.ru
|
|
|
|
|
|
|
|
|
|
| |
Document binding for Samsung S5Pv210 SoC OneNAND controller used already
in S5Pv210 DTS.
Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20240313184317.18466-1-krzysztof.kozlowski@linaro.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Handle the case where -EOPNOTSUPP is returned from OTP driver.
This addresses an issue that occurs with the Intel SPI flash controller,
which has a limited supported opcode set. Whilst the OTP functionality
is not available due to this restriction, other parts of the MTD
functionality of the device are intact. This change allows the driver
to gracefully handle the restriction by allowing the supported
functionality to remain available instead of failing the probe
altogether.
Signed-off-by: Aapo Vienamo <aapo.vienamo@linux.intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Michael Walle <mwalle@kernel.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20240313173425.1325790-3-aapo.vienamo@linux.intel.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mtd_otp_nvmem_add()
Jump to the error reporting code in mtd_otp_nvmem_add() if the
mtd_otp_size() call fails. Without this fix, the error is not logged.
Signed-off-by: Aapo Vienamo <aapo.vienamo@linux.intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Michael Walle <mwalle@kernel.org>
Fixes: 4b361cfa8624 ("mtd: core: add OTP nvmem provider support")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20240313173425.1325790-2-aapo.vienamo@linux.intel.com
|
| |
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI fixes from Ard Biesheuvel:
- Fix logic that is supposed to prevent placement of the kernel image
below LOAD_PHYSICAL_ADDR
- Use the firmware stack in the EFI stub when running in mixed mode
- Clear BSS only once when using mixed mode
- Check efi.get_variable() function pointer for NULL before trying to
call it
* tag 'efi-fixes-for-v6.9-2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi:
efi: fix panic in kdump kernel
x86/efistub: Don't clear BSS twice in mixed mode
x86/efistub: Call mixed mode boot services on the firmware's stack
efi/libstub: fix efi_random_alloc() to allocate memory at alloc_min or higher address
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Check if get_next_variable() is actually valid pointer before
calling it. In kdump kernel this method is set to NULL that causes
panic during the kexec-ed kernel boot.
Tested with QEMU and OVMF firmware.
Fixes: bad267f9e18f ("efi: verify that variable services are supported")
Signed-off-by: Oleksandr Tymoshenko <ovt@google.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Clearing BSS should only be done once, at the very beginning.
efi_pe_entry() is the entrypoint from the firmware, which may not clear
BSS and so it is done explicitly. However, efi_pe_entry() is also used
as an entrypoint by the mixed mode startup code, in which case BSS will
already have been cleared, and doing it again at this point will corrupt
global variables holding the firmware's GDT/IDT and segment selectors.
So make the memset() conditional on whether the EFI stub is running in
native mode.
Fixes: b3810c5a2cc4a666 ("x86/efistub: Clear decompressor BSS in native EFI entrypoint")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Normally, the EFI stub calls into the EFI boot services using the stack
that was live when the stub was entered. According to the UEFI spec,
this stack needs to be at least 128k in size - this might seem large but
all asynchronous processing and event handling in EFI runs from the same
stack and so quite a lot of space may be used in practice.
In mixed mode, the situation is a bit different: the bootloader calls
the 32-bit EFI stub entry point, which calls the decompressor's 32-bit
entry point, where the boot stack is set up, using a fixed allocation
of 16k. This stack is still in use when the EFI stub is started in
64-bit mode, and so all calls back into the EFI firmware will be using
the decompressor's limited boot stack.
Due to the placement of the boot stack right after the boot heap, any
stack overruns have gone unnoticed. However, commit
5c4feadb0011983b ("x86/decompressor: Move global symbol references to C code")
moved the definition of the boot heap into C code, and now the boot
stack is placed right at the base of BSS, where any overruns will
corrupt the end of the .data section.
While it would be possible to work around this by increasing the size of
the boot stack, doing so would affect all x86 systems, and mixed mode
systems are a tiny (and shrinking) fraction of the x86 installed base.
So instead, record the firmware stack pointer value when entering from
the 32-bit firmware, and switch to this stack every time a EFI boot
service call is made.
Cc: <stable@kernel.org> # v6.1+
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
higher address
Following warning is sometimes observed while booting my servers:
[ 3.594838] DMA: preallocated 4096 KiB GFP_KERNEL pool for atomic allocations
[ 3.602918] swapper/0: page allocation failure: order:10, mode:0xcc1(GFP_KERNEL|GFP_DMA), nodemask=(null),cpuset=/,mems_allowed=0-1
...
[ 3.851862] DMA: preallocated 1024 KiB GFP_KERNEL|GFP_DMA pool for atomic allocation
If 'nokaslr' boot option is set, the warning always happens.
On x86, ZONE_DMA is small zone at the first 16MB of physical address
space. When this problem happens, most of that space seems to be used by
decompressed kernel. Thereby, there is not enough space at DMA_ZONE to
meet the request of DMA pool allocation.
The commit 2f77465b05b1 ("x86/efistub: Avoid placing the kernel below
LOAD_PHYSICAL_ADDR") tried to fix this problem by introducing lower
bound of allocation.
But the fix is not complete.
efi_random_alloc() allocates pages by following steps.
1. Count total available slots ('total_slots')
2. Select a slot ('target_slot') to allocate randomly
3. Calculate a starting address ('target') to be included target_slot
4. Allocate pages, which starting address is 'target'
In step 1, 'alloc_min' is used to offset the starting address of memory
chunk. But in step 3 'alloc_min' is not considered at all. As the
result, 'target' can be miscalculated and become lower than 'alloc_min'.
When KASLR is disabled, 'target_slot' is always 0 and the problem
happens everytime if the EFI memory map of the system meets the
condition.
Fix this problem by calculating 'target' considering 'alloc_min'.
Cc: linux-efi@vger.kernel.org
Cc: Tom Englund <tomenglund26@gmail.com>
Cc: linux-kernel@vger.kernel.org
Fixes: 2f77465b05b1 ("x86/efistub: Avoid placing the kernel below LOAD_PHYSICAL_ADDR")
Signed-off-by: Kazuma Kondo <kazuma-kondo@nec.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
- Ensure that the encryption mask at boot is properly propagated on
5-level page tables, otherwise the PGD entry is incorrectly set to
non-encrypted, which causes system crashes during boot.
- Undo the deferred 5-level page table setup as it cannot work with
memory encryption enabled.
- Prevent inconsistent XFD state on CPU hotplug, where the MSR is reset
to the default value but the cached variable is not, so subsequent
comparisons might yield the wrong result and as a consequence the
result prevents updating the MSR.
- Register the local APIC address only once in the MPPARSE enumeration
to prevent triggering the related WARN_ONs() in the APIC and topology
code.
- Handle the case where no APIC is found gracefully by registering a
fake APIC in the topology code. That makes all related topology
functions work correctly and does not affect the actual APIC driver
code at all.
- Don't evaluate logical IDs during early boot as the local APIC IDs
are not yet enumerated and the invoked function returns an error
code. Nothing requires the logical IDs before the final CPUID
enumeration takes place, which happens after the enumeration.
- Cure the fallout of the per CPU rework on UP which misplaced the
copying of boot_cpu_data to per CPU data so that the final update to
boot_cpu_data got lost which caused inconsistent state and boot
crashes.
- Use copy_from_kernel_nofault() in the kprobes setup as there is no
guarantee that the address can be safely accessed.
- Reorder struct members in struct saved_context to work around another
kmemleak false positive
- Remove the buggy code which tries to update the E820 kexec table for
setup_data as that is never passed to the kexec kernel.
- Update the resource control documentation to use the proper units.
- Fix a Kconfig warning observed with tinyconfig
* tag 'x86-urgent-2024-03-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/64: Move 5-level paging global variable assignments back
x86/boot/64: Apply encryption mask to 5-level pagetable update
x86/cpu: Add model number for another Intel Arrow Lake mobile processor
x86/fpu: Keep xfd_state in sync with MSR_IA32_XFD
Documentation/x86: Document that resctrl bandwidth control units are MiB
x86/mpparse: Register APIC address only once
x86/topology: Handle the !APIC case gracefully
x86/topology: Don't evaluate logical IDs during early boot
x86/cpu: Ensure that CPU info updates are propagated on UP
kprobes/x86: Use copy_from_kernel_nofault() to read from unsafe address
x86/pm: Work around false positive kmemleak report in msr_build_context()
x86/kexec: Do not update E820 kexec table for setup_data
x86/config: Fix warning for 'make ARCH=x86_64 tinyconfig'
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Commit 63bed9660420 ("x86/startup_64: Defer assignment of 5-level paging
global variables") moved assignment of 5-level global variables to later
in the boot in order to avoid having to use RIP relative addressing in
order to set them. However, when running with 5-level paging and SME
active (mem_encrypt=on), the variables are needed as part of the page
table setup needed to encrypt the kernel (using pgd_none(), p4d_offset(),
etc.). Since the variables haven't been set, the page table manipulation
is done as if 4-level paging is active, causing the system to crash on
boot.
While only a subset of the assignments that were moved need to be set
early, move all of the assignments back into check_la57_support() so that
these assignments aren't spread between two locations. Instead of just
reverting the fix, this uses the new RIP_REL_REF() macro when assigning
the variables.
Fixes: 63bed9660420 ("x86/startup_64: Defer assignment of 5-level paging global variables")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/2ca419f4d0de719926fd82353f6751f717590a86.1711122067.git.thomas.lendacky@amd.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
When running with 5-level page tables, the kernel mapping PGD entry is
updated to point to the P4D table. The assignment uses _PAGE_TABLE_NOENC,
which, when SME is active (mem_encrypt=on), results in a page table
entry without the encryption mask set, causing the system to crash on
boot.
