summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/include (follow)
Commit message (Collapse)AuthorAgeFilesLines
* Merge branch 'merge' of ↵Linus Torvalds2013-12-302-2/+7
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc Pull powerpc fixes from Ben Herrenschmidt: "A bit more endian problems found during testing of 3.13 and a few other simple fixes and regressions fixes" * 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: powerpc: Fix alignment of secondary cpu spin vars powerpc: Align p_end powernv/eeh: Add buffer for P7IOC hub error data powernv/eeh: Fix possible buffer overrun in ioda_eeh_phb_diag() powerpc: Make 64-bit non-VMX __copy_tofrom_user bi-endian powerpc: Make unaligned accesses endian-safe for powerpc powerpc: Fix bad stack check in exception entry powerpc/512x: dts: disable MPC5125 usb module powerpc/512x: dts: remove misplaced IRQ spec from 'soc' node (5125)
| * powerpc: Make unaligned accesses endian-safe for powerpcRajesh B Prathipati2013-12-301-1/+6
| | | | | | | | | | | | | | | | | | | | The generic put_unaligned/get_unaligned macros were made endian-safe by calling the appropriate endian dependent macros based on the endian type of the powerpc processor. Signed-off-by: Rajesh B Prathipati <rprathip@linux.vnet.ibm.com> Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
| * powerpc: Fix bad stack check in exception entryMichael Neuling2013-12-301-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In EXCEPTION_PROLOG_COMMON() we check to see if the stack pointer (r1) is valid when coming from the kernel. If it's not valid, we die but with a nice oops message. Currently we allocate a stack frame (subtract INT_FRAME_SIZE) before we check to see if the stack pointer is negative. Unfortunately, this won't detect a bad stack where r1 is less than INT_FRAME_SIZE. This patch fixes the check to compare the modified r1 with -INT_FRAME_SIZE. With this, bad kernel stack pointers (including NULL pointers) are correctly detected again. Kudos to Paulus for finding this. Signed-off-by: Michael Neuling <mikey@neuling.org> cc: stable@vger.kernel.org Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* | Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds2013-12-203-1/+7
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull KVM fixes from Paolo Bonzini: "The PPC folks had a large amount of changes queued for 3.13, and now they are fixing the bugs" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM: PPC: Book3S HV: Don't drop low-order page address bits powerpc: book3s: kvm: Don't abuse host r2 in exit path powerpc/kvm/booke: Fix build break due to stack frame size warning KVM: PPC: Book3S: PR: Enable interrupts earlier KVM: PPC: Book3S: PR: Make svcpu -> vcpu store preempt savvy KVM: PPC: Book3S: PR: Export kvmppc_copy_to|from_svcpu KVM: PPC: Book3S: PR: Don't clobber our exit handler id powerpc: kvm: fix rare but potential deadlock scene KVM: PPC: Book3S HV: Take SRCU read lock around kvm_read_guest() call KVM: PPC: Book3S HV: Make tbacct_lock irq-safe KVM: PPC: Book3S HV: Refine barriers in guest entry/exit KVM: PPC: Book3S HV: Fix physical address calculations
| * Merge tag 'signed-for-3.13' of git://github.com/agraf/linux-2.6 into kvm-masterPaolo Bonzini2013-12-203-1/+7
| |\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch queue for 3.13 - 2013-12-18 This fixes some grave issues we've only found after 3.13-rc1: - Make the modularized HV/PR book3s kvm work well as modules - Fix some race conditions - Fix compilation with certain compilers (booke) - Fix THP for book3s_hv - Fix preemption for book3s_pr Alexander Graf (4): KVM: PPC: Book3S: PR: Don't clobber our exit handler id KVM: PPC: Book3S: PR: Export kvmppc_copy_to|from_svcpu KVM: PPC: Book3S: PR: Make svcpu -> vcpu store preempt savvy KVM: PPC: Book3S: PR: Enable interrupts earlier Aneesh Kumar K.V (1): powerpc: book3s: kvm: Don't abuse host r2 in exit path Paul Mackerras (5): KVM: PPC: Book3S HV: Fix physical address calculations KVM: PPC: Book3S HV: Refine barriers in guest entry/exit KVM: PPC: Book3S HV: Make tbacct_lock irq-safe KVM: PPC: Book3S HV: Take SRCU read lock around kvm_read_guest() call KVM: PPC: Book3S HV: Don't drop low-order page address bits Scott Wood (1): powerpc/kvm/booke: Fix build break due to stack frame size warning pingfan liu (1): powerpc: kvm: fix rare but potential deadlock scene
