summaryrefslogtreecommitdiffstats
path: root/arch/arm64/crypto (follow)
Commit message (Collapse)AuthorAgeFilesLines
* Merge tag 'kbuild-v4.21' of ↵Linus Torvalds2018-12-291-1/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: "Kbuild core: - remove unneeded $(call cc-option,...) switches - consolidate Clang compiler flags into CLANG_FLAGS - announce the deprecation of SUBDIRS - fix single target build for external module - simplify the dependencies of 'prepare' stage targets - allow fixdep to directly write to .*.cmd files - simplify dependency generation for CONFIG_TRIM_UNUSED_KSYMS - change if_changed_rule to accept multi-line recipe - move .SECONDARY special target to scripts/Kbuild.include - remove redundant 'set -e' - improve parallel execution for CONFIG_HEADERS_CHECK - misc cleanups Treewide fixes and cleanups - set Clang flags correctly for PowerPC boot images - fix UML build error with CONFIG_GCC_PLUGINS - remove unneeded patterns from .gitignore files - refactor firmware/Makefile - remove unneeded rules for *offsets.s - avoid unneeded regeneration of intermediate .s files - clean up ./Kbuild Modpost: - remove unused -M, -K options - fix false positive warnings about section mismatch - use simple devtable lookup instead of linker magic - misc cleanups Coccinelle: - relax boolinit.cocci checks for overall consistency - fix warning messages of boolinit.cocci Other tools: - improve -dirty check of scripts/setlocalversion - add a tool to generate compile_commands.json from .*.cmd files" * tag 'kbuild-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (51 commits) kbuild: remove unused cmd_gentimeconst kbuild: remove $(obj)/ prefixes in ./Kbuild treewide: add intermediate .s files to targets treewide: remove explicit rules for *offsets.s firmware: refactor firmware/Makefile firmware: remove unnecessary patterns from .gitignore scripts: remove unnecessary ihex2fw and check-lc_ctypes from .gitignore um: remove unused filechk_gen_header in Makefile scripts: add a tool to produce a compile_commands.json file kbuild: add -Werror=implicit-int flag unconditionally kbuild: add -Werror=strict-prototypes flag unconditionally kbuild: add -fno-PIE flag unconditionally scripts: coccinelle: Correct warning message scripts: coccinelle: only suggest true/false in files that already use them kbuild: handle part-of-module correctly for *.ll and *.symtypes kbuild: refactor part-of-module kbuild: refactor quiet_modtag kbuild: remove redundant quiet_modtag for $(obj-m) kbuild: refactor Makefile.asm-generic user/Makefile: Fix typo and capitalization in comment section ...
| * kbuild: move .SECONDARY special target to Kbuild.includeMasahiro Yamada2018-12-021-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In commit 54a702f70589 ("kbuild: mark $(targets) as .SECONDARY and remove .PRECIOUS markers"), I missed one important feature of the .SECONDARY target: .SECONDARY with no prerequisites causes all targets to be treated as secondary. ... which agrees with the policy of Kbuild. Let's move it to scripts/Kbuild.include, with no prerequisites. Note: If an intermediate file is generated by $(call if_changed,...), you still need to add it to "targets" so its .*.cmd file is included. The arm/arm64 crypto files are generated by $(call cmd,shipped), so they do not need to be added to "targets", but need to be added to "clean-files" so "make clean" can properly clean them away. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
* | crypto: arm64/chacha - use combined SIMD/ALU routine for more speedArd Biesheuvel2018-12-132-35/+239
| | | | | | | | | | | | | | | | | | | | | | To some degree, most known AArch64 micro-architectures appear to be able to issue ALU instructions in parellel to SIMD instructions without affecting the SIMD throughput. This means we can use the ALU to process a fifth ChaCha block while the SIMD is processing four blocks in parallel. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* | crypto: arm64/chacha - optimize for arbitrary length inputsArd Biesheuvel2018-12-132-37/+184
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Update the 4-way NEON ChaCha routine so it can handle input of any length >64 bytes in its entirety, rather than having to call into the 1-way routine and/or memcpy()s via temp buffers to handle the tail of a ChaCha invocation that is not a multiple of 256 bytes. On inputs that are a multiple of 256 bytes (and thus in tcrypt benchmarks), performance drops by around 1% on Cortex-A57, while performance for inputs drawn randomly from the range [64, 1024) increases by around 30%. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* | crypto: arm64/chacha - add XChaCha12 supportEric Biggers2018-12-132-1/+19
