| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing fixes from Steven Rostedt:
- Fix bad git merge of #endif in arm64 code
A merge of the arm64 tree caused #endif to go into the wrong place
- Fix crash on lseek of write access to tracefs/error_log
Opening error_log as write only, and then doing an lseek() causes a
kernel panic, because the lseek() handle expects a "seq_file" to
exist (which is not done on write only opens). Use tracing_lseek()
that tests for this instead of calling the default seq lseek handler.
- Check for negative instead of -E2BIG for error on strscpy() returns
Instead of testing for -E2BIG from strscpy(), to be more robust,
check for less than zero, which will make sure it catches any error
that strscpy() may someday return.
* tag 'trace-v6.5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing/boot: Test strscpy() against less than zero for error
arm64: ftrace: fix build error with CONFIG_FUNCTION_GRAPH_TRACER=n
tracing: Fix null pointer dereference in tracing_err_log_open()
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
It appears that a merge conflict ended up hiding a newly added constant
in some configurations:
arch/arm64/kernel/entry-ftrace.S: Assembler messages:
arch/arm64/kernel/entry-ftrace.S:59: Error: undefined symbol FTRACE_OPS_DIRECT_CALL used as an immediate value
FTRACE_OPS_DIRECT_CALL is still used when CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
is enabled, even if CONFIG_FUNCTION_GRAPH_TRACER is disabled, so change the
ifdef accordingly.
Link: https://lkml.kernel.org/r/20230623152204.2216297-1-arnd@kernel.org
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Donglin Peng <pengdonglin@sangfor.com.cn>
Fixes: 3646970322464 ("arm64: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Florent Revest <revest@chromium.org>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org> # build-tested
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull asm-generic updates from Arnd Bergmann:
"These are cleanups for architecture specific header files:
- the comments in include/linux/syscalls.h have gone out of sync and
are really pointless, so these get removed
- The asm/bitsperlong.h header no longer needs to be architecture
specific on modern compilers, so use a generic version for newer
architectures that use new enough userspace compilers
- A cleanup for virt_to_pfn/virt_to_bus to have proper type checking,
forcing the use of pointers"
* tag 'asm-generic-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
syscalls: Remove file path comments from headers
tools arch: Remove uapi bitsperlong.h of hexagon and microblaze
asm-generic: Unify uapi bitsperlong.h for arm64, riscv and loongarch
m68k/mm: Make pfn accessors static inlines
arm64: memory: Make virt_to_pfn() a static inline
ARM: mm: Make virt_to_pfn() a static inline
asm-generic/page.h: Make pfn accessors static inlines
xen/netback: Pass (void *) to virt_to_page()
netfs: Pass a pointer to virt_to_page()
cifs: Pass a pointer to virt_to_page() in cifsglob
cifs: Pass a pointer to virt_to_page()
riscv: mm: init: Pass a pointer to virt_to_page()
ARC: init: Pass a pointer to virt_to_pfn() in init
m68k: Pass a pointer to virt_to_pfn() virt_to_page()
fs/proc/kcore.c: Pass a pointer to virt_addr_valid()
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Now we specify the minimal version of GCC as 5.1 and Clang/LLVM as 11.0.0
in Documentation/process/changes.rst, __CHAR_BIT__ and __SIZEOF_LONG__ are
usable, it is probably fine to unify the definition of __BITS_PER_LONG as
(__CHAR_BIT__ * __SIZEOF_LONG__) in asm-generic uapi bitsperlong.h.
In order to keep safe and avoid regression, only unify uapi bitsperlong.h
for some archs such as arm64, riscv and loongarch which are using newer
toolchains that have the definitions of __CHAR_BIT__ and __SIZEOF_LONG__.
Suggested-by: Xi Ruoyao <xry111@xry111.site>
Link: https://lore.kernel.org/all/d3e255e4746de44c9903c4433616d44ffcf18d1b.camel@xry111.site/
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/linux-arch/a3a4f48a-07d4-4ed9-bc53-5d383428bdd2@app.fastmail.com/
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
| |\ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-integrator into asm-generic
This is an attempt to harden the typing on virt_to_pfn()
and pfn_to_virt().
Making virt_to_pfn() a static inline taking a strongly typed
(const void *) makes the contract of a passing a pointer of that
type to the function explicit and exposes any misuse of the
macro virt_to_pfn() acting polymorphic and accepting many types
such as (void *), (unitptr_t) or (unsigned long) as arguments
without warnings.