| | * powerpc: book3s: kvm: Don't abuse host r2 in exit pathAneesh Kumar K.V2013-12-181-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We don't use PACATOC for PR. Avoid updating HOST_R2 with PR KVM mode when both HV and PR are enabled in the kernel. Without this we get the below crash (qemu) Unable to handle kernel paging request for data at address 0xffffffffffff8310 Faulting instruction address: 0xc00000000001d5a4 cpu 0x2: Vector: 300 (Data Access) at [c0000001dc53aef0] pc: c00000000001d5a4: .vtime_delta.isra.1+0x34/0x1d0 lr: c00000000001d760: .vtime_account_system+0x20/0x60 sp: c0000001dc53b170 msr: 8000000000009032 dar: ffffffffffff8310 dsisr: 40000000 current = 0xc0000001d76c62d0 paca = 0xc00000000fef1100 softe: 0 irq_happened: 0x01 pid = 4472, comm = qemu-system-ppc enter ? for help [c0000001dc53b200] c00000000001d760 .vtime_account_system+0x20/0x60 [c0000001dc53b290] c00000000008d050 .kvmppc_handle_exit_pr+0x60/0xa50 [c0000001dc53b340] c00000000008f51c kvm_start_lightweight+0xb4/0xc4 [c0000001dc53b510] c00000000008cdf0 .kvmppc_vcpu_run_pr+0x150/0x2e0 [c0000001dc53b9e0] c00000000008341c .kvmppc_vcpu_run+0x2c/0x40 [c0000001dc53ba50] c000000000080af4 .kvm_arch_vcpu_ioctl_run+0x54/0x1b0 [c0000001dc53bae0] c00000000007b4c8 .kvm_vcpu_ioctl+0x478/0x730 [c0000001dc53bca0] c0000000002140cc .do_vfs_ioctl+0x4ac/0x770 [c0000001dc53bd80] c0000000002143e8 .SyS_ioctl+0x58/0xb0 [c0000001dc53be30] c000000000009e58 syscall_exit+0x0/0x98 Signed-off-by: Alexander Graf <agraf@suse.de>
| | * powerpc/kvm/booke: Fix build break due to stack frame size warningScott Wood2013-12-111-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit ce11e48b7fdd256ec68b932a89b397a790566031 ("KVM: PPC: E500: Add userspace debug stub support") added "struct thread_struct" to the stack of kvmppc_vcpu_run(). thread_struct is 1152 bytes on my build, compared to 48 bytes for the recently-introduced "struct debug_reg". Use the latter instead. This fixes the following error: cc1: warnings being treated as errors arch/powerpc/kvm/booke.c: In function 'kvmppc_vcpu_run': arch/powerpc/kvm/booke.c:760:1: error: the frame size of 1424 bytes is larger than 1024 bytes make[2]: *** [arch/powerpc/kvm/booke.o] Error 1 make[1]: *** [arch/powerpc/kvm] Error 2 make[1]: *** Waiting for unfinished jobs.... Signed-off-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * KVM: PPC: Book3S: PR: Make svcpu -> vcpu store preempt savvyAlexander Graf2013-12-091-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As soon as we get back to our "highmem" handler in virtual address space we may get preempted. Today the reason we can get preempted is that we replay interrupts and all the lazy logic thinks we have interrupts enabled. However, it's not hard to make the code interruptible and that way we can enable and handle interrupts even earlier. This fixes random guest crashes that happened with CONFIG_PREEMPT=y for me. Signed-off-by: Alexander Graf <agraf@suse.de>
| | * KVM: PPC: Book3S: PR: Export kvmppc_copy_to|from_svcpuAlexander Graf2013-12-091-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The kvmppc_copy_{to,from}_svcpu functions are publically visible, so we should also export them in a header for others C files to consume. So far we didn't need this because we only called it from asm code. The next patch will introduce a C caller. Signed-off-by: Alexander Graf <agraf@suse.de>
* | | powerpc/powernv: Fix OPAL LPC access in Little EndianBenjamin Herrenschmidt2013-12-131-1/+1
| | | | | | | | | | | | | | | | | | | | | We are passing pointers to the firmware for reads, we need to properly convert the result as OPAL is always BE. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* | | powerpc/powernv: Fix endian issue in opal_xscom_readAnton Blanchard2013-12-131-1/+1
|/ / | | | | | | | | | | | | | | opal_xscom_read uses a pointer to return the data so we need to byteswap it on LE builds. Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* | powerpc: Fix PTE page address mismatch in pgtable ctor/dtorHong H. Pham2013-12-102-8/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In pte_alloc_one(), pgtable_page_ctor() is passed an address that has not been converted by page_address() to the newly allocated PTE page. When the PTE is freed, __pte_free_tlb() calls pgtable_page_dtor() with an address to the PTE page that has been converted by page_address(). The mismatch in the PTE's page address causes pgtable_page_dtor() to access invalid memory, so resources for that PTE (such as the page lock) is not properly cleaned up. On PPC32, only SMP kernels are affected. On PPC64, only SMP kernels with 4K page size are affected. This bug was introduced by commit d614bb041209fd7cb5e4b35e11a7b2f6ee8f62b8 "powerpc: Move the pte free routines from common header". On a preempt-rt kernel, a spinlock is dynamically allocated for each PTE in pgtable_page_ctor(). When the PTE is freed, calling pgtable_page_dtor() with a mismatched page address causes a memory leak, as the pointer to the PTE's spinlock is bogus. On mainline, there isn't any immediately obvious symptoms, but the problem still exists here. Fixes: d614bb041209fd7c "powerpc: Move the pte free routes from common header" Cc: Paul Mackerras <paulus@samba.