| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
PPC64 needs some special logic to properly set up the TOC.
See commit 85baa095497f ("powerpc/livepatch: Add live patching support
on ppc64le") for details.
PPC32 doesn't have TOC so it doesn't need that logic, so adding
LIVEPATCH support is straight forward.
Add CONFIG_LIVEPATCH_64 and move livepatch stack logic into that item.
Livepatch sample modules all work.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/63cb094125b6a6038c65eeac2abaabbabe63addd.1640017960.git.christophe.leroy@csgroup.eu
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Livepatching a loaded module involves applying relocations through
apply_relocate_add(), which attempts to write to read-only memory when
CONFIG_STRICT_MODULE_RWX=y.
R_PPC_ADDR16_LO, R_PPC_ADDR16_HI, R_PPC_ADDR16_HA and R_PPC_REL24 are
the types generated by the kpatch-build userspace tool or klp-convert
kernel tree observed applying a relocation to a post-init module.
Use patch_instruction() to patch those relocations.
Commit 8734b41b3efe ("powerpc/module_64: Fix livepatching for
RO modules") did similar change in module_64.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/d5697157cb7dba3927e19aa17c915a83bc550bb2.1640017960.git.christophe.leroy@csgroup.eu
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
_ENTRY() is now redundant with _GLOBAL(). Remove it.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/62a35f8dde2bb74c8d0d7a5430cce07a5a3a6fb6.1638273868.git.christophe.leroy@csgroup.eu
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
STABS debug format has been superseded long time ago by DWARF.
Remove the few remaining .stabs annotations from old 32 bits code.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/68932ec2ba6b868d35006b96e90f0890f3da3c05.1638273868.git.christophe.leroy@csgroup.eu
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
On large config LPARs (having 192 and more cores), Linux fails to boot
due to insufficient memory in the first memblock. It is due to the
memory reservation for the crash kernel which starts at 128MB offset of
the first memblock. This memory reservation for the crash kernel doesn't
leave enough space in the first memblock to accommodate other essential
system resources.
The crash kernel start address was set to 128MB offset by default to
ensure that the crash kernel get some memory below the RMA region which
is used to be of size 256MB. But given that the RMA region size can be
512MB or more, setting the crash kernel offset to mid of RMA size will
leave enough space for the kernel to allocate memory for other system
resources.
Since the above crash kernel offset change is only applicable to the LPAR
platform, the LPAR feature detection is pushed before the crash kernel
reservation. The rest of LPAR specific initialization will still
be done during pseries_probe_fw_features as usual.
This patch is dependent on changes to paca allocation for boot CPU. It
expect boot CPU to discover 1T segment support which is introduced by
the patch posted here:
https://lists.ozlabs.org/pipermail/linuxppc-dev/2022-January/239175.html
Reported-by: Abdul haleem <abdhalee@linux.vnet.ibm.com>
Signed-off-by: Sourabh Jain <sourabhjain@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220204085601.107257-1-sourabhjain@linux.ibm.com
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
On book3s/32 MMU, PP bits don't offer kernel RO protection,
kernel pages are always RW.
However, on the 603 a page fault is always generated when the
C bit (change bit = dirty bit) is not set.
Enforce kernel RO protection by clearing C bit in TLB miss
handler when the page doesn't have _PAGE_RW flag.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/bbb13848ff0100a76ee9ea95118058c30ae95f2c.1643613343.git.christophe.leroy@csgroup.eu
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Since commit 84de6ab0e904 ("powerpc/603: don't handle PAGE_ACCESSED
in TLB miss handlers.") page table is not updated anymore by
TLB miss handlers.
Remove the comment.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/38b1ffefd2146fa56bf8aa605d476ad9736bbb37.1643613296.git.christophe.leroy@csgroup.eu
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Without this patch, module init sections are disabled by patching their
names in arch-specific code when they're loaded (which prevents code in
layout_sections from finding init sections). This patch uses the new
arch-specific module_init_section instead.
This allows modules that have .init_array sections to have the
initialisers properly called (on load, before init). Without this patch,
the initialisers are not called because .init_array is renamed to
_init_array, and thus isn't found by code in find_module_sections().
Signed-off-by: Wedson Almeida Filho <wedsonaf@google.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220202055123.2144842-1-wedsonaf@google.com
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
When figuring out the number of threads, the debug message prints "1
thread" for the first iteration of the loop, instead of the actual
number of threads calculated from the length of the
"ibm,ppc-interrupt-server#s" property.
* /cpus/PowerPC,POWER8@20...
ibm,ppc-interrupt-server#s -> 1 threads <--- WRONG
thread 0 -> cpu 0 (hard id 32)
thread 1 -> cpu 1 (hard id 33)
thread 2 -> cpu 2 (hard id 34)
thread 3 -> cpu 3 (hard id 35)
thread 4 -> cpu 4 (hard id 36)
thread 5 -> cpu 5 (hard id 37)
thread 6 -> cpu 6 (hard id 38)
thread 7 -> cpu 7 (hard id 39)
* /cpus/PowerPC,POWER8@28...
ibm,ppc-interrupt-server#s -> 8 threads
thread 0 -> cpu 8 (hard id 40)
thread 1 -> cpu 9 (hard id 41)
thread 2 -> cpu 10 (hard id 42)
thread 3 -> cpu 11 (hard id 43)
thread 4 -> cpu 12 (hard id 44)
thread 5 -> cpu 13 (hard id 45)
thread 6 -> cpu 14 (hard id 46)
thread 7 -> cpu 15 (hard id 47)
(...)
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210120181847.952106-1-farosas@linux.ibm.com
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Mahesh & Sourabh identified two problems[1][2] with ppc64_bolted_size()
and paca allocation.