For symmetry, we do the same with pfn_to_virt().
The problem with this inconsistent typing was pointed out by
Russell King:
https://lore.kernel.org/linux-arm-kernel/YoJDKJXc0MJ2QZTb@shell.armlinux.org.uk/
And confirmed by Andrew Morton:
https://lore.kernel.org/linux-mm/20220701160004.2ffff4e5ab59a55499f4c736@linux-foundation.org/
So the recognition of the problem is widespread.
These platforms have been chosen as initial conversion targets:
- ARM
- ARM64/Aarch64
- asm-generic (including for example x86)
- m68k
The idea is that if this goes in, it will block further misuse
of the function signatures due to the large compile coverage,
and then I can go in and fix the remaining architectures on a
one-by-one basis.
Some of the patches have been circulated before but were not
picked up by subsystem maintainers, so now the arch tree is
target for this series.
It has passed zeroday builds after a lot of iterations in my
personal tree, but there could be some randconfig outliers.
New added or deeply hidden problems appear all the time so
some minor fallout can be expected.
* tag 'virt-to-pfn-for-arch-v6.5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-integrator:
m68k/mm: Make pfn accessors static inlines
arm64: memory: Make virt_to_pfn() a static inline
ARM: mm: Make virt_to_pfn() a static inline
asm-generic/page.h: Make pfn accessors static inlines
xen/netback: Pass (void *) to virt_to_page()
netfs: Pass a pointer to virt_to_page()
cifs: Pass a pointer to virt_to_page() in cifsglob
cifs: Pass a pointer to virt_to_page()
riscv: mm: init: Pass a pointer to virt_to_page()
ARC: init: Pass a pointer to virt_to_pfn() in init
m68k: Pass a pointer to virt_to_pfn() virt_to_page()
fs/proc/kcore.c: Pass a pointer to virt_addr_valid()
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Making virt_to_pfn() a static inline taking a strongly typed
(const void *) makes the contract of a passing a pointer of that
type to the function explicit and exposes any misuse of the
macro virt_to_pfn() acting polymorphic and accepting many types
such as (void *), (unitptr_t) or (unsigned long) as arguments
without warnings.
Since arm64 is using <asm-generic/memory_model.h> to provide
__phys_to_pfn() we need to move the inclusion of that header
up, so we can resolve the static inline at compile time.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
|
|\ \ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/peterz/queue
Pull scope-based resource management infrastructure from Peter Zijlstra:
"These are the first few patches in the Scope-based Resource Management
series that introduce the infrastructure but not any conversions as of
yet.
Adding the infrastructure now allows multiple people to start using
them.
Of note is that Sparse will need some work since it doesn't yet
understand this attribute and might have decl-after-stmt issues"
* tag 'core_guards_for_6.5_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/peterz/queue:
kbuild: Drop -Wdeclaration-after-statement
locking: Introduce __cleanup() based infrastructure
apparmor: Free up __cleanup() name
dmaengine: ioat: Free up __cleanup() name
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
With the advent on scope-based resource management it comes really
tedious to abide by the contraints of -Wdeclaration-after-statement.
It will still be recommeneded to place declarations at the start of a
scope where possible, but it will no longer be enforced.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/CAHk-%3Dwi-RyoUhbChiVaJZoZXheAwnJ7OO%3DGxe85BkPAd93TwDA%40mail.gmail.com
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Commit ae870a68b5d1 ("arm64/mm: Convert to using
lock_mm_and_find_vma()") made do_page_fault() to use 'vma' even if
CONFIG_PER_VMA_LOCK is not defined, but the declaration is still in the
ifdef.
As a result, building kernel without the config fails with undeclared
variable error as below:
arch/arm64/mm/fault.c: In function 'do_page_fault':
arch/arm64/mm/fault.c:624:2: error: 'vma' undeclared (first use in this function); did you mean 'vmap'?
624 | vma = lock_mm_and_find_vma(mm, addr, regs);
| ^~~
| vmap
Fix it by moving the declaration out of the ifdef.
Fixes: ae870a68b5d1 ("arm64/mm: Convert to using lock_mm_and_find_vma()")
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\ \ \ \ \
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Eager page splitting optimization for dirty logging, optionally
allowing for a VM to avoid the cost of hugepage splitting in the
stage-2 fault path.
- Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact
with services that live in the Secure world. pKVM intervenes on
FF-A calls to guarantee the host doesn't misuse memory donated to
the hyp or a pKVM guest.
- Support for running the split hypervisor with VHE enabled, known as
'hVHE' mode. This is extremely useful for testing the split
hypervisor on VHE-only systems, and paves the way for new use cases
that depend on having two TTBRs available at EL2.
- Generalized framework for configurable ID registers from userspace.
KVM/arm64 currently prevents arbitrary CPU feature set
configuration from userspace, but the intent is to relax this
limitation and allow userspace to select a feature set consistent
with the CPU.
- Enable the use of Branch Target Identification (FEAT_BTI) in the
hypervisor.
- Use a separate set of pointer authentication keys for the
hypervisor when running in protected mode, as the host is untrusted
at runtime.
- Ensure timer IRQs are consistently released in the init failure
paths.
- Avoid trapping CTR_EL0 on systems with Enhanced Virtualization
Traps (FEAT_EVT), as it is a register commonly read from userspace.
- Erratum workaround for the upcoming AmpereOne part, which has
broken hardware A/D state management.
RISC-V:
- Redirect AMO load/store misaligned traps to KVM guest
- Trap-n-emulate AIA in-kernel irqchip for KVM guest
- Svnapot support for KVM Guest
s390:
- New uvdevice secret API
- CMM selftest and fixes
- fix racy access to target CPU for diag 9c
x86:
- Fix missing/incorrect #GP checks on ENCLS
- Use standard mmu_notifier hooks for handling APIC access page
- Drop now unnecessary TR/TSS load after VM-Exit on AMD
- Print more descriptive information about the status of SEV and
SEV-ES during module load
- Add a test for splitting and reconstituting hugepages during and
after dirty logging
- Add support for CPU pinning in demand paging test
- Add support for AMD PerfMonV2, with a variety of cleanups and minor
fixes included along the way
- Add a "nx_huge_pages=never" option to effectively avoid creating NX
hugepage recovery threads (because nx_huge_pages=off can be toggled
at runtime)
- Move handling of PAT out of MTRR code and dedup SVM+VMX code
- Fix output of PIC poll command emulation when there's an interrupt
- Add a maintainer's handbook to document KVM x86 processes,
preferred coding style, testing expectations, etc.
- Misc cleanups, fixes and comments
Generic:
- Miscellaneous bugfixes and cleanups
Selftests:
- Generate dependency files so that partial rebuilds work as
expected"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (153 commits)
Documentation/process: Add a maintainer handbook for KVM x86
Documentation/process: Add a label for the tip tree handbook's coding style
KVM: arm64: Fix misuse of KVM_ARM_VCPU_POWER_OFF bit index
RISC-V: KVM: Remove unneeded semicolon
RISC-V: KVM: Allow Svnapot extension for Guest/VM
riscv: kvm: define vcpu_sbi_ext_pmu in header
RISC-V: KVM: Expose IMSIC registers as attributes of AIA irqchip
RISC-V: KVM: Add in-kernel virtualization of AIA IMSIC
RISC-V: KVM: Expose APLIC registers as attributes of AIA irqchip
RISC-V: KVM: Add in-kernel emulation of AIA APLIC
RISC-V: KVM: Implement device interface for AIA irqchip
RISC-V: KVM: Skeletal in-kernel AIA irqchip support
RISC-V: KVM: Set kvm_riscv_aia_nr_hgei to zero
RISC-V: KVM: Add APLIC related defines
RISC-V: KVM: Add IMSIC related defines
RISC-V: KVM: Implement guest external interrupt line management
KVM: x86: Remove PRIx* definitions as they are solely for user space
s390/uv: Update query for secret-UVCs
s390/uv: replace scnprintf with sysfs_emit
s390/uvdevice: Add 'Lock Secret Store' UVC
...
|
| |\ \ \ \ \
| | |/ / / /
| |/| | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 6.5
- Eager page splitting optimization for dirty logging, optionally
allowing for a VM to avoid the cost of block splitting in the stage-2
fault path.
- Arm FF-A proxy for pKVM, allowing a pKVM host to safely interact with
services that live in the Secure world. pKVM intervenes on FF-A calls
to guarantee the host doesn't misuse memory donated to the hyp or a
pKVM guest.
- Support for running the split hypervisor with VHE enabled, known as
'hVHE' mode. This is extremely useful for testing the split
hypervisor on VHE-only systems, and paves the way for new use cases
that depend on having two TTBRs available at EL2.