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: linux-stable <stable@vger.kernel.org> # v3.10+ Signed-off-by: Hong H. Pham <hong.pham@windriver.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* | powerpc/kdump: Adding symbols in vmcoreinfo to facilitate dump filteringHari Bathini2013-11-251-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When CONFIG_SPARSEMEM_VMEMMAP option is used in kernel, makedumpfile fails to filter vmcore dump as it fails to do vmemmap translations. So far dump filtering on ppc64 never had to deal with vmemmap addresses seperately as vmemmap regions where mapped in zone normal. But with the inclusion of CONFIG_SPARSEMEM_VMEMMAP config option in kernel, this vmemmap address translation support becomes necessary for dump filtering. For vmemmap adress translation, few kernel symbols are needed by dump filtering tool. This patch adds those symbols to vmcoreinfo, which a dump filtering tool can use for filtering the kernel dump. Tested this changes successfully with makedumpfile tool that supports vmemmap to physical address translation outside zone normal. [ Removed unneeded #ifdef as suggested by Michael Ellerman --BenH ] Signed-off-by: Hari Bathini <hbathini@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* | powerpc/8xx: mfspr SPRN_TBRx in lieu of mftb/mftbu is not supportedLEROY Christophe2013-11-223-0/+17
| | | | | | | | | | | | | | | | | | | | | | | | Commit beb2dc0a7a84be003ce54e98b95d65cc66e6e536 breaks the MPC8xx which seems to not support using mfspr SPRN_TBRx instead of mftb/mftbu despite what is written in the reference manual. This patch reverts to the use of mftb/mftbu when CONFIG_8xx is selected. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Scott Wood <scottwood@freescale.com>
* | Merge branch 'merge' of ↵Linus Torvalds2013-11-221-1/+1
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc Pull third set of powerpc updates from Benjamin Herrenschmidt: "This is a small collection of random bug fixes and a few improvements of Oops output which I deemed valuable enough to include as well. The fixes are essentially recent build breakage and regressions, and a couple of older bugs such as the DTL log duplication, the EEH issue with PCI_COMMAND_MASTER and the problem with small contexts passed to get/set_context with VSX enabled" * 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: powerpc/signals: Mark VSX not saved with small contexts powerpc/pseries: Fix SMP=n build of rng.c powerpc: Make cpu_to_chip_id() available when SMP=n powerpc/vio: Fix a dma_mask issue of vio powerpc: booke: Fix build failures powerpc: ppc64 address space capped at 32TB, mmap randomisation disabled powerpc: Only print PACATMSCRATCH in oops when TM is active powerpc/pseries: Duplicate dtl entries sometimes sent to userspace powerpc: Remove a few lines of oops output powerpc: Print DAR and DSISR on machine check oopses powerpc: Fix __get_user_pages_fast() irq handling powerpc/eeh: More accurate log powerpc/eeh: Enable PCI_COMMAND_MASTER for PCI bridges
| * | powerpc: Make cpu_to_chip_id() available when SMP=nMichael Ellerman2013-11-211-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Up until now we have only used cpu_to_chip_id() in the topology code, which is only used on SMP builds. However my recent commit a4da0d5 "Implement arch_get_random_long/int() for powernv" added a usage when SMP=n, breaking the build. Move cpu_to_chip_id() into prom.c so it is available for SMP=n builds. We would move the extern to prom.h, but that breaks the include in topology.h. Instead we leave it in smp.h, but move it out of the CONFIG_SMP #ifdef. We also need to include asm/smp.h in rng.c, because the linux version skips asm/smp.h on UP. What a mess. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* | | Merge branch 'next' of ↵Linus Torvalds2013-11-214-0/+41
|\ \ \ | |/ / |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc Pull powerpc LE updates from Ben Herrenschmidt: "With my previous pull request I mentioned some remaining Little Endian patches, notably support for our new ABI, which I was sitting on making sure it was all finalized. The toolchain folks confirmed it now, the new ABI is stable and merged with gcc, so we are all good. Oh and we actually missed the actual Kconfig switch for LE so here it is, along with a couple more bug fixes. I have more fixes but not related to LE so I'll send them as a separate pull request tomorrow, let's get this one out of the way. Note that this supports running user space binaries using the new ABI, but the kernel itself still needs to be built with the old one. We'll bring fixes for that after -rc1. Here's Anton log that goes with this series: This patch series adds support for the new ABI, LPAR support for H_SET_MODE and finally adds a kconfig option and defconfig. ABIv2 support was recently committed to binutils and gcc, and should be merged into glibc soon. There are a number of very nice improvements including the removal of function descriptors. Rusty's kernel patches allow binaries of either ABI to work, easing the transition" * 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: powerpc: Wrong DWARF CFI in the kernel vdso for little-endian / ELFv2 powerpc: Add pseries_le_defconfig powerpc: Add CONFIG_CPU_LITTLE_ENDIAN kernel config option. powerpc: Don't use ELFv2 ABI to build the kernel powerpc: ELF2 binaries signal handling powerpc: ELF2 binaries launched directly. powerpc: Set eflags correctly for ELF ABIv2 core dumps. powerpc: Add TIF_ELF2ABI flag. pseries: Add H_SET_MODE to change exception endianness powerpc/pseries: Fix endian issues in pseries EEH code
| * | powerpc: Set eflags correctly for ELF ABIv2 core dumps.Rusty Russell2013-11-201-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | We leave it at zero (though it could be 1) for old tasks. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
| * | powerpc: Add TIF_ELF2ABI flag.Rusty Russell2013-11-202-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Little endian ppc64 is getting an exciting new ABI. This is reflected by the bottom two bits of e_flags in the ELF header: 0 == legacy binaries (v1 ABI) 1 == binaries using the old ABI (compiled with a new toolchain) 2 == binaries using the new ABI. We store this in a thread flag, because we need to set it in core dumps and for signal delivery. Our chief concern is that it doesn't use function descriptors. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
| * | pseries: Add H_SET_MODE to change exception endiannessAnton Blanchard2013-11-202-0/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | On little endian builds call H_SET_MODE so exceptions have the correct endianness. We need to reset the endian during kexec so do that in the MMU hashtable clear callback. Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* | | Merge branch 'irq-urgent-for-linus' of ↵Linus Torvalds2013-11-191-2/+0
|\ \ \ | |_|/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull irq cleanups from Ingo Molnar: "This is a multi-arch cleanup series from Thomas Gleixner, which we kept to near the end of the merge window, to not interfere with architecture updates. This series (motivated by the -rt kernel) unifies more aspects of IRQ handling and generalizes PREEMPT_ACTIVE" * 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: preempt: Make PREEMPT_ACTIVE generic sparc: Use preempt_schedule_irq ia64: Use preempt_schedule_irq m32r: Use preempt_schedule_irq hardirq: Make hardirq bits generic m68k: Simplify low level interrupt handling code genirq: Prevent spurious detection for unconditionally polled interrupts
| * | preempt: Make PREEMPT_ACTIVE genericThomas Gleixner2013-11-131-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | No point in having this bit defined by architecture. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20130917183629.090698799@linutronix.de
* | | Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds2013-11-1515-281/+277
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull KVM changes from Paolo Bonzini: "Here are the 3.13 KVM changes. There was a lot of work on the PPC side: the HV and emulation flavors can now coexist in a single kernel is probably the most interesting change from a user point of view. On the x86 side there are nested virtualization improvements and a few bugfixes. ARM got transparent huge page support, improved overcommit, and support for big endian guests. Finally, there is a new interface to connect KVM with VFIO. This helps with devices that use NoSnoop PCI transactions, letting the driver in the guest execute WBINVD instructions. This includes some nVidia cards on Windows, that fail to start without these patches and the corresponding userspace changes" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (146 commits) kvm, vmx: Fix lazy FPU on nested guest arm/arm64: KVM: PSCI: propagate caller endianness to the incoming vcpu arm/arm64: KVM: MMIO support for BE guest kvm, cpuid: Fix sparse warning kvm: Delete prototype for non-existent function kvm_check_iopl kvm: Delete prototype for non-existent function complete_pio hung_task: add method to reset detector pvclock: detect watchdog reset at pvclock read kvm: optimize out smp_mb after srcu_read_unlock srcu: API for barrier after srcu read unlock KVM: remove vm mmap method KVM: IOMMU: hva align mapping page size KVM: x86: trace cpuid emulation when called from emulator KVM: emulator: cleanup decode_register_operand() a bit KVM: emulator: check rex prefix inside decode_register() KVM: x86: fix emulation of "movzbl %bpl, %eax" kvm_host: typo fix KVM: x86: emulate SAHF instruction MAINTAINERS: add tree for kvm.git Documentation/kvm: add a 00-INDEX file ...