The first is that on a Radix capable machine but with "disable_radix" on
the command line, there is a window during early boot where
early_radix_enabled() is true, even though it will later become false.
early_init_devtree: <- early_radix_enabled() = false
early_init_dt_scan_cpus: <- early_radix_enabled() = false
...
check_cpu_pa_features: <- early_radix_enabled() = false
... ^ <- early_radix_enabled() = TRUE
allocate_paca: | <- early_radix_enabled() = TRUE
... |
ppc64_bolted_size: | <- early_radix_enabled() = TRUE
if (early_radix_enabled())| <- early_radix_enabled() = TRUE
return ULONG_MAX; |
... |
... | <- early_radix_enabled() = TRUE
... | <- early_radix_enabled() = TRUE
mmu_early_init_devtree() V
... <- early_radix_enabled() = false
This causes ppc64_bolted_size() to return ULONG_MAX for the boot CPU's
paca allocation, even though later it will return a different value.
This is not currently a bug because the paca allocation is also limited
by the RMA size, but that is very fragile.
The second issue is that when using the Hash MMU, when we call
ppc64_bolted_size() for the boot CPU's paca allocation, we have not yet
detected whether 1T segments are available. That causes
ppc64_bolted_size() to return 256MB, even if the machine can actually
support up to 1T. This is usually OK, we generally have space below
256MB for one paca, but for a kdump kernel placed above 256MB it causes
the boot to fail.
At boot we cannot discover all the features of the machine
instantaneously, so there will always be some periods where we have
incomplete knowledge of the system. However both the above problems stem
from the fact that we allocate the boot CPU's paca (and paca pointers
array) before we decide which MMU we are using, or discover its exact
features.
Moving the paca allocation slightly later still can solve both the
issues described above, and means for a normal boot we don't do any
permanent allocations until after we've discovered the MMU.
Note that although we move the boot CPU's paca allocation later, we
still have a temporary paca (boot_paca) accessible via r13, so code that
does read only access to paca fields is safe. The only risk is that some
code writes to the boot_paca, and that write will then be lost when we
switch away from the boot_paca later in early_setup().
The additional code that runs before the paca allocation is primarily
mmu_early_init_devtree(), which is scanning the device tree and
populating globals and cur_cpu_spec with MMU related flags. I do not see
any additional code that writes to paca fields.
[1]: https://lore.kernel.org/r/20211018084434.217772-2-sourabhjain@linux.ibm.com
[2]: https://lore.kernel.org/r/20211018084434.217772-3-sourabhjain@linux.ibm.com
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220124130544.408675-1-mpe@ellerman.id.au
|
| |/ / /
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The link stack flush status is not visible in debugfs. It can be enabled
even when count cache flush is disabled. Add separate file for its
status.
Signed-off-by: Michal Suchanek <msuchanek@suse.de>
[mpe: Update for change to link_stack_flush_type]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20191127220959.6208-1-msuchanek@suse.de
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
node_dev_init()
... and call node_dev_init() after memory_dev_init() from driver_init(),
so before any of the existing arch/subsys calls. All online nodes should
be known at that point: early during boot, arch code determines node and
zone ranges and sets the relevant nodes online; usually this happens in
setup_arch().
This is in line with memory_dev_init(), which initializes the memory
device subsystem and creates all memory block devices.
Similar to memory_dev_init(), panic() if anything goes wrong, we don't
want to continue with such basic initialization errors.
The important part is that node_dev_init() gets called after
memory_dev_init() and after cpu_dev_init(), but before any of the relevant
archs call register_cpu() to register the new cpu device under the node
device. The latter should be the case for the current users of
topology_init().
Link: https://lkml.kernel.org/r/20220203105212.30385-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Anatoly Pugachev <matorola@gmail.com> (sparc64)
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
With commit a4e92ce8e4c8 ("powerpc/fadump: Reservationless firmware
assisted dump"), Linux kernel's Contiguous Memory Allocator (CMA) based
reservation was introduced in fadump. That change was aimed at using CMA
to let applications utilize the memory reserved for fadump while blocking
it from being used for kernel pages. The assumption was, even if CMA
activation fails for whatever reason, the memory still remains reserved to
avoid it from being used for kernel pages. But commit 072355c1cf2d
("mm/cma: expose all pages to the buddy if activation of an area fails")
breaks this assumption as it started exposing all pages to buddy allocator
on CMA activation failure. It led to warning messages like below while
running crash-utility on vmcore of a kernel having above two commits:
crash: seek error: kernel virtual address: <from reserved region>
To fix this problem, opt out from exposing pages to buddy allocator on CMA
activation failure for fadump reserved memory.
Link: https://lkml.kernel.org/r/20220117075246.36072-3-hbathini@linux.ibm.com
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Sourabh Jain <sourabhjain@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |/ /
|/| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Patch series "mm: enforce pageblock_order < MAX_ORDER".
Having pageblock_order >= MAX_ORDER seems to be able to happen in corner
cases and some parts of the kernel are not prepared for it.
For example, Aneesh has shown [1] that such kernels can be compiled on
ppc64 with 64k base pages by setting FORCE_MAX_ZONEORDER=8, which will
run into a WARN_ON_ONCE(order >= MAX_ORDER) in comapction code right
during boot.
We can get pageblock_order >= MAX_ORDER when the default hugetlb size is
bigger than the maximum allocation granularity of the buddy, in which
case we are no longer talking about huge pages but instead gigantic
pages.
Having pageblock_order >= MAX_ORDER can only make alloc_contig_range()
of such gigantic pages more likely to succeed.
Reliable use of gigantic pages either requires boot time allcoation or
CMA, no need to overcomplicate some places in the kernel to optimize for
corner cases that are broken in other areas of the kernel.
This patch (of 2):
Let's enforce pageblock_order < MAX_ORDER and simplify.