- Generalized framework for configurable ID registers from userspace.
KVM/arm64 currently prevents arbitrary CPU feature set configuration
from userspace, but the intent is to relax this limitation and allow
userspace to select a feature set consistent with the CPU.
- Enable the use of Branch Target Identification (FEAT_BTI) in the
hypervisor.
- Use a separate set of pointer authentication keys for the hypervisor
when running in protected mode, as the host is untrusted at runtime.
- Ensure timer IRQs are consistently released in the init failure
paths.
- Avoid trapping CTR_EL0 on systems with Enhanced Virtualization Traps
(FEAT_EVT), as it is a register commonly read from userspace.
- Erratum workaround for the upcoming AmpereOne part, which has broken
hardware A/D state management.
As a consequence of the hVHE series reworking the arm64 software
features framework, the for-next/module-alloc branch from the arm64 tree
comes along for the ride.
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
KVM_ARM_VCPU_POWER_OFF is as bit index, _not_ a literal bitmask.
Nonetheless, commit e3c1c0cae31e ("KVM: arm64: Relax invariance
of KVM_ARM_VCPU_POWER_OFF") started using it that way, meaning that
powering off a vCPU with the KVM_ARM_VCPU_INIT ioctl is completely
broken.
Fix it by using a shifted bit for the bitwise operations instead.
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Fixes: e3c1c0cae31e ("KVM: arm64: Relax invariance of KVM_ARM_VCPU_POWER_OFF")
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230622160922.1925530-1-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | |\ \ \ \
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
* kvm-arm64/ampere1-hafdbs-mitigation:
: AmpereOne erratum AC03_CPU_38 mitigation
:
: AmpereOne does not advertise support for FEAT_HAFDBS due to an
: underlying erratum in the feature. The associated control bits do not
: have RES0 behavior as required by the architecture.
:
: Introduce mitigations to prevent KVM from enabling the feature at
: stage-2 as well as preventing KVM guests from enabling HAFDBS at
: stage-1.
KVM: arm64: Prevent guests from enabling HA/HD on Ampere1
KVM: arm64: Refactor HFGxTR configuration into separate helpers
arm64: errata: Mitigate Ampere1 erratum AC03_CPU_38 at stage-2
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
An erratum in the HAFDBS implementation in AmpereOne was addressed by
clearing the feature in the ID register, with the expectation that
software would not attempt to use the corresponding controls in TCR_EL1.
The architecture, on the other hand, takes a much more pedantic stance
on the subject, requiring the TCR bits behave as RES0.
Take an extremely conservative stance on the issue and leverage the
precise write trap afforded by FGT. Handle guest writes by clearing HA
and HD before writing the intended value to the EL1 register alias.
Link: https://lore.kernel.org/r/20230609220104.1836988-4-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
A subsequent change will need to flip more trap bits in HFGWTR_EL2. Make
room for this by factoring out the programming of the HFGxTR registers
into helpers and using locals to build the set/clear masks.
Link: https://lore.kernel.org/r/20230609220104.1836988-3-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | |/ /
| | | |/| |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
AmpereOne has an erratum in its implementation of FEAT_HAFDBS that
required disabling the feature on the design. This was done by reporting
the feature as not implemented in the ID register, although the
corresponding control bits were not actually RES0. This does not align
well with the requirements of the architecture, which mandates these
bits be RES0 if HAFDBS isn't implemented.
The kernel's use of stage-1 is unaffected, as the HA and HD bits are
only set if HAFDBS is detected in the ID register. KVM, on the other
hand, relies on the RES0 behavior at stage-2 to use the same value for
VTCR_EL2 on any cpu in the system. Mitigate the non-RES0 behavior by
leaving VTCR_EL2.HA clear on affected systems.