| * \ \ Merge branch 'kvm-ppc-queue' of git://github.com/agraf/linux-2.6 into queueGleb Natapov2013-11-0417-295/+302
| |\ \ \ | | | | | | | | | | | | | | | | | | | | Conflicts: arch/powerpc/include/asm/processor.h
| | * | | kvm: powerpc: book3s: drop is_hv_enabledAneesh Kumar K.V2013-10-171-1/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | drop is_hv_enabled, because that should not be a callback property Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | kvm: powerpc: book3s: Allow the HV and PR selection per virtual machineAneesh Kumar K.V2013-10-172-3/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This moves the kvmppc_ops callbacks to be a per VM entity. This enables us to select HV and PR mode when creating a VM. We also allow both kvm-hv and kvm-pr kernel module to be loaded. To achieve this we move /dev/kvm ownership to kvm.ko module. Depending on which KVM mode we select during VM creation we take a reference count on respective module Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> [agraf: fix coding style] Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | kvm: Add struct kvm arg to memslot APIsAneesh Kumar K.V2013-10-171-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We will use that in the later patch to find the kvm ops handler Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | kvm: powerpc: book3s: Add is_hv_enabled to kvmppc_opsAneesh Kumar K.V2013-10-172-55/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This help us to identify whether we are running with hypervisor mode KVM enabled. The change is needed so that we can have both HV and PR kvm enabled in the same kernel. If both HV and PR KVM are included, interrupts come in to the HV version of the kvmppc_interrupt code, which then jumps to the PR handler, renamed to kvmppc_interrupt_pr, if the guest is a PR guest. Allowing both PR and HV in the same kernel required some changes to kvm_dev_ioctl_check_extension(), since the values returned now can't be selected with #ifdefs as much as previously. We look at is_hv_enabled to return the right value when checking for capabilities.For capabilities that are only provided by HV KVM, we return the HV value only if is_hv_enabled is true. For capabilities provided by PR KVM but not HV, we return the PR value only if is_hv_enabled is false. NOTE: in later patch we replace is_hv_enabled with a static inline function comparing kvm_ppc_ops Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | kvm: powerpc: book3s: Cleanup interrupt handling codeAneesh Kumar K.V2013-10-171-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With this patch if HV is included, interrupts come in to the HV version of the kvmppc_interrupt code, which then jumps to the PR handler, renamed to kvmppc_interrupt_pr, if the guest is a PR guest. This helps in enabling both HV and PR, which we do in later patch Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | kvm: powerpc: Add kvmppc_ops callbackAneesh Kumar K.V2013-10-172-24/+66
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch add a new callback kvmppc_ops. This will help us in enabling both HV and PR KVM together in the same kernel. The actual change to enable them together is done in the later patch in the series. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> [agraf: squash in booke changes] Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | kvm: powerpc: book3s: Add a new config variable CONFIG_KVM_BOOK3S_HV_POSSIBLEAneesh Kumar K.V2013-10-175-12/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This help ups to select the relevant code in the kernel code when we later move HV and PR bits as seperate modules. The patch also makes the config options for PR KVM selectable Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | kvm: powerpc: book3s: pr: Rename KVM_BOOK3S_PR to KVM_BOOK3S_PR_POSSIBLEAneesh Kumar K.V2013-10-175-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With later patches supporting PR kvm as a kernel module, the changes that has to be built into the main kernel binary to enable PR KVM module is now selected via KVM_BOOK3S_PR_POSSIBLE Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | KVM: PPC: E500: Add userspace debug stub supportBharat Bhushan2013-10-172-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds the debug stub support on booke/bookehv. Now QEMU debug stub can use hw breakpoint, watchpoint and software breakpoint to debug guest. This is how we save/restore debug register context when switching between guest, userspace and kernel user-process: When QEMU is running -> thread->debug_reg == QEMU debug register context. -> Kernel will handle switching the debug register on context switch. -> no vcpu_load() called QEMU makes ioctls (except RUN) -> This will call vcpu_load() -> should not change context. -> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs QEMU Makes RUN ioctl -> Save thread->debug_reg on STACK -> Store thread->debug_reg == vcpu->debug_reg -> load thread->debug_reg -> RUN VCPU ( So thread points to vcpu context ) Context switch happens When VCPU running -> makes vcpu_load() should not load any context -> kernel loads the vcpu context as thread->debug_regs points to vcpu context. On heavyweight_exit -> Load the context saved on stack in thread->debug_reg Currently we do not support debug resource emulation to guest, On debug exception, always exit to user space irrespective of user space is expecting the debug exception or not. If this is unexpected exception (breakpoint/watchpoint event not set by userspace) then let us leave the action on user space. This is similar to what it was before, only thing is that now we have proper exit state available to user space. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | KVM: PPC: E500: Using "struct debug_reg"Bharat Bhushan2013-10-171-12/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For KVM also use the "struct debug_reg" defined in asm/processor.h Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | KVM: PPC: E500: exit to user space on "ehpriv 1" instructionBharat Bhushan2013-10-173-5/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | "ehpriv 1" instruction is used for setting software breakpoints by user space. This patch adds support to exit to user space with "run->debug" have relevant information. As this is the first point we are using run->debug, also defined the run->debug structure. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | powerpc: export debug registers save function for KVMBharat Bhushan2013-10-171-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | KVM need this function when switching from vcpu to user-space thread. My subsequent patch will use this function. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Acked-by: Michael Neuling <mikey@neuling.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | powerpc: move debug registers in a structureBharat Bhushan2013-10-172-20/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This way we can use same data type struct with KVM and also help in using other debug related function. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | powerpc: book3e: _PAGE_LENDIAN must be _PAGE_ENDIANBharat Bhushan2013-10-171-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For booke3e _PAGE_ENDIAN is not defined. Infact what is defined is "_PAGE_LENDIAN" which is wrong and that should be _PAGE_ENDIAN. There are no compilation errors as arch/powerpc/include/asm/pte-common.h defines _PAGE_ENDIAN to 0 as it is not defined anywhere. Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | KVM: PPC: Book3S HV: Better handling of exceptions that happen in real modePaul Mackerras2013-10-171-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When an interrupt or exception happens in the guest that comes to the host, the CPU goes to hypervisor real mode (MMU off) to handle the exception but doesn't change the MMU context. After saving a few registers, we then clear the "in guest" flag. If, for any reason, we get an exception in the real-mode code, that then gets handled by the normal kernel exception handlers, which turn the MMU on. This is disastrous if the MMU is still set to the guest context, since we end up executing instructions from random places in the guest kernel with hypervisor privilege. In order to catch this situation, we define a new value for the "in guest" flag, KVM_GUEST_MODE_HOST_HV, to indicate that we are in hypervisor real mode with guest MMU context. If the "in guest" flag is set to this value, we branch off to an emergency handler. For the moment, this just does a branch to self to stop the CPU from doing anything further. While we're here, we define another new flag value to indicate that we are in a HV guest, as distinct from a PR guest. This will be useful when we have a kernel that can support both PR and HV guests concurrently. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | KVM: PPC: Book3S PR: Use mmu_notifier_retry() in kvmppc_mmu_map_page()Paul Mackerras2013-10-171-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When the MM code is invalidating a range of pages, it calls the KVM kvm_mmu_notifier_invalidate_range_start() notifier function, which calls kvm_unmap_hva_range(), which arranges to flush all the existing host HPTEs for guest pages. However, the Linux PTEs for the range being flushed are still valid at that point. We are not supposed to establish any new references to pages in the range until the ...range_end() notifier gets called. The PPC-specific KVM code doesn't get any explicit notification of that; instead, we are supposed to use mmu_notifier_retry() to test whether we are or have been inside a range flush notifier pair while we have been getting a page and instantiating a host HPTE for the page. This therefore adds a call to mmu_notifier_retry inside kvmppc_mmu_map_page(). This call is inside a region locked with kvm->mmu_lock, which is the same lock that is called by the KVM MMU notifier functions, thus ensuring that no new notification can proceed while we are in the locked region. Inside this region we also create the host HPTE and link the corresponding hpte_cache structure into the lists used to find it later. We cannot allocate the hpte_cache structure inside this locked region because that can lead to deadlock, so we allocate it outside the region and free it if we end up not using it. This also moves the updates of vcpu3s->hpte_cache_count inside the regions locked with vcpu3s->mmu_lock, and does the increment in kvmppc_mmu_hpte_cache_map() when the pte is added to the cache rather than when it is allocated, in order that the hpte_cache_count is accurate. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | KVM: PPC: Book3S PR: Better handling of host-side read-only pagesPaul Mackerras2013-10-172-3/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently we request write access to all pages that get mapped into the guest, even if the guest is only loading from the page. This reduces the effectiveness of KSM because it means that we unshare every page we access. Also, we always set the changed (C) bit in the guest HPTE if it allows writing, even for a guest load. This fixes both these problems. We pass an 'iswrite' flag to the mmu.xlate() functions and to kvmppc_mmu_map_page() to indicate whether the access is a load or a store. The mmu.xlate() functions now only set C for stores. kvmppc_gfn_to_pfn() now calls gfn_to_pfn_prot() instead of gfn_to_pfn() so that it can indicate whether we need write access to the page, and get back a 'writable' flag to indicate whether the page is writable or not. If that 'writable' flag is clear, we then make the host HPTE read-only even if the guest HPTE allowed writing. This means that we can get a protection fault when the guest writes to a page that it has mapped read-write but which is read-only on the host side (perhaps due to KSM having merged the page). Thus we now call kvmppc_handle_pagefault() for protection faults as well as HPTE not found faults. In kvmppc_handle_pagefault(), if the access was allowed by the guest HPTE and we thus need to install a new host HPTE, we then need to remove the old host HPTE if there is one. This is done with a new function, kvmppc_mmu_unmap_page(), which uses kvmppc_mmu_pte_vflush() to find and remove the old host HPTE. Since the memslot-related functions require the KVM SRCU read lock to be held, this adds srcu_read_lock/unlock pairs around the calls to kvmppc_handle_pagefault(). Finally, this changes kvmppc_mmu_book3s_32_xlate_pte() to not ignore guest HPTEs that don't permit access, and to return -EPERM for accesses that are not permitted by the page protections. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | KVM: PPC: Book3S PR: Allocate kvm_vcpu structs from kvm_vcpu_cachePaul Mackerras2013-10-173-4/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This makes PR KVM allocate its kvm_vcpu structs from the kvm_vcpu_cache rather than having them embedded in the kvmppc_vcpu_book3s struct, which is allocated with vzalloc. The reason is to reduce the differences between PR and HV KVM in order to make is easier to have them coexist in one kernel binary. With this, the kvm_vcpu struct has a pointer to the kvmppc_vcpu_book3s struct. The pointer to the kvmppc_book3s_shadow_vcpu struct has moved from the kvmppc_vcpu_book3s struct to the kvm_vcpu struct, and is only present for 32-bit, since it is only used for 32-bit. Signed-off-by: Paul Mackerras <paulus@samba.org> [agraf: squash in compile fix from Aneesh] Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | KVM: PPC: Book3S PR: Make HPT accesses and updates SMP-safePaul Mackerras2013-10-171-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds a per-VM mutex to provide mutual exclusion between vcpus for accesses to and updates of the guest hashed page table (HPT). This also makes the code use single-byte writes to the HPT entry when updating of the reference (R) and change (C) bits. The reason for doing this, rather than writing back the whole HPTE, is that on non-PAPR virtual machines, the guest OS might be writing to the HPTE concurrently, and writing back the whole HPTE might conflict with that. Also, real hardware does single-byte writes to update R and C. The new mutex is taken in kvmppc_mmu_book3s_64_xlate() when reading the HPT and updating R and/or C, and in the PAPR HPT update hcalls (H_ENTER, H_REMOVE, etc.). Having the mutex means that we don't need to use a hypervisor lock bit in the HPT update hcalls, and we don't need to be careful about the order in which the bytes of the HPTE are updated by those hcalls. The other change here is to make emulated TLB invalidations (tlbie) effective across all vcpus. To do this we call kvmppc_mmu_pte_vflush for all vcpus in kvmppc_ppc_book3s_64_tlbie(). For 32-bit, this makes the setting of the accessed and dirty bits use single-byte writes, and makes tlbie invalidate shadow HPTEs for all vcpus. With this, PR KVM can successfully run SMP guests. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | KVM: PPC: Book3S PR: Use 64k host pages where possiblePaul Mackerras2013-10-171-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, PR KVM uses 4k pages for the host-side mappings of guest memory, regardless of the host page size. When the host page size is 64kB, we might as well use 64k host page mappings for guest mappings of 64kB and larger pages and for guest real-mode mappings. However, the magic page has to remain a 4k page. To implement this, we first add another flag bit to the guest VSID values we use, to indicate that this segment is one where host pages should be mapped using 64k pages. For segments with this bit set we set the bits in the shadow SLB entry to indicate a 64k base page size. When faulting in host HPTEs for this segment, we make them 64k HPTEs instead of 4k. We record the pagesize in struct hpte_cache for use when invalidating the HPTE. For now we restrict the segment containing the magic page (if any) to 4k pages. It should be possible to lift this restriction in future by ensuring that the magic 4k page is appropriately positioned within a host 64k page. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | KVM: PPC: Book3S PR: Allow guest to use 64k pagesPaul Mackerras2013-10-173-0/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds the code to interpret 64k HPTEs in the guest hashed page table (HPT), 64k SLB entries, and to tell the guest about 64k pages in kvm_vm_ioctl_get_smmu_info(). Guest 64k pages are still shadowed by 4k pages. This also adds another hash table to the four we have already in book3s_mmu_hpte.c to allow us to find all the PTEs that we have instantiated that match a given 64k guest page. The tlbie instruction changed starting with POWER6 to use a bit in the RB operand to indicate large page invalidations, and to use other RB bits to indicate the base and actual page sizes and the segment size. 64k pages came in slightly earlier, with POWER5++. We use one bit in vcpu->arch.hflags to indicate that the emulated cpu supports 64k pages, and another to indicate that it has the new tlbie definition. The KVM_PPC_GET_SMMU_INFO ioctl presents a bit of a problem, because the MMU capabilities depend on which CPU model we're emulating, but it is a VM ioctl not a VCPU ioctl and therefore doesn't get passed a VCPU fd. In addition, commonly-used userspace (QEMU) calls it before setting the PVR for any VCPU. Therefore, as a best effort we look at the first vcpu in the VM and return 64k pages or not depending on its capabilities. We also make the PVR default to the host PVR on recent CPUs that support 1TB segments (and therefore multiple page sizes as well) so that KVM_PPC_GET_SMMU_INFO will include 64k page and 1TB segment support on those CPUs. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | KVM: PPC: Book3S PR: Keep volatile reg values in vcpu rather than shadow_vcpuPaul Mackerras2013-10-173-188/+39
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently PR-style KVM keeps the volatile guest register values (R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two places, a kmalloc'd struct and in the PACA, and it gets copied back and forth in kvmppc_core_vcpu_load/put(), because the real-mode code can't rely on being able to access the kmalloc'd struct. This changes the code to copy the volatile values into the shadow_vcpu as one of the last things done before entering the guest. Similarly the values are copied back out of the shadow_vcpu to the kvm_vcpu immediately after exiting the guest. We arrange for interrupts to be still disabled at this point so that we can't get preempted on 64-bit and end up copying values from the wrong PACA. This means that the accessor functions in kvm_book3s.h for these registers are greatly simplified, and are same between PR and HV KVM. In places where accesses to shadow_vcpu fields are now replaced by accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs. Finally, on 64-bit, we don't need the kmalloc'd struct at all any more. With this, the time to read the PVR one million times in a loop went from 567.7ms to 575.5ms (averages of 6 values), an increase of about 1.4% for this worse-case test for guest entries and exits. The standard deviation of the measurements is about 11ms, so the difference is only marginally significant statistically. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | KVM: PPC: Book3S HV: Support POWER6 compatibility mode on POWER7Paul Mackerras2013-10-173-0/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This enables us to use the Processor Compatibility Register (PCR) on POWER7 to put the processor into architecture 2.05 compatibility mode when running a guest. In this mode the new instructions and registers that were introduced on POWER7 are disabled in user mode. This includes all the VSX facilities plus several other instructions such as ldbrx, stdbrx, popcntw, popcntd, etc. To select this mode, we have a new register accessible through the set/get_one_reg interface, called KVM_REG_PPC_ARCH_COMPAT. Setting this to zero gives the full set of capabilities of the processor. Setting it to one of the "logical" PVR values defined in PAPR puts the vcpu into the compatibility mode for the corresponding architecture level. The supported values are: 0x0f000002 Architecture 2.05 (POWER6) 0x0f000003 Architecture 2.06 (POWER7) 0x0f100003 Architecture 2.06+ (POWER7+) Since the PCR is per-core, the architecture compatibility level and the corresponding PCR value are stored in the struct kvmppc_vcore, and are therefore shared between all vcpus in a virtual core. Signed-off-by: Paul Mackerras <paulus@samba.org> [agraf: squash in fix to add missing break statements and documentation] Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | KVM: PPC: Book3S HV: Add support for guest Program Priority RegisterPaul Mackerras2013-10-174-0/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | POWER7 and later IBM server processors have a register called the Program Priority Register (PPR), which controls the priority of each hardware CPU SMT thread, and affects how fast it runs compared to other SMT threads. This priority can be controlled by writing to the PPR or by use of a set of instructions of the form or rN,rN,rN which are otherwise no-ops but have been defined to set the priority to particular levels. This adds code to context switch the PPR when entering and exiting guests and to make the PPR value accessible through the SET/GET_ONE_REG interface. When entering the guest, we set the PPR as late as possible, because if we are setting a low thread priority it will make the code run slowly from that point on. Similarly, the first-level interrupt handlers save the PPR value in the PACA very early on, and set the thread priority to the medium level, so that the interrupt handling code runs at a reasonable speed. Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | KVM: PPC: Book3S HV: Store LPCR value for each virtual corePaul Mackerras2013-10-174-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds the ability to have a separate LPCR (Logical Partitioning Control Register) value relating to a guest for each virtual core, rather than only having a single value for the whole VM. This corresponds to what real POWER hardware does, where there is a LPCR per CPU thread but most of the fields are required to have the same value on all active threads in a core. The per-virtual-core LPCR can be read and written using the GET/SET_ONE_REG interface. Userspace can can only modify the following fields of the LPCR value: DPFD Default prefetch depth ILE Interrupt little-endian TC Translation control (secondary HPT hash group search disable) We still maintain a per-VM default LPCR value in kvm->arch.lpcr, which contains bits relating to memory management, i.e. the Virtualized Partition Memory (VPM) bits and the bits relating to guest real mode. When this default value is updated, the update needs to be propagated to the per-vcore values, so we add a kvmppc_update_lpcr() helper to do that. Signed-off-by: Paul Mackerras <paulus@samba.org> [agraf: fix whitespace] Signed-off-by: Alexander Graf <agraf@suse.de>
| | * | | KVM: PPC: Book3S: Add GET/SET_ONE_REG interface for VRSAVEPaul Mackerras2013-10-171-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The VRSAVE register value for a vcpu is accessible through the GET/SET_SREGS interface for Book E processors, but not for Book 3S processors. In order to make this accessible for Book 3S processors, this adds a new register identifier for GET/SET_ONE_REG, and adds the code to implement it. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>