| | | | | | | | | | | | | | | | | | | | | | Now that the ARM64 NEON implementation of ChaCha20 and XChaCha20 has been refactored to support varying the number of rounds, add support for XChaCha12. This is identical to XChaCha20 except for the number of rounds, which is 12 instead of 20. This can be used by Adiantum. Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* | crypto: arm64/chacha20 - refactor to allow varying number of roundsEric Biggers2018-12-133-49/+57
| | | | | | | | | | | | | | | | | | In preparation for adding XChaCha12 support, rename/refactor the ARM64 NEON implementation of ChaCha20 to support different numbers of rounds. Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* | crypto: arm64/chacha20 - add XChaCha20 supportEric Biggers2018-12-133-43/+125
| | | | | | | | | | | | | | | | | | | | | | | | | | Add an XChaCha20 implementation that is hooked up to the ARM64 NEON implementation of ChaCha20. This can be used by Adiantum. A NEON implementation of single-block HChaCha20 is also added so that XChaCha20 can use it rather than the generic implementation. This required refactoring the ChaCha20 permutation into its own function. Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* | crypto: arm64/nhpoly1305 - add NEON-accelerated NHPoly1305Eric Biggers2018-12-134-0/+188
| | | | | | | | | | | | | | | | | | | | | | | | Add an ARM64 NEON implementation of NHPoly1305, an ε-almost-∆-universal hash function used in the Adiantum encryption mode. For now, only the NH portion is actually NEON-accelerated; the Poly1305 part is less performance-critical so is just implemented in C. Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> # big-endian Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* | crypto: chacha20-generic - refactor to allow varying number of roundsEric Biggers2018-11-201-20/+20
|/ | | | | | | | | | | | | | | | | | | | | | | | | | In preparation for adding XChaCha12 support, rename/refactor chacha20-generic to support different numbers of rounds. The justification for needing XChaCha12 support is explained in more detail in the patch "crypto: chacha - add XChaCha12 support". The only difference between ChaCha{8,12,20} are the number of rounds itself; all other parts of the algorithm are the same. Therefore, remove the "20" from all definitions, structures, functions, files, etc. that will be shared by all ChaCha versions. Also make ->setkey() store the round count in the chacha_ctx (previously chacha20_ctx). The generic code then passes the round count through to chacha_block(). There will be a ->setkey() function for each explicitly allowed round count; the encrypt/decrypt functions will be the same. I decided not to do it the opposite way (same ->setkey() function for all round counts, with different encrypt/decrypt functions) because that would have required more boilerplate code in architecture-specific implementations of ChaCha and XChaCha. Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Martin Willi <martin@strongswan.org> Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/aes-blk - ensure XTS mask is always loadedArd Biesheuvel2018-10-121-4/+4
| | | | | | | | | | | | | | Commit 2e5d2f33d1db ("crypto: arm64/aes-blk - improve XTS mask handling") optimized away some reloads of the XTS mask vector, but failed to take into account that calls into the XTS en/decrypt routines will take a slightly different code path if a single block of input is split across different buffers. So let's ensure that the first load occurs unconditionally, and move the reload to the end so it doesn't occur needlessly. Fixes: 2e5d2f33d1db ("crypto: arm64/aes-blk - improve XTS mask handling") Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/aes - fix handling sub-block CTS-CBC inputsEric Biggers2018-10-081-4/+9
| | | | | | | | | | | | In the new arm64 CTS-CBC implementation, return an error code rather than crashing on inputs shorter than AES_BLOCK_SIZE bytes. Also set cra_blocksize to AES_BLOCK_SIZE (like is done in the cts template) to indicate the minimum input size. Fixes: dd597fb33ff0 ("crypto: arm64/aes-blk - add support for CTS-CBC mode") Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/aes-blk - improve XTS mask handlingArd Biesheuvel2018-09-213-19/+32
| | | | | | | | | | | | | | | | | | | The Crypto Extension instantiation of the aes-modes.S collection of skciphers uses only 15 NEON registers for the round key array, whereas the pure NEON flavor uses 16 NEON registers for the AES S-box. This means we have a spare register available that we can use to hold the XTS mask vector, removing the need to reload it at every iteration of the inner loop. Since the pure NEON version does not permit this optimization, tweak the macros so we can factor out this functionality. Also, replace the literal load with a short sequence to compose the mask vector. On Cortex-A53, this results in a ~4% speedup. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/aes-blk - add support for CTS-CBC modeArd Biesheuvel2018-09-212-1/+243