Cc: stable@vger.kernel.org
Cc: D Scott Phillips <scott@os.amperecomputing.com>
Cc: Darren Hart <darren@os.amperecomputing.com>
Acked-by: D Scott Phillips <scott@os.amperecomputing.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230609220104.1836988-2-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | |\ \ \ \
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
* kvm-arm64/misc:
: Miscellaneous updates
:
: - Avoid trapping CTR_EL0 on systems with FEAT_EVT, as the register is
: commonly read by userspace
:
: - Make use of FEAT_BTI at hyp stage-1, setting the Guard Page bit to 1
: for executable mappings
:
: - Use a separate set of pointer authentication keys for the hypervisor
: when running in protected mode (i.e. pKVM)
:
: - Plug a few holes in timer initialization where KVM fails to free the
: timer IRQ(s)
KVM: arm64: Use different pointer authentication keys for pKVM
KVM: arm64: timers: Fix resource leaks in kvm_timer_hyp_init()
KVM: arm64: Use BTI for nvhe
KVM: arm64: Relax trapping of CTR_EL0 when FEAT_EVT is available
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
When the use of pointer authentication is enabled in the kernel it
applies to both the kernel itself as well as KVM's nVHE hypervisor. The
same keys are used for both the kernel and the nVHE hypervisor, which is
less than desirable for pKVM as the host is not trusted at runtime.
Naturally, the fix is to use a different set of keys for the hypervisor
when running in protected mode. Have the host generate a new set of keys
for the hypervisor before deprivileging the kernel. While there might be
other sources of random directly available at EL2, this keeps the
implementation simple, and the host is trusted anyways until it is
deprivileged.
Since the host and hypervisor no longer share a set of pointer
authentication keys, start context switching them on the host entry/exit
path exactly as we do for guest entry/exit. There is no need to handle
CPU migration as the nVHE code is not migratable in the first place.
Signed-off-by: Mostafa Saleh <smostafa@google.com>
Link: https://lore.kernel.org/r/20230614122600.2098901-1-smostafa@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Smatch detected this bug:
arch/arm64/kvm/arch_timer.c:1425 kvm_timer_hyp_init()
warn: missing unwind goto?
There are two resources to be freed the vtimer and ptimer. The
line that Smatch complains about should free the vtimer first
before returning and then after that cleanup code should free
the ptimer.
I've added a out_free_ptimer_irq to free the ptimer and renamed
the existing label to out_free_vtimer_irq.
Fixes: 9e01dc76be6a ("KVM: arm/arm64: arch_timer: Assign the phys timer on VHE systems")
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Link: https://lore.kernel.org/r/72fffc35-7669-40b1-9d14-113c43269cf3@kili.mountain
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
CONFIG_ARM64_BTI_KERNEL compiles the kernel to support ARMv8.5-BTI.
However, the nvhe code doesn't make use of it as it doesn't map any
pages with Guarded Page(GP) bit.
kvm pgtable code is modified to map executable pages with GP bit
if BTI is enabled for the kernel.
At hyp init, SCTLR_EL2.BT is set to 1 to match EL1 configuration
(SCTLR_EL1.BT1) set in bti_enable().
One difference between kernel and nvhe code, is that the kernel maps
.text with GP while nvhe maps all the executable pages, this makes
nvhe code need to deal with special initialization code coming from
other executable sections (.idmap.text).
For this we need to add bti instruction at the beginning of
__kvm_handle_stub_hvc as it can be called by __host_hvc through
branch instruction(br) and unlike SYM_FUNC_START, SYM_CODE_START
doesn’t add bti instruction at the beginning, and it can’t be modified
to add it as it is used with vector tables.
Another solution which is more intrusive is to convert
__kvm_handle_stub_hvc to a function and inject “bti jc” instead of
“bti c” in SYM_FUNC_START
Signed-off-by: Mostafa Saleh <smostafa@google.com>
Link: https://lore.kernel.org/r/20230530150845.2856828-1-smostafa@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
CTR_EL0 can often be used in userspace, and it would be nice if
KVM didn't have to emulate it unnecessarily.
While it isn't possible to trap the cache configuration registers
independently from CTR_EL0 in the base ARMv8.0 architecture, FEAT_EVT
allows these cache configuration registers (CCSIDR_EL1, CCSIDR2_EL1,
CLIDR_EL1 and CSSELR_EL1) to be trapped independently by setting
HCR_EL2.TID4.
Switch to using TID4 instead of TID2 in the cases where FEAT_EVT
is available *and* that KVM doesn't need to sanitise CTR_EL0 to
paper over mismatched cache configurations.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230515170016.965378-1-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | |\ \ \ \ \
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
* kvm-arm64/configurable-id-regs:
: Configurable ID register infrastructure, courtesy of Jing Zhang
:
: Create generalized infrastructure for allowing userspace to select the
: supported feature set for a VM, so long as the feature set is a subset
: of what hardware + KVM allows. This does not add any new features that
: are user-configurable, and instead focuses on the necessary refactoring
: to enable future work.
