| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
All supported compilers today (gcc v5.1+ and clang v11+) have support for
-mcmodel=medium. As such, NO_MINIMAL_TOC is no longer being set. Remove
NO_MINIMAL_TOC as well as the fallback to -mminimal-toc.
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Naveen N Rao <naveen@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20240110141237.3179199-1-naveen@kernel.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PowerVM LPARs may retrieve Vital Product Data (VPD) for system
components using the ibm,get-vpd RTAS function.
We can expose this to user space with a /dev/papr-vpd character
device, where the programming model is:
struct papr_location_code plc = { .str = "", }; /* obtain all VPD */
int devfd = open("/dev/papr-vpd", O_RDONLY);
int vpdfd = ioctl(devfd, PAPR_VPD_CREATE_HANDLE, &plc);
size_t size = lseek(vpdfd, 0, SEEK_END);
char *buf = malloc(size);
pread(devfd, buf, size, 0);
When a file descriptor is obtained from ioctl(PAPR_VPD_CREATE_HANDLE),
the file contains the result of a complete ibm,get-vpd sequence. The
file contents are immutable from the POV of user space. To get a new
view of the VPD, the client must create a new handle.
This design choice insulates user space from most of the complexities
that ibm,get-vpd brings:
* ibm,get-vpd must be called more than once to obtain complete
results.
* Only one ibm,get-vpd call sequence should be in progress at a time;
interleaved sequences will disrupt each other. Callers must have a
protocol for serializing their use of the function.
* A call sequence in progress may receive a "VPD changed, try again"
status, requiring the client to abandon the sequence and start
over.
The memory required for the VPD buffers seems acceptable, around 20KB
for all VPD on one of my systems. And the value of the
/rtas/ibm,vpd-size DT property (the estimated maximum size of VPD) is
consistently 300KB across various systems I've checked.
I've implemented support for this new ABI in the rtas_get_vpd()
function in librtas, which the vpdupdate command currently uses to
populate its VPD database. I've verified that an unmodified vpdupdate
binary generates an identical database when using a librtas.so that
prefers the new ABI.
Along with the papr-vpd.h header exposed to user space, this
introduces a common papr-miscdev.h uapi header to share a base ioctl
ID with similar drivers to come.
Tested-by: Michal Suchánek <msuchanek@suse.de>
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231212-papr-sys_rtas-vs-lockdown-v6-9-e9eafd0c8c6c@linux.ibm.com
|
|
|
|
|
|
|
|
|
|
|
| |
Define operations for SED Opal to read/write keys
from POWER LPAR Platform KeyStore(PLPKS). This allows
non-volatile storage of SED Opal keys.
Signed-off-by: Greg Joyce <gjoyce@linux.vnet.ibm.com>
Reviewed-by: Jonathan Derrick <jonathan.derrick@linux.dev>
Link: https://lore.kernel.org/r/20231004201957.1451669-4-gjoyce@linux.vnet.ibm.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce a set of APIs for retrieving and updating PAPR system
parameters. This encapsulates the toil of temporary RTAS work area
management, RTAS function call retries, and translation of RTAS call
statuses to conventional error values.
There are several places in the kernel that already retrieve system
parameters by calling the RTAS ibm,get-system-parameter function
directly. These will be converted to papr_sysparm_get() in changes to
follow.
As for updating system parameters, current practice is to use
sys_rtas() from user space; there are no in-kernel users of the RTAS
ibm,set-system-parameter function. However this will become deprecated
in time because it is not compatible with lockdown.
The papr_sysparm_* APIs will form the common basis for in-kernel
and user space access to system parameters. The code to expose the
set/get capabilities to user space will follow.
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20230125-b4-powerpc-rtas-queue-v3-14-26929c8cce78@linux.ibm.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Various pseries-specific RTAS functions take a temporary "work area"
parameter - a buffer in memory accessible to RTAS. Typically such
functions are passed the statically allocated rtas_data_buf buffer as
the argument. This buffer is protected by a global spinlock. So users
of rtas_data_buf cannot perform sleeping operations while accessing
the buffer.
Most RTAS functions that have a work area parameter can return a
status (-2/990x) that indicates that the caller should retry. Before
retrying, the caller may need to reschedule or sleep (see
rtas_busy_delay() for details). This combination of factors
leads to uncomfortable constructions like this:
do {
spin_lock(&rtas_data_buf_lock);
rc = rtas_call(token, __pa(rtas_data_buf, ...);
if (rc == 0) {
/* parse or copy out rtas_data_buf contents */
}
spin_unlock(&rtas_data_buf_lock);
} while (rtas_busy_delay(rc));
Another unfortunately common way of handling this is for callers to
blithely ignore the possibility of a -2/990x status and hope for the
best.
If users were allowed to perform blocking operations while owning a
work area, the programming model would become less tedious and
error-prone. Users could schedule away, sleep, or perform other
blocking operations without having to release and re-acquire
resources.
We could continue to use a single work area buffer, and convert
rtas_data_buf_lock to a mutex. But that would impose an unnecessarily
coarse serialization on all users. As awkward as the current design
is, it prevents longer running operations that need to repeatedly use
rtas_data_buf from blocking the progress of others.
There are more considerations. One is that while 4KB is fine for all
current in-kernel uses, some RTAS calls can take much smaller buffers,
and some (VPD, platform dumps) would likely benefit from larger
ones. Another is that at least one RTAS function (ibm,get-vpd)
has *two* work area parameters. And finally, we should expect the
number of work area users in the kernel to increase over time as we
introduce lockdown-compatible ABIs to replace less safe use cases
based on sys_rtas/librtas.
So a special-purpose allocator for RTAS work area buffers seems worth
trying.
Properties:
* The backing memory for the allocator is reserved early in boot in
order to satisfy RTAS addressing requirements, and then managed with
genalloc.
* Allocations can block, but they never fail (mempool-like).
* Prioritizes first-come, first-serve fairness over throughput.
* Early boot allocations before the allocator has been initialized are
served via an internal static buffer.
Intended to replace rtas_data_buf. New code that needs RTAS work area
buffers should prefer this API.
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20230125-b4-powerpc-rtas-queue-v3-12-26929c8cce78@linux.ibm.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The pseries platform can support dynamic secure boot (i.e. secure boot
using user-defined keys) using variables contained with the PowerVM LPAR
Platform KeyStore (PLPKS). Using the powerpc secvar API, expose the
relevant variables for pseries dynamic secure boot through the existing
secvar filesystem layout.
The relevant variables for dynamic secure boot are signed in the
keystore, and can only be modified using the H_PKS_SIGNED_UPDATE hcall.
Object labels in the keystore are encoded using ucs2 format. With our
fixed variable names we don't have to care about encoding outside of the
necessary byte padding.
When a user writes to a variable, the first 8 bytes of data must contain
the signed update flags as defined by the hypervisor.
When a user reads a variable, the first 4 bytes of data contain the
policies defined for the object.
Limitations exist due to the underlying implementation of sysfs binary
attributes, as is the case for the OPAL secvar implementation -
partial writes are unsupported and writes cannot be larger than PAGE_SIZE.
(Even when using bin_attributes, which can be larger than a single page,
sysfs only gives us one page's worth of write buffer at a time, and the
hypervisor does not expose an interface for partial writes.)
Co-developed-by: Nayna Jain <nayna@linux.ibm.com>
Signed-off-by: Nayna Jain <nayna@linux.ibm.com>
Co-developed-by: Andrew Donnellan <ajd@linux.ibm.com>
Signed-off-by: Andrew Donnellan <ajd@linux.ibm.com>
Signed-off-by: Russell Currey <ruscur@russell.cc>
[mpe: Add NLS dependency to fix build errors, squash fix from ajd]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20230210080401.345462-25-ajd@linux.ibm.com
|
|
|
|
|
|
|
|
|
|
|
| |
The recently moved dtl code must be compiled-in if
CONFIG_VIRT_CPU_ACCOUNTING_NATIVE=y even if CONFIG_DTL=n.
Fixes: 6ba5aa541aaa0 ("powerpc/pseries: Move dtl scanning and steal time accounting to pseries platform")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20221013073131.1485742-1-npiggin@gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PowerVM provides an isolated Platform Keystore(PKS) storage allocation
for each LPAR with individually managed access controls to store
sensitive information securely. It provides a new set of hypervisor
calls for Linux kernel to access PKS storage.
Define POWER LPAR Platform KeyStore(PLPKS) driver using H_CALL interface
to access PKS storage.
Signed-off-by: Nayna Jain <nayna@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220723113048.521744-2-nayna@linux.ibm.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implement a limited form of KASAN for Book3S 64-bit machines running under
the Radix MMU, supporting only outline mode.
- Enable the compiler instrumentation to check addresses and maintain the
shadow region. (This is the guts of KASAN which we can easily reuse.)
- Require kasan-vmalloc support to handle modules and anything else in
vmalloc space.
- KASAN needs to be able to validate all pointer accesses, but we can't
instrument all kernel addresses - only linear map and vmalloc. On boot,
set up a single page of read-only shadow that marks all iomap and
vmemmap accesses as valid.
- Document KASAN in powerpc docs.
Background
----------
KASAN support on Book3S is a bit tricky to get right:
- It would be good to support inline instrumentation so as to be able to
catch stack issues that cannot be caught with outline mode.
- Inline instrumentation requires a fixed offset.
- Book3S runs code with translations off ("real mode") during boot,
including a lot of generic device-tree parsing code which is used to
determine MMU features.
[ppc64 mm note: The kernel installs a linear mapping at effective
address c000...-c008.... This is a one-to-one mapping with physical
memory from 0000... onward. Because of how memory accesses work on
powerpc 64-bit Book3S, a kernel pointer in the linear map accesses the
same memory both with translations on (accessing as an 'effective
address'), and with translations off (accessing as a 'real
address'). This works in both guests and the hypervisor. For more
details, see s5.7 of Book III of version 3 of the ISA, in particular
the Storage Control Overview, s5.7.3, and s5.7.5 - noting that this
KASAN implementation currently only supports Radix.]
- Some code - most notably a lot of KVM code - also runs with translations
off after boot.
- Therefore any offset has to point to memory that is valid with
translations on or off.
One approach is just to give up on inline instrumentation. This way
boot-time checks can be delayed until after the MMU is set is up, and we
can just not instrument any code that runs with translations off after
booting. Take this approach for now and require outline instrumentation.
Previous attempts allowed inline instrumentation. However, they came with
some unfortunate restrictions: only physically contiguous memory could be
used and it had to be specified at compile time. Maybe we can do better in
the future.
[paulus@ozlabs.org - Rebased onto 5.17. Note that a kernel with
CONFIG_KASAN=y will crash during boot on a machine using HPT
translation because not all the entry points to the generic
KASAN code are protected with a call to kasan_arch_is_ready().]
Originally-by: Balbir Singh <bsingharora@gmail.com> # ppc64 out-of-line radix version
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
[mpe: Update copyright year and comment formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/YoTE69OQwiG7z+Gu@cleo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The kexec code paths involve code that necessarily run in real mode, as
CPUs are disabled and control is transferred to the new kernel. Disable
address sanitization for the kexec code and the functions called in real
mode on CPUs being disabled.
[paulus@ozlabs.org: combined a few work-in-progress commits of
Daniel's and wrote the commit message.]
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
[mpe: Move pseries_machine_kexec() into kexec.c so setup.c can be instrumented]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/YoTFSQ2TUSEaDdVC@cleo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adds a syscall interface to represent the energy and frequency related
PAPR attributes on the system using the new H_CALL
"H_GET_ENERGY_SCALE_INFO".
H_GET_EM_PARMS H_CALL was previously responsible for exporting this
information in the lparcfg, however the H_GET_EM_PARMS H_CALL
will be deprecated P10 onwards.
The H_GET_ENERGY_SCALE_INFO H_CALL is of the following call format:
hcall(
uint64 H_GET_ENERGY_SCALE_INFO, // Get energy scale info
uint64 flags, // Per the flag request
uint64 firstAttributeId,// The attribute id
uint64 bufferAddress, // Guest physical address of the output buffer
uint64 bufferSize // The size in bytes of the output buffer
);
As specified in PAPR+ v2.11, section 14.14.3.
This H_CALL can query either all the attributes at once with
firstAttributeId = 0, flags = 0 as well as query only one attribute
at a time with firstAttributeId = id, flags = 1.
The output buffer consists of the following
1. number of attributes - 8 bytes
2. array offset to the data location - 8 bytes
3. version info - 1 byte
4. A data array of size num attributes, which contains the following:
a. attribute ID - 8 bytes
b. attribute value in number - 8 bytes
c. attribute name in string - 64 bytes
d. attribute value in string - 64 bytes
The new H_CALL exports information in direct string value format, hence
a new interface has been introduced in
/sys/firmware/papr/energy_scale_info to export this information to
userspace so that the firmware can add new values without the need for
the kernel to be changed.
The H_CALL returns the name, numeric value and string value (if exists)
The format of exposing the sysfs information is as follows:
/sys/firmware/papr/energy_scale_info/
|-- <id>/
|-- desc
|-- value
|-- value_desc (if exists)
|-- <id>/
|-- desc
|-- value
|-- value_desc (if exists)
...
The energy information that is exported is useful for userspace tools
such as powerpc-utils. Currently these tools infer the
"power_mode_data" value in the lparcfg, which in turn is obtained from
the to be deprecated H_GET_EM_PARMS H_CALL.
On future platforms, such userspace utilities will have to look at the
data returned from the new H_CALL being populated in this new sysfs
interface and report this information directly without the need of
interpretation.
Signed-off-by: Pratik R. