summaryrefslogtreecommitdiffstats
path: root/arch/arm/kernel/calls.S (follow)
Commit message (Collapse)AuthorAgeFilesLines
* [ARM] 5456/1: add sys_preadv and sys_pwritevMikael Pettersson2009-04-201-0/+2
| | | | | | | | | | | | | | | | | | | | | | | Kernel 2.6.30-rc1 added sys_preadv and sys_pwritev to most archs but not ARM, resulting in <stdin>:1421:2: warning: #warning syscall preadv not implemented <stdin>:1425:2: warning: #warning syscall pwritev not implemented This patch adds sys_preadv and sys_pwritev to ARM. These syscalls simply take five long-sized parameters, so they should have no calling-convention/ABI issues in the kernel. Tested on armv5tel eabi using a preadv/pwritev test program posted on linuxppc-dev earlier this month. It would be nice to get this into the kernel before 2.6.30 final, so that glibc's kernel version feature test for these syscalls doesn't have to special-case ARM. Signed-off-by: Mikael Pettersson <mikpe@it.uu.se> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* [CVE-2009-0029] Rename old_readdir to sys_old_readdirHeiko Carstens2009-01-141-1/+1
| | | | | | This way it matches the generic system call name convention. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
* [ARM] 5193/1: Wire up missing syscallsStefan Schmidt2008-08-121-2/+8
| | | | | | | | Setup some missing syscall pointed out by the checksyscalls.sh script. Fix two small whitespace issues while being there. Signed-off-by: Stefan Schmidt <stefan@datenfreihafen.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* Merge branch 'omap2-upstream' into develRussell King2008-04-191-1/+1
|\
| * [ARM] 4878/1: Add oabi shim for fstatat64Riku Voipio2008-03-281-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | Ccoreutils and other have started using fstatat64. Thus, we need a shim for it if we want to support modern oldabi userlands (such as Debian/arm/lenny) with EABI kernels. See http://bugs.debian.org/462677 Acked-by: Nicolas Pitre <nico@cam.org> Signed-off-by: Riku Voipio <riku.voipio@movial.fi> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* | [ARM] 4852/1: Add timerfd_create, timerfd_settime and timerfd_gettime ↵Uwe Kleine-König2008-04-191-1/+3
|/ | | | | | | syscall entries Signed-off-by: Uwe Kleine-König <Uwe.Kleine-Koenig@digi.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* timerfd: new timerfd APIDavide Libenzi2008-02-051-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is the new timerfd API as it is implemented by the following patch: int timerfd_create(int clockid, int flags); int timerfd_settime(int ufd, int flags, const struct itimerspec *utmr, struct itimerspec *otmr); int timerfd_gettime(int ufd, struct itimerspec *otmr); The timerfd_create() API creates an un-programmed timerfd fd. The "clockid" parameter can be either CLOCK_MONOTONIC or CLOCK_REALTIME. The timerfd_settime() API give new settings by the timerfd fd, by optionally retrieving the previous expiration time (in case the "otmr" parameter is not NULL). The time value specified in "utmr" is absolute, if the TFD_TIMER_ABSTIME bit is set in the "flags" parameter. Otherwise it's a relative time. The timerfd_gettime() API returns the next expiration time of the timer, or {0, 0} if the timerfd has not been set yet. Like the previous timerfd API implementation, read(2) and poll(2) are supported (with the same interface). Here's a simple test program I used to exercise the new timerfd APIs: http://www.xmailserver.org/timerfd-test2.c [akpm@linux-foundation.org: coding-style cleanups] [akpm@linux-foundation.org: fix ia64 build] [akpm@linux-foundation.org: fix m68k build] [akpm@linux-foundation.org: fix mips build] [akpm@linux-foundation.org: fix alpha, arm, blackfin, cris, m68k, s390, sparc and sparc64 builds] [heiko.carstens@de.ibm.com: fix s390] [akpm@linux-foundation.org: fix powerpc build] [akpm@linux-foundation.org: fix sparc64 more] Signed-off-by: Davide Libenzi <davidel@xmailserver.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Davide Libenzi <davidel@xmailserver.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Davide Libenzi <davidel@xmailserver.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [ARM] Add fallocate syscall entryRussell King2007-10-131-0/+1
| | | | Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* Introduce fixed sys_sync_file_range2() syscall, implement on PowerPC and ARMDavid Woodhouse2007-06-281-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | Not all the world is an i386. Many architectures need 64-bit arguments to be aligned in suitable pairs of registers, and the original sys_sync_file_range(int, loff_t, loff_t, int) was therefore wasting an argument register for padding after the first integer. Since we don't normally have more than 6 arguments for system calls, that left no room for the final argument on some architectures. Fix this by introducing sys_sync_file_range2(int, int, loff_t, loff_t) which all fits nicely. In fact, ARM already had that, but called it sys_arm_sync_file_range. Move it to fs/sync.c and rename it, then implement the needed compatibility routine. And stop the missing syscall check from bitching about the absence of sys_sync_file_range() if we've implemented sys_sync_file_range2() instead. Tested on PPC32 and with 32-bit and 64-bit userspace on PPC64. Signed-off-by: David Woodhouse <dwmw2@infradead.org> Acked-by: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [ARM] Update ARM syscallsRussell King2007-05-161-0/+4
| | | | | | | | Add utimensat, signalfd, timerfd, eventfd syscalls. Add ignore defines for sync_file_range and fadvise64_64 which we implement differently. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* [ARM] 4137/1: Add kexec supportRichard Purdie2007-02-161-0/+1
| | | | | | | | | | | | | | | | Add kexec support to ARM. Improvements like commandline handling could be made but this patch gives basic functional support. It uses the next available syscall number, 347. Once the syscall number is known, userspace support will be finalised/submitted to kexec-tools, various patches already exist. Originally based on a patch by Maxim Syrchin but updated and forward ported by various people. Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* [ARM] Add more syscallsRussell King2006-12-171-6/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Add: sys_unshare sys_set_robust_list sys_get_robust_list sys_splice sys_arm_sync_file_range sys_tee sys_vmsplice sys_move_pages sys_getcpu Special note about sys_arm_sync_file_range(), which is implemented as: asmlinkage long sys_arm_sync_file_range(int fd, unsigned int flags, loff_t offset, loff_t nbytes) { return sys_sync_file_range(fd, offset, nbytes, flags); } We can't export sys_sync_file_range() directly on ARM because the argument list someone picked does not fit in the available registers. Would be nice if... there was an arch maintainer review mechanism for new syscalls before they hit the kernel. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* [ARM] Add sys_*at syscallsRussell King2006-12-091-0/+13
| | | | | | Later glibc requires the *at syscalls. Add them. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* [ARM] 3338/1: old ABI compat: sys_socketcallNicolas Pitre2006-02-161-1/+1
| | | | | | | | | | Patch from Nicolas Pitre Commit 99595d0237926b5aba1fe4c844a011a1ba1ee1f8 forgot to intercept sys_socketcall as well. Signed-off-by: Nicolas Pitre <nico@cam.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* [ARM] 3308/1: old ABI compat: struct sockaddr_unNicolas Pitre2006-02-081-4/+4
| | | | | | | | | | | Patch from Nicolas Pitre struct sockaddr_un loses its padding with EABI. Since the size of the structure is used as a validation test in unix_mkname(), we need to change the length argument to 110 whenever it is 112. Signed-off-by: Nicolas Pitre <nico@cam.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* [ARM] safer handling of syscall table paddingAl Viro2006-01-191-332/+329
| | | | | | | | | | | | | | | | | | | | | | | | | | ARM entry-common.S needs to know syscall table size; in itself that would not be a problem, but there's an additional constraint - some of the instructions using it want a constant that would be a multiple of 4. So we have to pad syscall table with sys_ni_syscall and that's where the trouble begins. .rept pseudo-op wants a constant expression for number of repetitions and subtraction of two labels (before and after syscall table) doesn't always get simplified to constant early enough for .rept. If labels end up in different frags, we lose. And while the frag size is large enough (slightly below 4Kb), the syscall table is about 1/3 of that. We used to get away with that, but the recent changes had been enough to trigger the breakage. Proper fix is simple: have a macro (CALL(x)) to populate the table instead of using explicit .long x and the first time we include calls.S have it defined to .equ NR_syscalls,NR_syscalls+1. Then we can find the proper amount of padding on the first inclusion simply by looking at NR_syscalls at that time. And that will be constant, no matter what. Moreover, the same trick kills the need of having an estimate of padded NR_syscalls - it will be calculated for free at the same time. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* [ARM] 3110/5: old ABI compat: multi-ABI syscall entry supportNicolas Pitre2006-01-141-28/+27