:
: As a consequence of the series, feature asymmetry is now deliberately
: disallowed for KVM. It is unlikely that VMMs ever configured VMs with
: asymmetry, nor does it align with the kernel's overall stance that
: features must be uniform across all cores in the system.
:
: Furthermore, KVM incorrectly advertised an IMP_DEF PMU to guests for
: some time. Migrations from affected kernels was supported by explicitly
: allowing such an ID register value from userspace, and forwarding that
: along to the guest. KVM now allows an IMP_DEF PMU version to be restored
: through the ID register interface, but reinterprets the user value as
: not implemented (0).
KVM: arm64: Rip out the vestiges of the 'old' ID register scheme
KVM: arm64: Handle ID register reads using the VM-wide values
KVM: arm64: Use generic sanitisation for ID_AA64PFR0_EL1
KVM: arm64: Use generic sanitisation for ID_(AA64)DFR0_EL1
KVM: arm64: Use arm64_ftr_bits to sanitise ID register writes
KVM: arm64: Save ID registers' sanitized value per guest
KVM: arm64: Reuse fields of sys_reg_desc for idreg
KVM: arm64: Rewrite IMPDEF PMU version as NI
KVM: arm64: Make vCPU feature flags consistent VM-wide
KVM: arm64: Relax invariance of KVM_ARM_VCPU_POWER_OFF
KVM: arm64: Separate out feature sanitisation and initialisation
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
There's no longer a need for the baggage of the old scheme for handling
configurable ID register fields. Rip it all out in favor of the
generalized infrastructure.
Link: https://lore.kernel.org/r/20230609190054.1542113-12-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
Everything is in place now to use the generic ID register
infrastructure. Use the VM-wide values to service ID register reads.
The ID registers are invariant after the VM has started, so there is no
need for locking in that case. This is rather desirable for VM live
migration, as the needless lock contention could prolong the VM blackout
period.
Link: https://lore.kernel.org/r/20230609190054.1542113-11-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
KVM allows userspace to write to the CSV2 and CSV3 fields of
ID_AA64PFR0_EL1 so long as it doesn't over-promise on the
Spectre/Meltdown mitigation state. Switch over to the new way of the
world for screening user writes. Leave the old plumbing in place until
we actually start handling ID register reads from the VM-wide values.
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Link: https://lore.kernel.org/r/20230609190054.1542113-10-oliver.upton@linux.dev
[Oliver: split from monster patch, added commit description]
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
KVM allows userspace to specify a PMU version for the guest by writing
to the corresponding ID registers. Currently the validation of these
writes is done manuallly, but there's no reason we can't switch over to
the generic sanitisation infrastructure.
Start screening user writes through arm64_check_features() to prevent
userspace from over-promising in terms of vPMU support. Leave the old
masking in place for now, as we aren't completely ready to serve reads
from the VM-wide values.
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Link: https://lore.kernel.org/r/20230609190054.1542113-9-oliver.upton@linux.dev
[Oliver: split off from monster patch, cleaned up handling of NI vPMU
values, wrote commit description]
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
Rather than reinventing the wheel in KVM to do ID register sanitisation
we can rely on the work already done in the core kernel. Implement a
generalized sanitisation of ID registers based on the combination of the
arm64_ftr_bits definitions from the core kernel and (optionally) a set
of KVM-specific overrides.
This all amounts to absolutely nothing for now, but will be used in
subsequent changes to realize user-configurable ID registers.
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Link: https://lore.kernel.org/r/20230609190054.1542113-8-oliver.upton@linux.dev
[Oliver: split off from monster patch, rewrote commit description,
reworked RAZ handling, return EINVAL to userspace]
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
Initialize the default ID register values upon the first call to
KVM_ARM_VCPU_INIT. The vCPU feature flags are finalized at that point,
so it is possible to determine the maximum feature set supported by a
particular VM configuration. Do nothing with these values for now, as we
need to rework the plumbing of what's already writable to be compatible
with the generic infrastructure.
Co-developed-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Link: https://lore.kernel.org/r/20230609190054.1542113-7-oliver.upton@linux.dev
[Oliver: Hoist everything into KVM_ARM_VCPU_INIT time, so the features
are final]
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
sys_reg_desc::{reset, val} are presently unused for ID register
descriptors. Repurpose these fields to support user-configurable ID
registers.
Use the ::reset() function pointer to return the sanitised value of a
given ID register, optionally with KVM-specific feature sanitisation.
Additionally, keep a mask of writable register fields in ::val.
Signed-off-by: Jing Zhang <jingzhangos@google.com>
Link: https://lore.kernel.org/r/20230609190054.1542113-6-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
KVM allows userspace to write an IMPDEF PMU version to the corresponding
32bit and 64bit ID register fields for the sake of backwards
compatibility with kernels that lacked commit 3d0dba5764b9 ("KVM: arm64:
PMU: Move the ID_AA64DFR0_EL1.PMUver limit to VM creation"). Plumbing
that IMPDEF PMU version through to the gues is getting in the way of
progress, and really doesn't any sense in the first place.
Bite the bullet and reinterpret the IMPDEF PMU version as NI (0) for
userspace writes. Additionally, spill the dirty details into a comment.
Link: https://lore.kernel.org/r/20230609190054.1542113-5-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
To date KVM has allowed userspace to construct asymmetric VMs where
particular features may only be supported on a subset of vCPUs. This
wasn't really the intened usage pattern, and it is a total pain in the
ass to keep working in the kernel. What's more, this is at odds with CPU
features in host userspace, where asymmetric features are largely hidden
or disabled.
It's time to put an end to the whole game. Require all vCPUs in the VM
to have the same feature set, rejecting deviants in the
KVM_ARM_VCPU_INIT ioctl. Preserve some of the vestiges of per-vCPU
feature flags in case we need to reinstate the old behavior for some
limited configurations. Yes, this is a sign of cowardice around a
user-visibile change.
Hoist all of the 32-bit limitations into kvm_vcpu_init_check_features()
to avoid nested attempts to acquire the config_lock, which won't end
well.
Link: https://lore.kernel.org/r/20230609190054.1542113-4-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
Allow the value of KVM_ARM_VCPU_POWER_OFF to differ between calls to
KVM_ARM_VCPU_INIT. Userspace can already change the state of the vCPU
through the KVM_SET_MP_STATE ioctl, so making the bit invariant seems
needlessly restrictive.
Link: https://lore.kernel.org/r/20230609190054.1542113-3-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | |/ / /
| | | |/| | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
kvm_vcpu_set_target() iteratively sanitises and copies feature flags in
one go. This is rather odd, especially considering the fact that bitmap
accessors can do the heavy lifting. A subsequent change will make vCPU
features VM-wide, and fitting that into the present implementation is
just a chore.
Rework the whole thing to use bitmap accessors to sanitise and copy
flags.
Link: https://lore.kernel.org/r/20230609190054.1542113-2-oliver.upton@linux.dev
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | |\ \ \ \ \
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | | |
* for-next/module-alloc:
: Drag in module VA rework to handle conflicts w/ sw feature refactor
arm64: module: rework module VA range selection
arm64: module: mandate MODULE_PLTS
arm64: module: move module randomization to module.c
arm64: kaslr: split kaslr/module initialization
arm64: kasan: remove !KASAN_VMALLOC remnants
arm64: module: remove old !KASAN_VMALLOC logic
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | |\ \ \ \ \ \
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
* kvm-arm64/hvhe:
: Support for running split-hypervisor w/VHE, courtesy of Marc Zyngier
:
: From the cover letter:
:
: KVM (on ARMv8.0) and pKVM (on all revisions of the architecture) use
: the split hypervisor model that makes the EL2 code more or less
: standalone. In the later case, we totally ignore the VHE mode and
: stick with the good old v8.0 EL2 setup.
:
: We introduce a new "mode" for KVM called hVHE, in reference to the
: nVHE mode, and indicating that only the hypervisor is using VHE.
KVM: arm64: Fix hVHE init on CPUs where HCR_EL2.E2H is not RES1
arm64: Allow arm64_sw.hvhe on command line
KVM: arm64: Force HCR_E2H in guest context when ARM64_KVM_HVHE is set
KVM: arm64: Program the timer traps with VHE layout in hVHE mode
KVM: arm64: Rework CPTR_EL2 programming for HVHE configuration
KVM: arm64: Adjust EL2 stage-1 leaf AP bits when ARM64_KVM_HVHE is set
KVM: arm64: Disable TTBR1_EL2 when using ARM64_KVM_HVHE
KVM: arm64: Force HCR_EL2.E2H when ARM64_KVM_HVHE is set
KVM: arm64: Key use of VHE instructions in nVHE code off ARM64_KVM_HVHE
KVM: arm64: Remove alternatives from sysreg accessors in VHE hypervisor context
arm64: Use CPACR_EL1 format to set CPTR_EL2 when E2H is set
arm64: Allow EL1 physical timer access when running VHE
arm64: Don't enable VHE for the kernel if OVERRIDE_HVHE is set
arm64: Add KVM_HVHE capability and has_hvhe() predicate
arm64: Turn kaslr_feature_override into a generic SW feature override
arm64: Prevent the use of is_kernel_in_hyp_mode() in hypervisor code
KVM: arm64: Drop is_kernel_in_hyp_mode() from __invalidate_icache_guest_page()
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
On CPUs where E2H is RES1, we very quickly set the scene for
running EL2 with a VHE configuration, as we do not have any other
choice.
However, CPUs that conform to the current writing of the architecture
start with E2H=0, and only later upgrade with E2H=1. This is all
good, but nothing there is actually reconfiguring EL2 to be able
to correctly run the kernel at EL1. Huhuh...
The "obvious" solution is not to just reinitialise the timer
controls like we do, but to really intitialise *everything*
unconditionally.
This requires a bit of surgery, and is a good opportunity to
remove the macro that messes with SPSR_EL2 in init_el2_state.
With that, hVHE now works correctly on my trusted A55 machine!
Reported-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230614155129.2697388-1-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
Add the arm64_sw.hvhe=1 option to force the use of the hVHE mode
in the hypervisor code only.
This enables the hVHE mode of operation when using KVM on VHE
hardware.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230609162200.2024064-17-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
Also make sure HCR_EL2.E2H is set when switching HCR_EL2 in guest
context.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230609162200.2024064-16-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
Just like the rest of the timer code, we need to shift the enable
bits around when HCR_EL2.E2H is set, which is the case in hVHE mode.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230609162200.2024064-15-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
Just like we repainted the early arm64 code, we need to update
the CPTR_EL2 accesses that are taking place in the nVHE code
when hVHE is used, making them look as if they were CPACR_EL1
accesses. Just like the VHE code.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230609162200.2024064-14-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
El2 stage-1 page-table format is subtly (and annoyingly) different
when HCR_EL2.E2H is set.
Take the ARM64_KVM_HVHE configuration into account when setting
the AP bits.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230609162200.2024064-13-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
When using hVHE, we end-up with two TTBRs at EL2. That's great,
but we're not quite ready for this just yet.
Disable TTBR1_EL2 by setting TCR_EL2.EPD1 so that we only
translate via TTBR0_EL2.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230609162200.2024064-12-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
Obviously, in order to be able to use VHE whilst at EL2, we need
to set HCR_EL2.E2H. Do so when ARM64_KVM_HVHE is set.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230609162200.2024064-11-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
We can now start with the fun stuff: if we enable VHE *only* for
the hypervisor, we need to generate the VHE instructions when
accessing the system registers.
For this, reporpose the alternative sequence to be keyed off
ARM64_KVM_HVHE in the nVHE hypervisor code, and only there.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230609162200.2024064-10-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
In the VHE hypervisor code, we should be using the remapped VHE
accessors, no ifs, no buts. No need to generate any alternative.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230609162200.2024064-9-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
When HCR_EL2.E2H is set, the CPTR_EL2 register takes the CPACR_EL1
format. Yes, this is good fun.
Hack the bits of startup code that assume E2H=0 while setting up
CPTR_EL2 to make them grok the CPTR_EL1 format.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230609162200.2024064-8-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
To initialise the timer access from EL2 when HCR_EL2.E2H is set,
we must make use the CNTHCTL_EL2 formap used is appropriate.
This amounts to shifting the timer/counter enable bits by 10
to the left.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230609162200.2024064-7-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
If the OVERRIDE_HVHE SW override is set (as a precursor of
the KVM_HVHE capability), do not enable VHE for the kernel
and drop to EL1 as if VHE was either disabled or unavailable.
Further changes will enable VHE at EL2 only, with the kernel
still running at EL1.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230609162200.2024064-6-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
Expose a capability keying the hVHE feature as well as a new
predicate testing it. Nothing is so far using it, and nothing
is enabling it yet.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230609162200.2024064-5-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | | |
Disabling KASLR from the command line is implemented as a feature
override. Repaint it slightly so that it can further be used as
more generic infrastructure for SW override purposes.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230609162200.2024064-4-maz@kernel.org
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|