Change the assignment to use _PAGE_TABLE instead of _PAGE_TABLE_NOENC so
that the encryption mask is set for the PGD entry.
Fixes: 533568e06b15 ("x86/boot/64: Use RIP_REL_REF() to access early_top_pgt[]")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/8f20345cda7dbba2cf748b286e1bc00816fe649a.1711122067.git.thomas.lendacky@amd.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This one is the regular laptop CPU.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240322161725.195614-1-tony.luck@intel.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Commit 672365477ae8 ("x86/fpu: Update XFD state where required") and
commit 8bf26758ca96 ("x86/fpu: Add XFD state to fpstate") introduced a
per CPU variable xfd_state to keep the MSR_IA32_XFD value cached, in
order to avoid unnecessary writes to the MSR.
On CPU hotplug MSR_IA32_XFD is reset to the init_fpstate.xfd, which
wipes out any stale state. But the per CPU cached xfd value is not
reset, which brings them out of sync.
As a consequence a subsequent xfd_update_state() might fail to update
the MSR which in turn can result in XRSTOR raising a #NM in kernel
space, which crashes the kernel.
To fix this, introduce xfd_set_state() to write xfd_state together
with MSR_IA32_XFD, and use it in all places that set MSR_IA32_XFD.
Fixes: 672365477ae8 ("x86/fpu: Update XFD state where required")
Signed-off-by: Adamos Ttofari <attofari@amazon.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240322230439.456571-1-chang.seok.bae@intel.com
Closes: https://lore.kernel.org/lkml/20230511152818.13839-1-attofari@amazon.de
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The memory bandwidth software controller uses 2^20 units rather than
10^6. See mbm_bw_count() which computes bandwidth using the "SZ_1M"
Linux define for 0x00100000.
Update the documentation to use MiB when describing this feature.
It's too late to fix the mount option "mba_MBps" as that is now an
established user interface.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240322182016.196544-1-tony.luck@intel.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The APIC address is registered twice. First during the early detection and
afterwards when actually scanning the table for APIC IDs. The APIC and
topology core warn about the second attempt.
Restrict it to the early detection call.
Fixes: 81287ad65da5 ("x86/apic: Sanitize APIC address setup")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/r/20240322185305.297774848@linutronix.de
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
If there is no local APIC enumerated and registered then the topology
bitmaps are empty. Therefore, topology_init_possible_cpus() will die with
a division by zero exception.
Prevent this by registering a fake APIC id to populate the topology
bitmap. This also allows to use all topology query interfaces
unconditionally. It does not affect the actual APIC code because either
the local APIC address was not registered or no local APIC could be
detected.
Fixes: f1f758a80516 ("x86/topology: Add a mechanism to track topology via APIC IDs")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/r/20240322185305.242709302@linutronix.de
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The local APICs have not yet been enumerated so the logical ID evaluation
from the topology bitmaps does not work and would return an error code.
Skip the evaluation during the early boot CPUID evaluation and only apply
it on the final run.
Fixes: 380414be78bf ("x86/cpu/topology: Use topology logical mapping mechanism")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/r/20240322185305.186943142@linutronix.de
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The boot sequence evaluates CPUID information twice:
1) During early boot
2) When finalizing the early setup right before
mitigations are selected and alternatives are patched.
In both cases the evaluation is stored in boot_cpu_data, but on UP the
copying of boot_cpu_data to the per CPU info of the boot CPU happens
between #1 and #2. So any update which happens in #2 is never propagated to
the per CPU info instance.
Consolidate the whole logic and copy boot_cpu_data right before applying
alternatives as that's the point where boot_cpu_data is in it's final
state and not supposed to change anymore.
This also removes the voodoo mb() from smp_prepare_cpus_common() which
had absolutely no purpose.
Fixes: 71eb4893cfaf ("x86/percpu: Cure per CPU madness on UP")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/r/20240322185305.127642785@linutronix.de
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Read from an unsafe address with copy_from_kernel_nofault() in
arch_adjust_kprobe_addr() because this function is used before checking
the address is in text or not. Syzcaller bot found a bug and reported
the case if user specifies inaccessible data area,
arch_adjust_kprobe_addr() will cause a kernel panic.
[ mingo: Clarified the comment. ]
Fixes: cc66bb914578 ("x86/ibt,kprobes: Cure sym+0 equals fentry woes")
Reported-by: Qiang Zhang <zzqq0103.hey@gmail.com>
Tested-by: Jinghao Jia <jinghao7@illinois.edu>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/171042945004.154897.2221804961882915806.stgit@devnote2
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Since:
7ee18d677989 ("x86/power: Make restore_processor_context() sane")
kmemleak reports this issue:
unreferenced object 0xf68241e0 (size 32):
comm "swapper/0", pid 1, jiffies 4294668610 (age 68.432s)
hex dump (first 32 bytes):
00 cc cc cc 29 10 01 c0 00 00 00 00 00 00 00 00 ....)...........