| | | | | | | | | | | Patch from Nicolas Pitre This patch adds the required code to support both user space ABIs at the same time. A second syscall table is created to include legacy ABI syscalls that need an ABI compat wrapper. Signed-off-by: Nicolas Pitre <nico@cam.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* [ARM] 3108/2: old ABI compat: statfs64 and fstatfs64Nicolas Pitre2006-01-141-2/+2
| | | | | | | | | | | | Patch from Nicolas Pitre struct statfs64 has extra padding with EABI growing its size from 84 to 88. This struct is now __attribute__((packed,aligned(4))) with a small assembly wrapper to force the sz argument to 84 if it is 88 to avoid copying the extra padding over user space memory unexpecting it. Signed-off-by: Nicolas Pitre <nico@cam.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* [ARM] Fix sys_sendto and sys_recvfrom 6-arg syscallsRussell King2005-12-171-4/+4
| | | | | | | | | | | | | | Rather than providing more wrappers for 6-arg syscalls, arrange for them to be supported as standard. This just means that we always store the 6th argument on the stack, rather than in the wrappers. This means we eliminate the wrappers for: * sys_futex * sys_arm_fadvise64_64 * sys_mbind * sys_ipc Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* [ARM] 2896/1: Add sys_ipc_wrapper to pass 'fifth' argument on stackGeorge G. Davis2005-09-131-1/+1
| | | | | | | | | | | | Patch from George G. Davis As pointed out be Matthew Klahn <MKLAHN@motorola.com>, some sys_ipc() call options require six args, e.g. SEMTIMEDOP. This patch adds an ARM sys_ipc_wrapper to save the sys_ipc() 'fifth' arg on the stack. Signed-off-by: George G. Davis <gdavis@mvista.com> arch/arm/kernel/calls.S | 2 +- arch/arm/kernel/entry-common.S | 5 +++++ Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* [ARM] sys_mbind needs wrappingRussell King2005-09-091-1/+1
| | | | | | | sys_mbind is a 6-arg syscall, hence needs wrapping to save the sixth argument. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* [ARM] Add memory type based allocation syscallsRussell King2005-09-091-1/+4
| | | | | | | Add syscall numbers and syscall table entries for mbind, set_mempolicy and get_mempolicy. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* [ARM] 2865/2: fix fadvise64_64 syscall argument passingNicolas Pitre2005-09-011-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch from Nicolas Pitre The prototype for sys_fadvise64_64() is: long sys_fadvise64_64(int fd, loff_t offset, loff_t len, int advice) The argument list is therefore as follows on legacy ABI: fd: type int (r0) offset: type long long (r1-r2) len: type long long (r3-sp[0]) advice: type int (sp[4]) With EABI this becomes: fd: type int (r0) offset: type long long (r2-r3) len: type long long (sp[0]-sp[4]) advice: type int (sp[8]) Not only do we have ABI differences here, but the EABI version requires one additional word on the syscall stack. To avoid the ABI mismatch and the extra stack space required with EABI this syscall is now defined with a different argument ordering on ARM as follows: long sys_arm_fadvise64_64(int fd, int advice, loff_t offset, loff_t len) This gives us the following ABI independent argument distribution: fd: type int (r0) advice: type int (r1) offset: type long long (r2-r3) len: type long long (sp[0]-sp[4]) Now, since the syscall entry code takes care of 5 registers only by default including the store of r4 to the stack, we need a wrapper to store r5 to the stack as well. Because that wrapper was missing and was always required this means that sys_fadvise64_64 never worked on ARM and therefore we can safely reuse its syscall number for our new sys_arm_fadvise64_64 interface. Signed-off-by: Nicolas Pitre <nico@cam.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* [ARM] Add syscall stubs for inotify and ioprio system callsRobert Love2005-08-151-0/+6
| | | | | Signed-off-by: Robert Love <rml@novell.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds2005-04-171-0/+335
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!