| | | | | | | | | | | | | Currently, we rely on the generic CTS chaining mode wrapper to instantiate the cts(cbc(aes)) skcipher. Due to the high performance of the ARMv8 Crypto Extensions AES instructions (~1 cycles per byte), any overhead in the chaining mode layers is amplified, and so it pays off considerably to fold the CTS handling into the SIMD routines. On Cortex-A53, this results in a ~50% speedup for smaller input sizes. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/aes-blk - revert NEON yield for skciphersArd Biesheuvel2018-09-211-173/+108
| | | | | | | | | | | | | | The reasoning of commit f10dc56c64bb ("crypto: arm64 - revert NEON yield for fast AEAD implementations") applies equally to skciphers: the walk API already guarantees that the input size of each call into the NEON code is bounded to the size of a page, and so there is no need for an additional TIF_NEED_RESCHED flag check inside the inner loop. So revert the skcipher changes to aes-modes.S (but retain the mac ones) This partially reverts commit 0c8f838a52fe9fd82761861a934f16ef9896b4e5. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/aes-blk - remove pointless (u8 *) castsArd Biesheuvel2018-09-211-24/+23
| | | | | | | | | | For some reason, the asmlinkage prototypes of the NEON routines take u8[] arguments for the round key arrays, while the actual round keys are arrays of u32, and so passing them into those routines requires u8* casts at each occurrence. Fix that. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/crct10dif - implement non-Crypto Extensions alternativeArd Biesheuvel2018-09-042-2/+162
| | | | | | | | | | | | | | | | The arm64 implementation of the CRC-T10DIF algorithm uses the 64x64 bit polynomial multiplication instructions, which are optional in the architecture, and if these instructions are not available, we fall back to the C routine which is slow and inefficient. So let's reuse the 64x64 bit PMULL alternative from the GHASH driver that uses a sequence of ~40 instructions involving 8x8 bit PMULL and some shifting and masking. This is a lot slower than the original, but it is still twice as fast as the current [unoptimized] C code on Cortex-A53, and it is time invariant and much easier on the D-cache. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/crct10dif - preparatory refactor for 8x8 PMULL versionArd Biesheuvel2018-09-042-76/+90
| | | | | | | | | Reorganize the CRC-T10DIF asm routine so we can easily instantiate an alternative version based on 8x8 polynomial multiplication in a subsequent patch. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/crc32 - remove PMULL based CRC32 driverArd Biesheuvel2018-09-044-539/+0
| | | | | | | | | | | | | | | | | | Now that the scalar fallbacks have been moved out of this driver into the core crc32()/crc32c() routines, we are left with a CRC32 crypto API driver for arm64 that is based only on 64x64 polynomial multiplication, which is an optional instruction in the ARMv8 architecture, and is less and less likely to be available on cores that do not also implement the CRC32 instructions, given that those are mandatory in the architecture as of ARMv8.1. Since the scalar instructions do not require the special handling that SIMD instructions do, and since they turn out to be considerably faster on some cores (Cortex-A53) as well, there is really no point in keeping this code around so let's just remove it. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/aes-modes - get rid of literal load of addend vectorArd Biesheuvel2018-09-041-7/+9
| | | | | | | | | | | | | | | | Replace the literal load of the addend vector with a sequence that performs each add individually. This sequence is only 2 instructions longer than the original, and 2% faster on Cortex-A53. This is an improvement by itself, but also works around a Clang issue, whose integrated assembler does not implement the GNU ARM asm syntax completely, and does not support the =literal notation for FP registers (more info at https://bugs.llvm.org/show_bug.cgi?id=38642) Cc: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: speck - remove SpeckJason A. Donenfeld2018-09-044-643/+0
| | | | | | | | | | | | | | | | These are unused, undesired, and have never actually been used by anybody. The original authors of this code have changed their mind about its inclusion. While originally proposed for disk encryption on low-end devices, the idea was discarded [1] in favor of something else before that could really get going. Therefore, this patch removes Speck. [1] https://marc.info/?l=linux-crypto-vger&m=153359499015659 Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Acked-by: Eric Biggers <ebiggers@google.com> Cc: stable@vger.kernel.org Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/aes-gcm-ce - fix scatterwalk API violationArd Biesheuvel2018-08-251-6/+23
| | | | | | | | | | | | | | | | | | | | | | | | Commit 71e52c278c54 ("crypto: arm64/aes-ce-gcm - operate on two input blocks at a time") modified the granularity at which the AES/GCM code processes its input to allow subsequent changes to be applied that improve performance by using aggregation to process multiple input blocks at once. For this reason, it doubled the algorithm's 'chunksize' property to 2 x AES_BLOCK_SIZE, but retained the non-SIMD fallback path that processes a single block at a time. In some cases, this violates the skcipher scatterwalk API, by calling skcipher_walk_done() with a non-zero residue value for a chunk that is expected to be handled in its entirety. This results in a WARN_ON() to be hit by the TLS self test code, but is likely to break other user cases as well. Unfortunately, none of the current test cases exercises this exact code path at the moment. Fixes: 71e52c278c54 ("crypto: arm64/aes-ce-gcm - operate on two ...") Reported-by: Vakul Garg <vakul.garg@nxp.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Vakul Garg <vakul.garg@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/sm4-ce - check for the right CPU feature bitArd Biesheuvel2018-08-251-1/+1
| | | | | | | | | | | | | ARMv8.2 specifies special instructions for the SM3 cryptographic hash and the SM4 symmetric cipher. While it is unlikely that a core would implement one and not the other, we should only use SM4 instructions if the SM4 CPU feature bit is set, and we currently check the SM3 feature bit instead. So fix that. Fixes: e99ce921c468 ("crypto: arm64 - add support for SM4...") Cc: <stable@vger.kernel.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/ghash-ce - implement 4-way aggregationArd Biesheuvel2018-08-072-51/+142
| | | | | | | | | | Enhance the GHASH implementation that uses 64-bit polynomial multiplication by adding support for 4-way aggregation. This more than doubles the performance, from 2.4 cycles per byte to 1.1 cpb on Cortex-A53. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/ghash-ce - replace NEON yield check with block limitArd Biesheuvel2018-08-072-32/+23
| | | | | | | | | | | | | | | | | | | | | Checking the TIF_NEED_RESCHED flag is disproportionately costly on cores with fast crypto instructions and comparatively slow memory accesses. On algorithms such as GHASH, which executes at ~1 cycle per byte on cores that implement support for 64 bit polynomial multiplication, there is really no need to check the TIF_NEED_RESCHED particularly often, and so we can remove the NEON yield check from the assembler routines. However, unlike the AEAD or skcipher APIs, the shash/ahash APIs take arbitrary input lengths, and so there needs to be some sanity check to ensure that we don't hog the CPU for excessive amounts of time. So let's simply cap the maximum input size that is processed in one go to 64 KB. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/aes-ce-gcm - don't reload key schedule if avoidableArd Biesheuvel2018-08-072-41/+49
| | | | | | | | | | | | Squeeze out another 5% of performance by minimizing the number of invocations of kernel_neon_begin()/kernel_neon_end() on the common path, which also allows some reloads of the key schedule to be optimized away. The resulting code runs at 2.3 cycles per byte on a Cortex-A53. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/aes-ce-gcm - implement 2-way aggregationArd Biesheuvel2018-08-072-68/+52
| | | | | | | | | | | | Implement a faster version of the GHASH transform which amortizes the reduction modulo the characteristic polynomial across two input blocks at a time. On a Cortex-A53, the gcm(aes) performance increases 24%, from 3.0 cycles per byte to 2.4 cpb for large input sizes. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/aes-ce-gcm - operate on two input blocks at a timeArd Biesheuvel2018-08-072-69/+161
| | | | | | | | | | Update the core AES/GCM transform and the associated plumbing to operate on 2 AES/GHASH blocks at a time. By itself, this is not expected to result in a noticeable speedup, but it paves the way for reimplementing the GHASH component using 2-way aggregation. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6Herbert Xu2018-08-072-146/+80
|\ | | | | | | Merge crypto-2.6 to pick up NEON yield revert.
| * crypto: arm64 - revert NEON yield for fast AEAD implementationsArd Biesheuvel2018-08-072-146/+80
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As it turns out, checking the TIF_NEED_RESCHED flag after each iteration results in a significant performance regression (~10%) when running fast algorithms (i.e., ones that use special instructions and operate in the < 4 cycles per byte range) on in-order cores with comparatively slow memory accesses such as the Cortex-A53. Given the speed of these ciphers, and the fact that the page based nature of the AEAD scatterwalk API guarantees that the core NEON transform is never invoked with more than a single page's worth of input, we can estimate the worst case duration of any resulting scheduling blackout: on a 1 GHz Cortex-A53 running with 64k pages, processing a page's worth of input at 4 cycles per byte results in a delay of ~250 us, which is a reasonable upper bound. So let's remove the yield checks from the fused AES-CCM and AES-GCM routines entirely. This reverts commit 7b67ae4d5ce8e2f912377f5fbccb95811a92097f and partially reverts commit 7c50136a8aba8784f07fb66a950cc61a7f3d2ee3. Fixes: 7c50136a8aba ("crypto: arm64/aes-ghash - yield NEON after every ...") Fixes: 7b67ae4d5ce8 ("crypto: arm64/aes-ccm - yield NEON after every ...") Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* | Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linuxHerbert Xu2018-08-032-3/+7
|\ \ | | | | | | | | | | | | Merge mainline to pick up c7513c2a2714 ("crypto/arm64: aes-ce-gcm - add missing kernel_neon_begin/end pair").
| * | crypto/arm64: aes-ce-gcm - add missing kernel_neon_begin/end pairArd Biesheuvel2018-07-311-2/+6
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | Calling pmull_gcm_encrypt_block() requires kernel_neon_begin() and kernel_neon_end() to be used since the routine touches the NEON register file. Add the missing calls. Also, since NEON register contents are not preserved outside of a kernel mode NEON region, pass the key schedule array again. Fixes: 7c50136a8aba ("crypto: arm64/aes-ghash - yield NEON after every ...") Acked-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
| * crypto: arm64/aes-blk - fix and move skcipher_walk_done out of ↵Jia He2018-06-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | kernel_neon_begin, _end In a arm64 server(QDF2400),I met a similar might-sleep warning as [1]: [ 7.019116] BUG: sleeping function called from invalid context at ./include/crypto/algapi.h:416 [ 7.027863] in_atomic(): 1, irqs_disabled(): 0, pid: 410, name: cryptomgr_test [ 7.035106] 1 lock held by cryptomgr_test/410: [ 7.039549] #0: (ptrval) (&drbg->drbg_mutex){+.+.}, at: drbg_instantiate+0x34/0x398 [ 7.048038] CPU: 9 PID: 410 Comm: cryptomgr_test Not tainted 4.17.0-rc6+ #27 [ 7.068228] dump_backtrace+0x0/0x1c0 [ 7.071890] show_stack+0x24/0x30 [ 7.075208] dump_stack+0xb0/0xec [ 7.078523] ___might_sleep+0x160/0x238 [ 7.082360] skcipher_walk_done+0x118/0x2c8 [ 7.086545] ctr_encrypt+0x98/0x130 [ 7.090035] simd_skcipher_encrypt+0x68/0xc0 [ 7.094304] drbg_kcapi_sym_ctr+0xd4/0x1f8 [ 7.098400] drbg_ctr_update+0x98/0x330 [ 7.102236] drbg_seed+0x1b8/0x2f0 [ 7.105637] drbg_instantiate+0x2ac/0x398 [ 7.109646] drbg_kcapi_seed+0xbc/0x188 [ 7.113482] crypto_rng_reset+0x4c/0xb0 [ 7.117319] alg_test_drbg+0xec/0x330 [ 7.120981] alg_test.part.6+0x1c8/0x3c8 [ 7.124903] alg_test+0x58/0xa0 [ 7.128044] cryptomgr_test+0x50/0x58 [ 7.131708] kthread+0x134/0x138 [ 7.134936] ret_from_fork+0x10/0x1c Seems there is a bug in Ard Biesheuvel's commit. Fixes: 683381747270 ("crypto: arm64/aes-blk - move kernel mode neon en/disable into loop") [1] https://www.spinics.net/lists/linux-crypto/msg33103.html Signed-off-by: jia.he@hxt-semitech.com Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: <stable@vger.kernel.org> # 4.17 Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* | crypto: arm64/sha256 - increase cra_priority of scalar implementationsEric Biggers2018-07-271-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit b73b7ac0a774 ("crypto: sha256_generic - add cra_priority") gave sha256-generic and sha224-generic a cra_priority of 100, to match the convention for generic implementations. But sha256-arm64 and sha224-arm64 also have priority 100, so their order relative to the generic implementations became ambiguous. Therefore, increase their priority to 125 so that they have higher priority than the generic implementations but lower priority than the NEON implementations which have priority 150. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* | crypto: shash - remove useless setting of type flagsEric Biggers2018-07-089-20/+0
|/ | | | | | | | | | | | | | | Many shash algorithms set .cra_flags = CRYPTO_ALG_TYPE_SHASH. But this is redundant with the C structure type ('struct shash_alg'), and crypto_register_shash() already sets the type flag automatically, clearing any type flag that was already there. Apparently the useless assignment has just been copy+pasted around. So, remove the useless assignment from all the shash algorithms. This patch shouldn't change any actual behavior. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: clarify licensing of OpenSSL asm codeAdam Langley2018-05-303-6/+30
| | | | | | | | | | | | | | | | | | | | | | | | | Several source files have been taken from OpenSSL. In some of them a comment that "permission to use under GPL terms is granted" was included below a contradictory license statement. In several cases, there was no indication that the license of the code was compatible with the GPLv2. This change clarifies the licensing for all of these files. I've confirmed with the author (Andy Polyakov) that a) he has licensed the files with the GPLv2 comment under that license and b) that he's also happy to license the other files under GPLv2 too. In one case, the file is already contained in his CRYPTOGAMS bundle, which has a GPLv2 option, and so no special measures are needed. In all cases, the license status of code has been clarified by making the GPLv2 license prominent. The .S files have been regenerated from the updated .pl files. This is a comment-only change. No code is changed. Signed-off-by: Adam Langley <agl@chromium.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/sha512-ce - yield NEON after every block of inputArd Biesheuvel2018-05-111-6/+21
| | | | | | | | Avoid excessive scheduling delays under a preemptible kernel by conditionally yielding the NEON after every block of input. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/sha3-ce - yield NEON after every block of inputArd Biesheuvel2018-05-111-27/+50
| | | | | | | | Avoid excessive scheduling delays under a preemptible kernel by conditionally yielding the NEON after every block of input. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/crct10dif-ce - yield NEON after every block of inputArd Biesheuvel2018-05-111-4/+28
| | | | | | | | Avoid excessive scheduling delays under a preemptible kernel by yielding the NEON after every block of input. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/crc32-ce - yield NEON after every block of inputArd Biesheuvel2018-05-111-10/+30
| | | | | | | | Avoid excessive scheduling delays under a preemptible kernel by yielding the NEON after every block of input. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/aes-ghash - yield NEON after every block of inputArd Biesheuvel2018-05-112-44/+97
| | | | | | | | Avoid excessive scheduling delays under a preemptible kernel by yielding the NEON after every block of input. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/aes-bs - yield NEON after every block of inputArd Biesheuvel2018-05-111-135/+170
| | | | | | | | Avoid excessive scheduling delays under a preemptible kernel by yielding the NEON after every block of input. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/aes-blk - yield NEON after every block of inputArd Biesheuvel2018-05-112-130/+216
| | | | | | | | Avoid excessive scheduling delays under a preemptible kernel by yielding the NEON after every block of input. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/aes-ccm - yield NEON after every block of inputArd Biesheuvel2018-05-111-55/+95
| | | | | | | | Avoid excessive scheduling delays under a preemptible kernel by yielding the NEON after every block of input. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/sha2-ce - yield NEON after every block of inputArd Biesheuvel2018-05-111-11/+26
| | | | | | | | Avoid excessive scheduling delays under a preemptible kernel by yielding the NEON after every block of input. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/sha1-ce - yield NEON after every block of inputArd Biesheuvel2018-05-111-13/+29
| | | | | | | | Avoid excessive scheduling delays under a preemptible kernel by yielding the NEON after every block of input. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64 - add support for SM4 encryption using special instructionsArd Biesheuvel2018-05-054-0/+118
| | | | | | | | Add support for the SM4 symmetric cipher implemented using the special SM4 instructions introduced in ARM architecture revision 8.2. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* kbuild: mark $(targets) as .SECONDARY and remove .PRECIOUS markersMasahiro Yamada2018-04-071-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | GNU Make automatically deletes intermediate files that are updated in a chain of pattern rules. Example 1) %.dtb.o <- %.dtb.S <- %.dtb <- %.dts Example 2) %.o <- %.c <- %.c_shipped A couple of makefiles mark such targets as .PRECIOUS to prevent Make from deleting them, but the correct way is to use .SECONDARY. .SECONDARY Prerequisites of this special target are treated as intermediate files but are never automatically deleted. .PRECIOUS When make is interrupted during execution, it may delete the target file it is updating if the file was modified since make started. If you mark the file as precious, make will never delete the file if interrupted. Both can avoid deletion of intermediate files, but the difference is the behavior when Make is interrupted; .SECONDARY deletes the target, but .PRECIOUS does not. The use of .PRECIOUS is relatively rare since we do not want to keep partially constructed (possibly corrupted) targets. Another difference is that .PRECIOUS works with pattern rules whereas .SECONDARY does not. .PRECIOUS: $(obj)/%.lex.c works, but .SECONDARY: $(obj)/%.lex.c has no effect. However, for the reason above, I do not want to use .PRECIOUS which could cause obscure build breakage. The targets specified as .SECONDARY must be explicit. $(targets) contains all targets that need to include .*.cmd files. So, the intermediates you want to keep are mostly in there. Therefore, mark $(targets) as .SECONDARY. It means primary targets are also marked as .SECONDARY, but I do not see any drawback for this. I replaced some .SECONDARY / .PRECIOUS markers with 'targets'. This will make Kbuild search for non-existing .*.cmd files, but this is not a noticeable performance issue. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Frank Rowand <frowand.list@gmail.com> Acked-by: Ingo Molnar <mingo@kernel.org>
* crypto: arm,arm64 - Fix random regeneration of S_shippedLeonard Crestez2018-03-231-0/+2
| | | | | | | | | | | | | | | | | | | | | | The decision to rebuild .S_shipped is made based on the relative timestamps of .S_shipped and .pl files but git makes this essentially random. This means that the perl script might run anyway (usually at most once per checkout), defeating the whole purpose of _shipped. Fix by skipping the rule unless explicit make variables are provided: REGENERATE_ARM_CRYPTO or REGENERATE_ARM64_CRYPTO. This can produce nasty occasional build failures downstream, for example for toolchains with broken perl. The solution is minimally intrusive to make it easier to push into stable. Another report on a similar issue here: https://lkml.org/lkml/2018/3/8/1379 Signed-off-by: Leonard Crestez <leonard.crestez@nxp.com> Cc: <stable@vger.kernel.org> Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/sha256-neon - play nice with CONFIG_PREEMPT kernelsArd Biesheuvel2018-03-161-13/+23
| | | | | | | | | | | | Tweak the SHA256 update routines to invoke the SHA256 block transform block by block, to avoid excessive scheduling delays caused by the NEON algorithm running with preemption disabled. Also, remove a stale comment which no longer applies now that kernel mode NEON is actually disallowed in some contexts. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm64/aes-blk - add 4 way interleave to CBC-MAC encrypt pathArd Biesheuvel2018-03-161-2/+21
| | | | | | | | | | | | | | | CBC MAC is strictly sequential, and so the current AES code simply processes the input one block at a time. However, we are about to add yield support, which adds a bit of overhead, and which we prefer to align with other modes in terms of granularity (i.e., it is better to have all routines yield every 64 bytes and not have an exception for CBC MAC which yields every 16 bytes) So unroll the loop by 4. We still cannot perform the AES algorithm in parallel, but we can at least merge the loads and stores. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>