Especially patch #1 can be regarded a cleanup before:
[PATCH v5 0/6] Use pageblock_order for cma and alloc_contig_range
alignment. [2]
[1] https://lkml.kernel.org/r/87r189a2ks.fsf@linux.ibm.com
[2] https://lkml.kernel.org/r/20220211164135.1803616-1-zi.yan@sent.com
Link: https://lkml.kernel.org/r/20220214174132.219303-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Rob Herring <robh@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: John Garry via iommu <iommu@lists.linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|/ /
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Allthough kernel text is always mapped with BATs, we still have
inittext mapped with pages, so TLB miss handling is required
when CONFIG_DEBUG_PAGEALLOC or CONFIG_KFENCE is set.
The final solution should be to set a BAT that also maps inittext
but that BAT then needs to be cleared at end of init, and it will
require more changes to be able to do it properly.
As DEBUG_PAGEALLOC or KFENCE are debugging, performance is not a big
deal so let's fix it simply for now to enable easy stable application.
Fixes: 035b19a15a98 ("powerpc/32s: Always map kernel text and rodata with BATs")
Cc: stable@vger.kernel.org # v5.11+
Reported-by: Maxime Bizon <mbizon@freebox.fr>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/aea33b4813a26bdb9378b5f273f00bd5d4abe240.1638857364.git.christophe.leroy@csgroup.eu
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The decrementer exception can fail to be cleared when the interrupt
returns in the case where the decrementer wraps with the next timer
still beyond decrementer_max. This results in a decrementer interrupt
storm. This is triggerable with small decrementer system with hard
and soft watchdogs disabled.
Fix this by always programming the decrementer if there was no timer.
Fixes: 0faf20a1ad16 ("powerpc/64s/interrupt: Don't enable MSR[EE] in irq handlers unless perf is in use")
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220124143930.3923442-1-npiggin@gmail.com
|
|\ \
| |/
|/|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
- A series of bpf fixes, including an oops fix and some codegen fixes.
- Fix a regression in syscall_get_arch() for compat processes.
- Fix boot failure on some 32-bit systems with KASAN enabled.
- A couple of other build/minor fixes.
Thanks to Athira Rajeev, Christophe Leroy, Dmitry V. Levin, Jiri Olsa,
Johan Almbladh, Maxime Bizon, Naveen N. Rao, and Nicholas Piggin.
* tag 'powerpc-5.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/64s: Mask SRR0 before checking against the masked NIP
powerpc/perf: Only define power_pmu_wants_prompt_pmi() for CONFIG_PPC64
powerpc/32s: Fix kasan_init_region() for KASAN
powerpc/time: Fix build failure due to do_hard_irq_enable() on PPC32
powerpc/audit: Fix syscall_get_arch()
powerpc64/bpf: Limit 'ldbrx' to processors compliant with ISA v2.06
tools/bpf: Rename 'struct event' to avoid naming conflict
powerpc/bpf: Update ldimm64 instructions during extra pass
powerpc32/bpf: Fix codegen for bpf-to-bpf calls
bpf: Guard against accessing NULL pt_regs in bpf_get_task_stack()
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Commit 314f6c23dd8d ("powerpc/64s: Mask NIP before checking against
SRR0") masked off the low 2 bits of the NIP value in the interrupt
stack frame in case they are non-zero and mis-compare against a SRR0
register value of a CPU which always reads back 0 from the 2 low bits
which are reserved.
This now causes the opposite problem that an implementation which does
implement those bits in SRR0 will mis-compare against the masked NIP
value in which they have been cleared. QEMU is one such implementation,
and this is allowed by the architecture.
This can be triggered by sigfuz by setting low bits of PT_NIP in the
signal context.
Fix this for now by masking the SRR0 bits as well. Cleaner is probably
to sanitise these values before putting them in registers or stack, but
this is the quick and backportable fix.
Fixes: 314f6c23dd8d ("powerpc/64s: Mask NIP before checking against SRR0")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220117134403.2995059-1-npiggin@gmail.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Remove PDE_DATA() completely and replace it with pde_data().
[akpm@linux-foundation.org: fix naming clash in drivers/nubus/proc.c]
[akpm@linux-foundation.org: now fix it properly]
Link: https://lkml.kernel.org/r/20211124081956.87711-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Alexey Gladkov <gladkov.alexey@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Merge more updates from Andrew Morton:
"55 patches.
Subsystems affected by this patch series: percpu, procfs, sysctl,
misc, core-kernel, get_maintainer, lib, checkpatch, binfmt, nilfs2,
hfs, fat, adfs, panic, delayacct, kconfig, kcov, and ubsan"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (55 commits)
lib: remove redundant assignment to variable ret
ubsan: remove CONFIG_UBSAN_OBJECT_SIZE
kcov: fix generic Kconfig dependencies if ARCH_WANTS_NO_INSTR
lib/Kconfig.debug: make TEST_KMOD depend on PAGE_SIZE_LESS_THAN_256KB
btrfs: use generic Kconfig option for 256kB page size limit
arch/Kconfig: split PAGE_SIZE_LESS_THAN_256KB from PAGE_SIZE_LESS_THAN_64KB
configs: introduce debug.config for CI-like setup
delayacct: track delays from memory compact
Documentation/accounting/delay-accounting.rst: add thrashing page cache and direct compact
delayacct: cleanup flags in struct task_delay_info and functions use it
delayacct: fix incomplete disable operation when switch enable to disable
delayacct: support swapin delay accounting for swapping without blkio
panic: remove oops_id
panic: use error_report_end tracepoint on warnings
fs/adfs: remove unneeded variable make code cleaner
FAT: use io_schedule_timeout() instead of congestion_wait()
hfsplus: use struct_group_attr() for memcpy() region
nilfs2: remove redundant pointer sbufs
fs/binfmt_elf: use PT_LOAD p_align values for static PIE
const_structs.checkpatch: add frequently used ops structs
...
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
With NEED_PER_CPU_PAGE_FIRST_CHUNK enabled, we need a function to
populate pte, this patch adds a generic pcpu populate pte function,
pcpu_populate_pte(), which is marked __weak and used on most
architectures, but it is overridden on x86, which has its own
implementation.
Link: https://lkml.kernel.org/r/20211216112359.103822-5-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
With the previous patch, we could add a generic pcpu first chunk
allocate and free function to cleanup the duplicated definations on each
architecture.
Link: https://lkml.kernel.org/r/20211216112359.103822-4-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Add pcpu_fc_cpu_to_node_fn_t and pass it into pcpu_fc_alloc_fn_t, pcpu
first chunk allocation will call it to alloc memblock on the
corresponding node by it, this is prepare for the next patch.
Link: https://lkml.kernel.org/r/20211216112359.103822-3-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull signal/exit/ptrace updates from Eric Biederman:
"This set of changes deletes some dead code, makes a lot of cleanups
which hopefully make the code easier to follow, and fixes bugs found
along the way.
The end-game which I have not yet reached yet is for fatal signals
that generate coredumps to be short-circuit deliverable from
complete_signal, for force_siginfo_to_task not to require changing
userspace configured signal delivery state, and for the ptrace stops
to always happen in locations where we can guarantee on all
architectures that the all of the registers are saved and available on
the stack.
Removal of profile_task_ext, profile_munmap, and profile_handoff_task
are the big successes for dead code removal this round.
A bunch of small bug fixes are included, as most of the issues
reported were small enough that they would not affect bisection so I
simply added the fixes and did not fold the fixes into the changes
they were fixing.
There was a bug that broke coredumps piped to systemd-coredump. I
dropped the change that caused that bug and replaced it entirely with
something much more restrained. Unfortunately that required some
rebasing.
Some successes after this set of changes: There are few enough calls
to do_exit to audit in a reasonable amount of time. The lifetime of
struct kthread now matches the lifetime of struct task, and the
pointer to struct kthread is no longer stored in set_child_tid. The
flag SIGNAL_GROUP_COREDUMP is removed. The field group_exit_task is
removed. Issues where task->exit_code was examined with
signal->group_exit_code should been examined were fixed.
There are several loosely related changes included because I am
cleaning up and if I don't include them they will probably get lost.
The original postings of these changes can be found at:
https://lkml.kernel.org/r/87a6ha4zsd.fsf@email.froward.int.ebiederm.org
https://lkml.kernel.org/r/87bl1kunjj.fsf@email.froward.int.ebiederm.org
https://lkml.kernel.org/r/87r19opkx1.fsf_-_@email.froward.int.ebiederm.org
I trimmed back the last set of changes to only the obviously correct
once. Simply because there was less time for review than I had hoped"
* 'signal-for-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (44 commits)
ptrace/m68k: Stop open coding ptrace_report_syscall
ptrace: Remove unused regs argument from ptrace_report_syscall
ptrace: Remove second setting of PT_SEIZED in ptrace_attach
taskstats: Cleanup the use of task->exit_code
exit: Use the correct exit_code in /proc/<pid>/stat
exit: Fix the exit_code for wait_task_zombie
exit: Coredumps reach do_group_exit
exit: Remove profile_handoff_task
exit: Remove profile_task_exit & profile_munmap
signal: clean up kernel-doc comments
signal: Remove the helper signal_group_exit
signal: Rename group_exit_task group_exec_task
coredump: Stop setting signal->group_exit_task
signal: Remove SIGNAL_GROUP_COREDUMP
signal: During coredumps set SIGNAL_GROUP_EXIT in zap_process
signal: Make coredump handling explicit in complete_signal
signal: Have prepare_signal detect coredumps using signal->core_state
signal: Have the oom killer detect coredumps using signal->core_state
exit: Move force_uaccess back into do_exit
exit: Guarantee make_task_dead leaks the tsk when calling do_task_exit
...
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
There are two big uses of do_exit. The first is it's design use to be
the guts of the exit(2) system call. The second use is to terminate
a task after something catastrophic has happened like a NULL pointer
in kernel code.
Add a function make_task_dead that is initialy exactly the same as
do_exit to cover the cases where do_exit is called to handle
catastrophic failure. In time this can probably be reduced to just a
light wrapper around do_task_dead. For now keep it exactly the same so
that there will be no behavioral differences introducing this new
concept.
Replace all of the uses of do_exit that use it for catastraphic
task cleanup with make_task_dead to make it clear what the code
is doing.
As part of this rename rewind_stack_do_exit
rewind_stack_and_make_dead.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|\ \ \ \
| |_|_|/
|/| | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Merge misc updates from Andrew Morton:
"146 patches.
Subsystems affected by this patch series: kthread, ia64, scripts,
ntfs, squashfs, ocfs2, vfs, and mm (slab-generic, slab, kmemleak,
dax, kasan, debug, pagecache, gup, shmem, frontswap, memremap,
memcg, selftests, pagemap, dma, vmalloc, memory-failure, hugetlb,
userfaultfd, vmscan, mempolicy, oom-kill, hugetlbfs, migration, thp,
ksm, page-poison, percpu, rmap, zswap, zram, cleanups, hmm, and
damon)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (146 commits)
mm/damon: hide kernel pointer from tracepoint event
mm/damon/vaddr: hide kernel pointer from damon_va_three_regions() failure log
mm/damon/vaddr: use pr_debug() for damon_va_three_regions() failure logging
mm/damon/dbgfs: remove an unnecessary variable
mm/damon: move the implementation of damon_insert_region to damon.h
mm/damon: add access checking for hugetlb pages
Docs/admin-guide/mm/damon/usage: update for schemes statistics
mm/damon/dbgfs: support all DAMOS stats
Docs/admin-guide/mm/damon/reclaim: document statistics parameters
mm/damon/reclaim: provide reclamation statistics
mm/damon/schemes: account how many times quota limit has exceeded
mm/damon/schemes: account scheme actions that successfully applied
mm/damon: remove a mistakenly added comment for a future feature
Docs/admin-guide/mm/damon/usage: update for kdamond_pid and (mk|rm)_contexts
Docs/admin-guide/mm/damon/usage: mention tracepoint at the beginning
Docs/admin-guide/mm/damon/usage: remove redundant information
Docs/admin-guide/mm/damon/usage: update for scheme quotas and watermarks
mm/damon: convert macro functions to static inline functions
mm/damon: modify damon_rand() macro to static inline function
mm/damon: move damon_rand() definition into damon.h
...
|
| | |/
| |/|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Link: https://lkml.kernel.org/r/20211202123810.267175-4-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Ben Widawsky <ben.widawsky@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
- Optimise radix KVM guest entry/exit by 2x on Power9/Power10.
- Allow firmware to tell us whether to disable the entry and uaccess
flushes on Power10 or later CPUs.
- Add BPF_PROBE_MEM support for 32 and 64-bit BPF jits.
- Several fixes and improvements to our hard lockup watchdog.
- Activate HAVE_DYNAMIC_FTRACE_WITH_REGS on 32-bit.
- Allow building the 64-bit Book3S kernel without hash MMU support, ie.
Radix only.
- Add KUAP (SMAP) support for 40x, 44x, 8xx, Book3E (64-bit).
- Add new encodings for perf_mem_data_src.mem_hops field, and use them
on Power10.
- A series of small performance improvements to 64-bit interrupt entry.
- Several commits fixing issues when building with the clang integrated
assembler.
- Many other small features and fixes.
Thanks to Alan Modra, Alexey Kardashevskiy, Ammar Faizi, Anders Roxell,
Arnd Bergmann, Athira Rajeev, Cédric Le Goater, Christophe JAILLET,
Christophe Leroy, Christoph Hellwig, Daniel Axtens, David Yang, Erhard
Furtner, Fabiano Rosas, Greg Kroah-Hartman, Guo Ren, Hari Bathini, Jason
Wang, Joel Stanley, Julia Lawall, Kajol Jain, Kees Cook, Laurent Dufour,
Madhavan Srinivasan, Mark Brown, Minghao Chi, Nageswara R Sastry, Naresh
Kamboju, Nathan Chancellor, Nathan Lynch, Nicholas Piggin, Nick Child,
Oliver O'Halloran, Peiwei Hu, Randy Dunlap, Ravi Bangoria, Rob Herring,
Russell Currey, Sachin Sant, Sean Christopherson, Segher Boessenkool,
Thadeu Lima de Souza Cascardo, Tyrel Datwyler, Xiang wangx, and Yang
Guang.
* tag 'powerpc-5.17-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (240 commits)
powerpc/xmon: Dump XIVE information for online-only processors.
powerpc/opal: use default_groups in kobj_type
powerpc/cacheinfo: use default_groups in kobj_type
powerpc/sched: Remove unused TASK_SIZE_OF
powerpc/xive: Add missing null check after calling kmalloc
powerpc/floppy: Remove usage of the deprecated "pci-dma-compat.h" API
selftests/powerpc: Add a test of sigreturning to an unaligned address
powerpc/64s: Use EMIT_WARN_ENTRY for SRR debug warnings
powerpc/64s: Mask NIP before checking against SRR0
powerpc/perf: Fix spelling of "its"
powerpc/32: Fix boot failure with GCC latent entropy plugin
powerpc/code-patching: Replace patch_instruction() by ppc_inst_write() in selftests
powerpc/code-patching: Move code patching selftests in its own file
powerpc/code-patching: Move instr_is_branch_{i/b}form() in code-patching.h
powerpc/code-patching: Move patch_exception() outside code-patching.c
powerpc/code-patching: Use test_trampoline for prefixed patch test
powerpc/code-patching: Fix patch_branch() return on out-of-range failure
powerpc/code-patching: Reorganise do_patch_instruction() to ease error handling
powerpc/code-patching: Fix unmap_patch_area() error handling
powerpc/code-patching: Fix error handling in do_patch_instruction()
...
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
There are currently 2 ways to create a set of sysfs files for a
kobj_type, through the default_attrs field, and the default_groups
field. Move the powerpc cacheinfo sysfs code to use default_groups
field which has been the preferred way since aa30f47cf666 ("kobject: Add
support for default attribute groups to kobj_type") so that we can soon
get rid of the obsolete default_attrs field.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Tyrel Datwyler <tyreld@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220104155450.1291277-1-gregkh@linuxfoundation.org
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
When CONFIG_PPC_RFI_SRR_DEBUG=y we check the SRR values before returning
from interrupts. This is done in asm using EMIT_BUG_ENTRY, and passing
BUGFLAG_WARNING.
However that fails to create an exception table entry for the warning,
and so do_program_check() fails the exception table search and proceeds
to call _exception(), resulting in an oops like:
Oops: Exception in kernel mode, sig: 5 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries
Modules linked in:
CPU: 2 PID: 1204 Comm: sigreturn_unali Tainted: P 5.16.0-rc2-00194-g91ca3d4f77c5 #12
NIP: c00000000000c5b0 LR: 0000000000000000 CTR: 0000000000000000
...
NIP [c00000000000c5b0] system_call_common+0x150/0x268
LR [0000000000000000] 0x0
Call Trace:
[c00000000db73e10] [c00000000000c558] system_call_common+0xf8/0x268 (unreliable)
...
Instruction dump:
7cc803a6 888d0931 2c240000 4082001c 38800000 988d0931 e8810170 e8a10178
7c9a03a6 7cbb03a6 7d7a02a6 e9810170 <7f0b6088> 7d7b02a6 e9810178 7f0b6088
We should instead use EMIT_WARN_ENTRY, which creates an exception table
entry for the warning, allowing the warning to be correctly recognised,
and the code to resume after printing the warning.
Note however that because this warning is buried deep in the interrupt
return path, we are not able to recover from it (due to MSR_RI being
clear), so we still end up in die() with an unrecoverable exception.
Fixes: 59dc5bfca0cb ("powerpc/64s: avoid reloading (H)SRR registers if they are still valid")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211221135101.2085547-2-mpe@ellerman.id.au
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
When CONFIG_PPC_RFI_SRR_DEBUG=y we check that NIP and SRR0 match when
returning from interrupts. This can trigger falsely if NIP has either of
its two low bits set via sigreturn or ptrace, while SRR0 has its low two
bits masked in hardware.
As a quick fix make sure to mask the low bits before doing the check.
Fixes: 59dc5bfca0cb ("powerpc/64s: avoid reloading (H)SRR registers if they are still valid")
Reported-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Tested-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Link: https://lore.kernel.org/r/20211221135101.2085547-1-mpe@ellerman.id.au
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Boot fails with GCC latent entropy plugin enabled.
This is due to early boot functions trying to access 'latent_entropy'
global data while the kernel is not relocated at its final
destination yet.
As there is no way to tell GCC to use PTRRELOC() to access it,
disable latent entropy plugin in early_32.o and feature-fixups.o and
code-patching.o
Fixes: 38addce8b600 ("gcc-plugins: Add latent_entropy plugin")
Cc: stable@vger.kernel.org # v4.9+
Reported-by: Erhard Furtner <erhard_f@mailbox.org>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=215217
Link: https://lore.kernel.org/r/2bac55483b8daf5b1caa163a45fa5f9cdbe18be4.1640178426.git.christophe.leroy@csgroup.eu
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The dssall ("Data Stream Stop All") instruction is obsolete altogether
with other Data Cache Instructions since ISA 2.03 (year 2006).
LLVM IAS does not support it but PPC970 seems to be using it.
This switches dssall to .long as there is no much point in fixing LLVM.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211221055904.555763-6-aik@ozlabs.ru
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The LLVM integrated assembler really does not like us reassigning things
to the same label:
<instantiation>:7:9: error: invalid reassignment of non-absolute variable 'fs_label'
This happens across a bunch of platforms:
https://github.com/ClangBuiltLinux/linux/issues/1043
https://github.com/ClangBuiltLinux/linux/issues/1008
https://github.com/ClangBuiltLinux/linux/issues/920
https://github.com/ClangBuiltLinux/linux/issues/1050
There is no hope of getting this fixed in LLVM (see
https://github.com/ClangBuiltLinux/linux/issues/1043#issuecomment-641571200
and https://bugs.llvm.org/show_bug.cgi?id=47798#c1 )
so if we want to build with LLVM_IAS, we need to hack
around it ourselves.
For us the big problem comes from this:
\#define USE_FIXED_SECTION(sname) \
fs_label = start_##sname; \
fs_start = sname##_start; \
use_ftsec sname;
\#define USE_TEXT_SECTION()
fs_label = start_text; \
fs_start = text_start; \
.text
and in particular fs_label.
This works around it by not setting those 'variables' and requiring
that users of the variables instead track for themselves what section
they are in. This isn't amazing, by any stretch, but it gets us further
in the compilation.
Note that even though users have to keep track of the section, using
a wrong one produces an error with both binutils and llvm which prevents
from using wrong section at the compile time:
llvm error example:
AS arch/powerpc/kernel/head_64.o
<unknown>:0: error: Cannot represent a difference across sections
make[3]: *** [/home/aik/p/kernels-llvm/llvm/scripts/Makefile.build:388: arch/powerpc/kernel/head_64.o] Error 1
binutils error example:
/home/aik/p/kernels-llvm/llvm/arch/powerpc/kernel/exceptions-64s.S: Assembler messages:
/home/aik/p/kernels-llvm/llvm/arch/powerpc/kernel/exceptions-64s.S:1974: Error: can't resolve `system_call_common' {.text section} - `start_r
eal_vectors' {.head.text.real_vectors section}
make[3]: *** [/home/aik/p/kernels-llvm/llvm/scripts/Makefile.build:388: arch/powerpc/kernel/head_64.o] Error 1
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211221055904.555763-5-aik@ozlabs.ru
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
It is used just once and does not really help with readability, remove it.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211221055904.555763-4-aik@ozlabs.ru
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This patch future-proofs the kernel against linker changes that might
put the toc pointer at some location other than .got+0x8000, by
replacing __toc_start+0x8000 with .TOC. throughout. If the kernel's
idea of the toc pointer doesn't agree with the linker, bad things
happen.
prom_init.c code relocating its toc is also changed so that a symbolic
__prom_init_toc_start toc-pointer relative address is calculated
rather than assuming that it is always at toc-pointer - 0x8000. The
length calculations loading values from the toc are also avoided.
It's a little incestuous to do that with unreloc_toc picking up
adjusted values (which is fine in practice, they both adjust by the
same amount if all goes well).
I've also changed the way .got is aligned in vmlinux.lds and
zImage.lds, mostly so that dumping out section info by objdump or
readelf plainly shows the alignment is 256. This linker script
feature was added 2005-09-27, available in FSF binutils releases from
2.17 onwards. Should be safe to use in the kernel, I think.
Finally, put *(.got) before the prom_init.o entry which only needs
*(.toc), so that the GOT header goes in the correct place. I don't
believe this makes any difference for the kernel as it would for
dynamic objects being loaded by ld.so. That change is just to stop
lusers who blindly copy kernel scripts being led astray. Of course,
this change needs the prom_init.c changes.
Some notes on .toc and .got.
.toc is a compiler generated section of addresses. .got is a linker
generated section of addresses, generally built when the linker sees
R_*_*GOT* relocations. In the case of powerpc64 ld.bfd, there are
multiple generated .got sections, one per input object file. So you
can somewhat reasonably write in a linker script an input section
statement like *prom_init.o(.got .toc) to mean "the .got and .toc
section for files matching *prom_init.o". On other architectures that
doesn't make sense, because the linker generally has just one .got
section. Even on powerpc64, note well that the GOT entries for
prom_init.o may be merged with GOT entries from other objects. That
means that if prom_init.o references, say, _end via some GOT
relocation, and some other object also references _end via a GOT
relocation, the GOT entry for _end may be in the range
__prom_init_toc_start to __prom_init_toc_end and if the kernel does
something special to GOT/TOC entries in that range then the value of
_end as seen by objects other than prom_init.o will be affected. On
the other hand the GOT entry for _end may not be in the range
__prom_init_toc_start to __prom_init_toc_end. Which way it turns out
is deterministic but a detail of linker operation that should not be
relied on.
A feature of ld.bfd is that input .toc (and .got) sections matching
one linker input section statement may be sorted, to put entries used
by small-model code first, near the toc base. This is why scripts for
powerpc64 normally use *(.got .toc) rather than *(.got) *(.toc), since
the first form allows more freedom to sort.
Another feature of ld.bfd is that indirect addressing sequences using
the GOT/TOC may be edited by the linker to relative addressing. In
many cases relative addressing would be emitted by gcc for
-mcmodel=medium if you appropriately decorate variable declarations
with non-default visibility.
The original patch is here:
https://lore.kernel.org/linuxppc-dev/20210310034813.GM6042@bubble.grove.modra.org/
Signed-off-by: Alan Modra <amodra@au1.ibm.com>
[aik: removed non-relocatable which is gone in 24d33ac5b8ffb]
[aik: added <=2.24 check]
[aik: because of llvm-as, kernel_toc_addr() uses "mr" instead of global register variable]
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211221055904.555763-2-aik@ozlabs.ru
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Some functions defined in `arch/powerpc/kernel` (and one in `arch/powerpc/
kexec`) are deserving of an `__init` macro attribute. These functions are
only called by other initialization functions and therefore should inherit
the attribute.
Also, change function declarations in header files to include `__init`.
Signed-off-by: Nick Child <nick.child@ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211216220035.605465-2-nick.child@ibm.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Reading the CFAR register is quite costly (~20 cycles on POWER9). It is
a good idea to have for most synchronous interrupts, but for async ones
it is much less important.
Doorbell, external, and decrementer interrupts are the important
asynchronous ones. HV interrupts can't skip CFAR if KVM HV is possible,
because it might be a guest exit that requires CFAR preserved. But the
important pseries interrupts can avoid loading CFAR.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210922145452.352571-7-npiggin@gmail.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
in use
Enabling MSR[EE] in interrupt handlers while interrupts are still soft
masked allows PMIs to profile interrupt handlers to some degree, beyond
what SIAR latching allows.
When perf is not being used, this is almost useless work. It requires an
extra mtmsrd in the irq handler, and it also opens the door to masked
interrupts hitting and requiring replay, which is more expensive than
just taking them directly. This effect can be noticable in high IRQ
workloads.
Avoid enabling MSR[EE] unless perf is currently in use. This saves about
60 cycles (or 8%) on a simple decrementer interrupt microbenchmark.
Replayed interrupts drop from 1.4% of all interrupts taken, to 0.003%.
This does prevent the soft-nmi interrupt being taken in these handlers,
but that's not too reliable anyway. The SMP watchdog will continue to be
the reliable way to catch lockups.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210922145452.352571-5-npiggin@gmail.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The mtmsrd to enable MSR[RI] can be combined with the mtmsrd to enable
MSR[EE] in interrupt entry code, for those interrupts which enable EE.
This helps performance of important synchronous interrupts (e.g., page
faults).
This is similar to what commit dd152f70bdc1 ("powerpc/64s: system call
avoid setting MSR[RI] until we set MSR[EE]") does for system calls.
Do this by enabling EE and RI together at the beginning of the entry
wrapper if PACA_IRQ_HARD_DIS is clear, and only enabling RI if it is
set.
Asynchronous interrupts set PACA_IRQ_HARD_DIS, but synchronous ones
leave it unchanged, so by default they always get EE=1 unless they have
interrupted a caller that is hard disabled. When the sync interrupt
later calls interrupt_cond_local_irq_enable(), it will not require
another mtmsrd because MSR[EE] was already enabled here.
This avoids one mtmsrd L=1 for synchronous interrupts on 64s, which
saves about 20 cycles on POWER9. And for kernel-mode interrupts, both
synchronous and asynchronous, this saves an additional 40 cycles due to
the mtmsrd being moved ahead of mfspr SPRN_AMR, which prevents a SPR
scoreboard stall.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210922145452.352571-3-npiggin@gmail.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
In panic path, fadump is triggered via a panic notifier function.
Before calling panic notifier functions, smp_send_stop() gets called,
which stops all CPUs except the panic'ing CPU. Commit 8389b37dffdc
("powerpc: stop_this_cpu: remove the cpu from the online map.") and
again commit bab26238bbd4 ("powerpc: Offline CPU in stop_this_cpu()")
started marking CPUs as offline while stopping them. So, if a kernel
has either of the above commits, vmcore captured with fadump via panic
path would not process register data for all CPUs except the panic'ing
CPU. Sample output of crash-utility with such vmcore:
# crash vmlinux vmcore
...
KERNEL: vmlinux
DUMPFILE: vmcore [PARTIAL DUMP]
CPUS: 1
DATE: Wed Nov 10 09:56:34 EST 2021
UPTIME: 00:00:42
LOAD AVERAGE: 2.27, 0.69, 0.24
TASKS: 183
NODENAME: XXXXXXXXX
RELEASE: 5.15.0+
VERSION: #974 SMP Wed Nov 10 04:18:19 CST 2021
MACHINE: ppc64le (2500 Mhz)
MEMORY: 8 GB
PANIC: "Kernel panic - not syncing: sysrq triggered crash"
PID: 3394
COMMAND: "bash"
TASK: c0000000150a5f80 [THREAD_INFO: c0000000150a5f80]
CPU: 1
STATE: TASK_RUNNING (PANIC)
crash> p -x __cpu_online_mask
__cpu_online_mask = $1 = {
bits = {0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}
}
crash>
crash>
crash> p -x __cpu_active_mask
__cpu_active_mask = $2 = {
bits = {0xff, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}
}
crash>
While this has been the case since fadump was introduced, the issue
was not identified for two probable reasons:
- In general, the bulk of the vmcores analyzed were from crash
due to exception.
- The above did change since commit 8341f2f222d7 ("sysrq: Use
panic() to force a crash") started using panic() instead of
deferencing NULL pointer to force a kernel crash. But then
commit de6e5d38417e ("powerpc: smp_send_stop do not offline
stopped CPUs") stopped marking CPUs as offline till kernel
commit bab26238bbd4 ("powerpc: Offline CPU in stop_this_cpu()")
reverted that change.
To ensure post processing register data of all other CPUs happens
as intended, let panic() function take the crash friendly path (read
crash_smp_send_stop()) with the help of crash_kexec_post_notifiers
option. Also, as register data for all CPUs is captured by f/w, skip
IPI callbacks here for fadump, to avoid any complications in finding
the right backtraces.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211207103719.91117-2-hbathini@linux.ibm.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Kdump can be triggered after panic_notifers since commit f06e5153f4ae2
("kernel/panic.c: add "crash_kexec_post_notifiers" option for kdump
after panic_notifers") introduced crash_kexec_post_notifiers option.
But using this option would mean smp_send_stop(), that marks all other
CPUs as offline, gets called before kdump is triggered. As a result,
kdump routines fail to save other CPUs' registers. To fix this, kdump
friendly crash_smp_send_stop() function was introduced with kernel
commit 0ee59413c967 ("x86/panic: replace smp_send_stop() with kdump
friendly version in panic path"). Override this kdump friendly weak
function to handle crash_kexec_post_notifiers option appropriately
on powerpc.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
[Fixed signature of crash_stop_this_cpu() - reported by lkp@intel.com]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211207103719.91117-1-hbathini@linux.ibm.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Unlike PPC64 ABI, PPC32 uses the stack to pass a parameter defined
as a struct, even when the struct has a single simple element.
To avoid that, define ppc_inst_t as u32 on PPC32.
Keep it as 'struct ppc_inst' when __CHECKER__ is defined so that
sparse can perform type checking.
Also revert commit 511eea5e2ccd ("powerpc/kprobes: Fix Oops by passing
ppc_inst as a pointer to emulate_step() on ppc32") as now the
instruction to be emulated is passed as a register to emulate_step().
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/c6d0c46f598f76ad0b0a88bc0d84773bd921b17c.1638208156.git.christophe.leroy@csgroup.eu
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
In order to stop using 'struct ppc_inst' on PPC32,
define a ppc_inst_t typedef.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/fe5baa2c66fea9db05a8b300b3e8d2880a42596c.1638208156.git.christophe.leroy@csgroup.eu
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This adds KUAP support to 85xx in 32 bits mode.
This is done by reading the content of SPRN_MAS1 and checking
the TID at the time user pgtable is loaded.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/f8696f8980ca1532ada3a2f0e0a03e756269c7fe.1634627931.git.christophe.leroy@csgroup.eu
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This adds KUAP support to 40x. This is done by checking
the content of SPRN_PID at the time user pgtable is loaded.
40x doesn't have KUEP, but KUAP implies KUEP because when the
PID doesn't match the page's PID, the page cannot be read nor
executed.
So KUEP is now automatically selected when KUAP is selected and
disabled when KUAP is disabled.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/aaefa91897ddc42ac11019dc0e1d1a525bd08e90.1634627931.git.christophe.leroy@csgroup.eu
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This adds KUAP support to 44x. This is done by checking
the content of SPRN_PID at the time it is read and written
into SPRN_MMUCR.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/7d6c3f1978a26feada74b084f651e8cf1e3b3a47.1634627931.git.christophe.leroy@csgroup.eu
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
On booke/40x we don't have segments like book3s/32.
On booke/40x we don't have access protection groups like 8xx.
Use the PID register to provide user access protection.
Kernel address space can be accessed with any PID.
User address space has to be accessed with the PID of the user.
User PID is always not null.
Everytime the kernel is entered, set PID register to 0 and
restore PID register when returning to user.
Everytime kernel needs to access user data, PID is restored
for the access.
In TLB miss handlers, check the PID and bail out to data storage
exception when PID is 0 and accessed address is in user space.
Note that also forbids execution of user text by kernel except
when user access is unlocked. But this shouldn't be a problem
as the kernel is not supposed to ever run user text.
This patch prepares the infrastructure but the real activation of KUAP
is done by following patches for each processor type one by one.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/5d65576a8e31e9480415785a180c92dd4e72306d.1634627931.git.christophe.leroy@csgroup.eu
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Also call kuap_lock() and kuap_save_and_lock() from
interrupt functions with CONFIG_PPC64.
For book3s/64 we keep them empty as it is done in assembly.
Also do the locked assert when switching task unless it is
book3s/64.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/1cbf94e26e6d6e2e028fd687588a7e6622d454a6.1634627931.git.christophe.leroy@csgroup.eu
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
We have many functionnalities common to 40x and BOOKE, it leads to
many places with #if defined(CONFIG_BOOKE) || defined(CONFIG_40x).
We are going to add a few more with KUAP for booke/40x, so create
a new symbol which is defined when either BOOKE or 40x is defined.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/9a3dbd60924cb25c9f944d3d8205ac5a0d15e229.1634627931.git.christophe.leroy@csgroup.eu
|