00 42 82 f6 cc cc cc cc cc cc cc cc cc cc cc cc .B..............
backtrace:
[<461c1d50>] __kmem_cache_alloc_node+0x106/0x260
[<ea65e13b>] __kmalloc+0x54/0x160
[<c3858cd2>] msr_build_context.constprop.0+0x35/0x100
[<46635aff>] pm_check_save_msr+0x63/0x80
[<6b6bb938>] do_one_initcall+0x41/0x1f0
[<3f3add60>] kernel_init_freeable+0x199/0x1e8
[<3b538fde>] kernel_init+0x1a/0x110
[<938ae2b2>] ret_from_fork+0x1c/0x28
Which is a false positive.
Reproducer:
- Run rsync of whole kernel tree (multiple times if needed).
- start a kmemleak scan
- Note this is just an example: a lot of our internal tests hit these.
The root cause is similar to the fix in:
b0b592cf0836 x86/pm: Fix false positive kmemleak report in msr_build_context()
ie. the alignment within the packed struct saved_context
which has everything unaligned as there is only "u16 gs;" at start of
struct where in the past there were four u16 there thus aligning
everything afterwards. The issue is with the fact that Kmemleak only
searches for pointers that are aligned (see how pointers are scanned in
kmemleak.c) so when the struct members are not aligned it doesn't see
them.
Testing:
We run a lot of tests with our CI, and after applying this fix we do not
see any kmemleak issues any more whilst without it we see hundreds of
the above report. From a single, simple test run consisting of 416 individual test
cases on kernel 5.10 x86 with kmemleak enabled we got 20 failures due to this,
which is quite a lot. With this fix applied we get zero kmemleak related failures.
Fixes: 7ee18d677989 ("x86/power: Make restore_processor_context() sane")
Signed-off-by: Anton Altaparmakov <anton@tuxera.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: stable@vger.kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20240314142656.17699-1-anton@tuxera.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
crashkernel reservation failed on a Thinkpad t440s laptop recently.
Actually the memblock reservation succeeded, but later insert_resource()
failed.
Test steps:
kexec load -> /* make sure add crashkernel param eg. crashkernel=160M */
kexec reboot ->
dmesg|grep "crashkernel reserved";
crashkernel memory range like below reserved successfully:
0x00000000d0000000 - 0x00000000da000000
But no such "Crash kernel" region in /proc/iomem
The background story:
Currently the E820 code reserves setup_data regions for both the current
kernel and the kexec kernel, and it inserts them into the resources list.
Before the kexec kernel reboots nobody passes the old setup_data, and
kexec only passes fresh SETUP_EFI/SETUP_IMA/SETUP_RNG_SEED if needed.
Thus the old setup data memory is not used at all.
Due to old kernel updates the kexec e820 table as well so kexec kernel
sees them as E820_TYPE_RESERVED_KERN regions, and later the old setup_data
regions are inserted into resources list in the kexec kernel by
e820__reserve_resources().
Note, due to no setup_data is passed in for those old regions they are not
early reserved (by function early_reserve_memory), and the crashkernel
memblock reservation will just treat them as usable memory and it could
reserve the crashkernel region which overlaps with the old setup_data
regions. And just like the bug I noticed here, kdump insert_resource
failed because e820__reserve_resources has added the overlapped chunks
in /proc/iomem already.
Finally, looking at the code, the old setup_data regions are not used
at all as no setup_data is passed in by the kexec boot loader. Although
something like SETUP_PCI etc could be needed, kexec should pass
the info as new setup_data so that kexec kernel can take care of them.
This should be taken care of in other separate patches if needed.
Thus drop the useless buggy code here.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Eric DeVolder <eric.devolder@oracle.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/Zf0T3HCG-790K-pZ@darkstar.users.ipa.redhat.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Kconfig emits a warning for the following command:
$ make ARCH=x86_64 tinyconfig
...
.config:1380:warning: override: UNWINDER_GUESS changes choice state
When X86_64=y, the unwinder is exclusively selected from the following
three options:
- UNWINDER_ORC
- UNWINDER_FRAME_POINTER
- UNWINDER_GUESS
However, arch/x86/configs/tiny.config only specifies the values of the
last two. UNWINDER_ORC must be explicitly disabled.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240320154313.612342-1-masahiroy@kernel.org
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler doc clarification from Thomas Gleixner:
"A single update for the documentation of the base_slice_ns tunable to
clarify that any value which is less than the tick slice has no effect
because the scheduler tick is not guaranteed to happen within the set
time slice"
* tag 'sched-urgent-2024-03-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/doc: Update documentation for base_slice_ns and CONFIG_HZ relation
|
| |/ /
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The tunable base_slice_ns is dependent on CONFIG_HZ (i.e. TICK_NSEC)
for any significant performance improvement. The reason being the
scheduler tick is not frequent enough to force preemption when
base_slice expires in case of:
base_slice_ns < TICK_NSEC
The below data is of stress-ng:
Number of CPU: 1
Stressor threads: 4
Time: 30sec
On CONFIG_HZ=1000
| base_slice | avg-run (msec) | context-switches |
| ---------- | -------------- | ---------------- |
| 3ms | 2.914 | 10342 |
| 6ms | 4.857 | 6196 |
| 9ms | 6.754 | 4482 |
| 12ms | 7.872 | 3802 |
| 22ms | 11.294 | 2710 |
| 32ms | 13.425 | 2284 |
On CONFIG_HZ=100
| base_slice | avg-run (msec) | context-switches |
| ---------- | -------------- | ---------------- |
| 3ms | 9.144 | 3337 |
| 6ms | 9.113 | 3301 |
| 9ms | 8.991 | 3315 |
| 12ms | 12.935 | 2328 |
| 22ms | 16.031 | 1915 |
| 32ms | 18.608 | 1622 |
base_slice: the value of base_slice in ms
avg-run (msec): average time of the stressor threads got on cpu before
it got preempted
context-switches: number of context switches for the stress-ng process
Signed-off-by: Mukesh Kumar Chaurasiya <mchauras@linux.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Link: https://lore.kernel.org/r/20240320173815.927637-2-mchauras@linux.ibm.com
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping fixes from Christoph Hellwig:
"This has a set of swiotlb alignment fixes for sometimes very long
standing bugs from Will. We've been discussion them for a while and
they should be solid now"
* tag 'dma-mapping-6.9-2024-03-24' of git://git.infradead.org/users/hch/dma-mapping:
swiotlb: Reinstate page-alignment for mappings >= PAGE_SIZE
iommu/dma: Force swiotlb_max_mapping_size on an untrusted device
swiotlb: Fix alignment checks when both allocation and DMA masks are present
swiotlb: Honour dma_alloc_coherent() alignment in swiotlb_alloc()
swiotlb: Enforce page alignment in swiotlb_alloc()
swiotlb: Fix double-allocation of slots due to broken alignment handling
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
For swiotlb allocations >= PAGE_SIZE, the slab search historically
adjusted the stride to avoid checking unaligned slots. This had the
side-effect of aligning large mapping requests to PAGE_SIZE, but that
was broken by 0eee5ae10256 ("swiotlb: fix slot alignment checks").
Since this alignment could be relied upon drivers, reinstate PAGE_SIZE
alignment for swiotlb mappings >= PAGE_SIZE.
Reported-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The swiotlb does not support a mapping size > swiotlb_max_mapping_size().
On the other hand, with a 64KB PAGE_SIZE configuration, it's observed that
an NVME device can map a size between 300KB~512KB, which certainly failed
the swiotlb mappings, though the default pool of swiotlb has many slots:
systemd[1]: Started Journal Service.
=> nvme 0000:00:01.0: swiotlb buffer is full (sz: 327680 bytes), total 32768 (slots), used 32 (slots)
note: journal-offline[392] exited with irqs disabled
note: journal-offline[392] exited with preempt_count 1
Call trace:
[ 3.099918] swiotlb_tbl_map_single+0x214/0x240
[ 3.099921] iommu_dma_map_page+0x218/0x328
[ 3.099928] dma_map_page_attrs+0x2e8/0x3a0
[ 3.101985] nvme_prep_rq.part.0+0x408/0x878 [nvme]
[ 3.102308] nvme_queue_rqs+0xc0/0x300 [nvme]
[ 3.102313] blk_mq_flush_plug_list.part.0+0x57c/0x600
[ 3.102321] blk_add_rq_to_plug+0x180/0x2a0
[ 3.102323] blk_mq_submit_bio+0x4c8/0x6b8
[ 3.103463] __submit_bio+0x44/0x220
[ 3.103468] submit_bio_noacct_nocheck+0x2b8/0x360
[ 3.103470] submit_bio_noacct+0x180/0x6c8
[ 3.103471] submit_bio+0x34/0x130
[ 3.103473] ext4_bio_write_folio+0x5a4/0x8c8
[ 3.104766] mpage_submit_folio+0xa0/0x100
[ 3.104769] mpage_map_and_submit_buffers+0x1a4/0x400
[ 3.104771] ext4_do_writepages+0x6a0/0xd78
[ 3.105615] ext4_writepages+0x80/0x118
[ 3.105616] do_writepages+0x90/0x1e8
[ 3.105619] filemap_fdatawrite_wbc+0x94/0xe0
[ 3.105622] __filemap_fdatawrite_range+0x68/0xb8
[ 3.106656] file_write_and_wait_range+0x84/0x120
[ 3.106658] ext4_sync_file+0x7c/0x4c0
[ 3.106660] vfs_fsync_range+0x3c/0xa8
[ 3.106663] do_fsync+0x44/0xc0
Since untrusted devices might go down the swiotlb pathway with dma-iommu,
these devices should not map a size larger than swiotlb_max_mapping_size.
To fix this bug, add iommu_dma_max_mapping_size() for untrusted devices to
take into account swiotlb_max_mapping_size() v.s. iova_rcache_range() from
the iommu_dma_opt_mapping_size().
Fixes: 82612d66d51d ("iommu: Allow the dma-iommu api to use bounce buffers")
Link: https://lore.kernel.org/r/ee51a3a5c32cf885b18f6416171802669f4a718a.1707851466.git.nicolinc@nvidia.com
Signed-off-by: Nicolin Chen <nicolinc@nvidia.com>
[will: Drop redundant is_swiotlb_active(dev) check]
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Nicolin reports that swiotlb buffer allocations fail for an NVME device
behind an IOMMU using 64KiB pages. This is because we end up with a
minimum allocation alignment of 64KiB (for the IOMMU to map the buffer
safely) but a minimum DMA alignment mask corresponding to a 4KiB NVME
page (i.e. preserving the 4KiB page offset from the original allocation).
If the original address is not 4KiB-aligned, the allocation will fail
because swiotlb_search_pool_area() erroneously compares these unmasked
bits with the 64KiB-aligned candidate allocation.
Tweak swiotlb_search_pool_area() so that the DMA alignment mask is
reduced based on the required alignment of the allocation.
Fixes: 82612d66d51d ("iommu: Allow the dma-iommu api to use bounce buffers")
Link: https://lore.kernel.org/r/cover.1707851466.git.nicolinc@nvidia.com
Reported-by: Nicolin Chen <nicolinc@nvidia.com>
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
core-api/dma-api-howto.rst states the following properties of
dma_alloc_coherent():
| The CPU virtual address and the DMA address are both guaranteed to
| be aligned to the smallest PAGE_SIZE order which is greater than or
| equal to the requested size.
However, swiotlb_alloc() passes zero for the 'alloc_align_mask'
parameter of swiotlb_find_slots() and so this property is not upheld.
Instead, allocations larger than a page are aligned to PAGE_SIZE,
Calculate the mask corresponding to the page order suitable for holding
the allocation and pass that to swiotlb_find_slots().
Fixes: e81e99bacc9f ("swiotlb: Support aligned swiotlb buffers")
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
When allocating pages from a restricted DMA pool in swiotlb_alloc(),
the buffer address is blindly converted to a 'struct page *' that is
returned to the caller. In the unlikely event of an allocation bug,
page-unaligned addresses are not detected and slots can silently be
double-allocated.
Add a simple check of the buffer alignment in swiotlb_alloc() to make
debugging a little easier if something has gone wonky.
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Commit bbb73a103fbb ("swiotlb: fix a braino in the alignment check fix"),
which was a fix for commit 0eee5ae10256 ("swiotlb: fix slot alignment
checks"), causes a functional regression with vsock in a virtual machine
using bouncing via a restricted DMA SWIOTLB pool.
When virtio allocates the virtqueues for the vsock device using
dma_alloc_coherent(), the SWIOTLB search can return page-unaligned
allocations if 'area->index' was left unaligned by a previous allocation
from the buffer:
# Final address in brackets is the SWIOTLB address returned to the caller
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1645-1649/7168 (0x98326800)
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1649-1653/7168 (0x98328800)
| virtio-pci 0000:00:07.0: orig_addr 0x0 alloc_size 0x2000, iotlb_align_mask 0x800 stride 0x2: got slot 1653-1657/7168 (0x9832a800)
This ends badly (typically buffer corruption and/or a hang) because
swiotlb_alloc() is expecting a page-aligned allocation and so blindly
returns a pointer to the 'struct page' corresponding to the allocation,
therefore double-allocating the first half (2KiB slot) of the 4KiB page.
Fix the problem by treating the allocation alignment separately to any
additional alignment requirements from the device, using the maximum
of the two as the stride to search the buffer slots and taking care
to ensure a minimum of page-alignment for buffers larger than a page.
This also resolves swiotlb allocation failures occuring due to the
inclusion of ~PAGE_MASK in 'iotlb_align_mask' for large allocations and
resulting in alignment requirements exceeding swiotlb_max_mapping_size().
Fixes: bbb73a103fbb ("swiotlb: fix a braino in the alignment check fix")
Fixes: 0eee5ae10256 ("swiotlb: fix slot alignment checks")
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Petr Tesarik <petr.tesarik1@huawei-partners.com>
Tested-by: Nicolin Chen <nicolinc@nvidia.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|\ \ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fixes from Thomas Gleixner:
"Two regression fixes for the timer and timer migration code:
- Prevent endless timer requeuing which is caused by two CPUs racing
out of idle. This happens when the last CPU goes idle and therefore
has to ensure to expire the pending global timers and some other
CPU come out of idle at the same time and the other CPU wins the
race and expires the global queue. This causes the last CPU to
chase ghost timers forever and reprogramming it's clockevent device
endlessly.
Cure this by re-evaluating the wakeup time unconditionally.
- The split into local (pinned) and global timers in the timer wheel
caused a regression for NOHZ full as it broke the idle tracking of
global timers. On NOHZ full this prevents an self IPI being sent
which in turn causes the timer to be not programmed and not being
expired on time.
Restore the idle tracking for the global timer base so that the
self IPI condition for NOHZ full is working correctly again"
* tag 'timers-urgent-2024-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timers: Fix removed self-IPI on global timer's enqueue in nohz_full
timers/migration: Fix endless timer requeue after idle interrupts
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
While running in nohz_full mode, a task may enqueue a timer while the
tick is stopped. However the only places where the timer wheel,
alongside the timer migration machinery's decision, may reprogram the
next event accordingly with that new timer's expiry are the idle loop or
any IRQ tail.
However neither the idle task nor an interrupt may run on the CPU if it
resumes busy work in userspace for a long while in full dynticks mode.
To solve this, the timer enqueue path raises a self-IPI that will
re-evaluate the timer wheel on its IRQ tail. This asynchronous solution
avoids potential locking inversion.
This is supposed to happen both for local and global timers but commit:
b2cf7507e186 ("timers: Always queue timers on the local CPU")
broke the global timers case with removing the ->is_idle field handling
for the global base. As a result, global timers enqueue may go unnoticed
in nohz_full.
Fix this with restoring the idle tracking of the global timer's base,
allowing self-IPIs again on enqueue time.
Fixes: b2cf7507e186 ("timers: Always queue timers on the local CPU")
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240318230729.15497-3-frederic@kernel.org
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
When a CPU is an idle migrator, but another CPU wakes up before it,
becomes an active migrator and handles the queue, the initial idle
migrator may end up endlessly reprogramming its clockevent, chasing ghost
timers forever such as in the following scenario:
[GRP0:0]
migrator = 0
active = 0
nextevt = T1
/ \
0 1
active idle (T1)
0) CPU 1 is idle and has a timer queued (T1), CPU 0 is active and is
the active migrator.
[GRP0:0]
migrator = NONE
active = NONE
nextevt = T1
/ \
0 1
idle idle (T1)
wakeup = T1
1) CPU 0 is now idle and is therefore the idle migrator. It has
programmed its next timer interrupt to handle T1.
[GRP0:0]
migrator = 1
active = 1
nextevt = KTIME_MAX
/ \
0 1
idle active
wakeup = T1
2) CPU 1 has woken up, it is now active and it has just handled its own
timer T1.
3) CPU 0 gets a timer interrupt to handle T1 but tmigr_handle_remote()
realize it is not the migrator anymore. So it early returns without
observing that T1 has been expired already and therefore without
updating its ->wakeup value.
4) CPU 0 goes into tmigr_cpu_new_timer() which also early returns
because it doesn't queue a timer of its own. So ->wakeup is left
unchanged and the next timer is programmed to fire now.
5) goto 3) forever
This results in timer interrupt storms in idle and also in nohz_full (as
observed in rcutorture's TREE07 scenario).
Fix this with forcing a re-evaluation of tmc->wakeup while trying
remote timer handling when the CPU isn't the migrator anymmore. The
check is inherently racy but in the worst case the CPU just races setting
the KTIME_MAX value that a remote expiry also tries to set.
Fixes: 7ee988770326 ("timers: Implement the hierarchical pull model")
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240318230729.15497-2-frederic@kernel.org
|
|\ \ \ \ \
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull more clocksource updates from Thomas Gleixner:
"A set of updates for clocksource and clockevent drivers:
- A fix for the prescaler of the ARM global timer where the prescaler
mask define only covered 4 bits while it is actully 8 bits wide.
This obviously restricted the possible range of prescaler
adjustments
- A fix for the RISC-V timer which prevents a timer interrupt being
raised while the timer is initialized
- A set of device tree updates to support new system on chips in
various drivers
- Kernel-doc and other cleanups all over the place"
* tag 'timers-core-2024-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clocksource/drivers/timer-riscv: Clear timer interrupt on timer initialization
dt-bindings: timer: Add support for cadence TTC PWM
clocksource/drivers/arm_global_timer: Simplify prescaler register access
clocksource/drivers/arm_global_timer: Guard against division by zero
clocksource/drivers/arm_global_timer: Make gt_target_rate unsigned long
dt-bindings: timer: add Ralink SoCs system tick counter
clocksource: arm_global_timer: fix non-kernel-doc comment
clocksource/drivers/arm_global_timer: Remove stray tab
clocksource/drivers/arm_global_timer: Fix maximum prescaler value
clocksource/drivers/imx-sysctr: Add i.MX95 support
clocksource/drivers/imx-sysctr: Drop use global variables
dt-bindings: timer: nxp,sysctr-timer: support i.MX95
dt-bindings: timer: renesas: ostm: Document RZ/Five SoC
dt-bindings: timer: renesas,tmu: Document input capture interrupt
clocksource/drivers/ti-32K: Fix misuse of "/**" comment
clocksource/drivers/stm32: Fix all kernel-doc warnings
dt-bindings: timer: exynos4210-mct: Add google,gs101-mct compatible
clocksource/drivers/imx: Fix -Wunused-but-set-variable warning
|
| |\ \ \ \ \
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
https://git.linaro.org/people/daniel.lezcano/linux into timers/core
Pull clocksource/event driver updates from Daniel Lezcano:
- Fix -Wunused-but-set-variable warning for the iMX GPT timer (Daniel
Lezcano)
- Add Pixel6 compatible string for Exynos 4210 MCT timer (Peter Griffin)
- Fix all kernel-doc warnings and misuse of comment format (Randy
Dunlap)
- Document in the DT bindings the interrupt used for input capture
interrupt and udpate the example to match the reality (Geert
Uytterhoeven)
- Document RZ/Five SoC DT bindings (Lad Prabhakar)
- Add DT bindings support for the i.MX95, reorganize the driver to
move globale variables to a timer private structure and introduce
the i.MX95 timer support (Peng Fan)
- Fix prescalar value to conform to the ARM global timer
documentation. Fix data types and comparison, guard the divide by
zero code section and use the available macros for bit manipulation
(Martin Blumenstingl)
- Add Ralink SoCs system tick counter (Sergio Paracuellos)
- Add support for cadence TTC PWM (Mubin Sayyed)
- Clear timer interrupt on timer initialization to prevent the
interrupt to fire during setup (Ley Foon Tan)
Link: https://lore.kernel.org/r/5552010a-1ce2-46a1-a740-a69f2e9a2cf2@linaro.org
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
In the RISC-V specification, the stimecmp register doesn't have a default
value. To prevent the timer interrupt from being triggered during timer
initialization, clear the timer interrupt by writing stimecmp with a
maximum value.
Fixes: 9f7a8ff6391f ("RISC-V: Prefer sstc extension if available")
Cc: <stable@vger.kernel.org>
Signed-off-by: Ley Foon Tan <leyfoon.tan@starfivetech.com>
Reviewed-by: Samuel Holland <samuel.holland@sifive.com>
Tested-by: Samuel Holland <samuel.holland@sifive.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20240306172330.255844-1-leyfoon.tan@starfivetech.com
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Cadence TTC can act as PWM device, it will be supported through
separate PWM framework based driver. Decision to configure
specific TTC device as PWM or clocksource/clockevent would
be done based on presence of "#pwm-cells" property.
Also, interrupt property is not required for TTC PWM driver.
Update bindings to support TTC PWM configuration.
Signed-off-by: Mubin Sayyed <mubin.sayyed@amd.com>
Reviewed-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20240226093333.2581092-1-mubin.sayyed@amd.com
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Use GENMASK() to define the prescaler mask and make the whole driver use
the mask (together with helpers such as FIELD_{GET,PREP,FIT}) instead of
needing an additional shift and max value constant.
Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20240225151336.2728533-4-martin.blumenstingl@googlemail.com
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
The result of the division of new_rate by gt_target_rate can be zero (if
new_rate is smaller than gt_target_rate). Using that result as divisor
without checking can result in a division by zero error. Guard against
this by checking for a zero value earlier.
While here, also change the psv variable to an unsigned long to make
sure we don't overflow the datatype as all other types involved are also
unsiged long.
Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20240225151336.2728533-3-martin.blumenstingl@googlemail.com
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Change the data type of gt_target_rate to unsigned long as this is what
we get back from clk_get_rate().
Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20240225151336.2728533-2-martin.blumenstingl@googlemail.com
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Add YAML doc for the system tick counter which is present on Ralink SoCs.
cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20231212093443.1898591-1-sergio.paracuellos@gmail.com
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Use a common C comment "/*" instead of a kernel-doc marker "/**"
to prevent kernel-doc warnings:
arm_global_timer.c:92: warning: This comment starts with '/**', but isn't a kernel-doc comment. Refer Documentation/doc-guide/kernel-doc.rst
* To ensure that updates to comparator value register do not set the
arm_global_timer.c:92: warning: missing initial short description on line:
* To ensure that updates to comparator value register do not set the
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Patrice Chotard <patrice.chotard@foss.st.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20240115053641.29129-1-rdunlap@infradead.org
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Remove a stray tab in global_timer_of_register() which is different from
the coding style in the rest of the driver.
Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20240218174138.1942418-3-martin.blumenstingl@googlemail.com
|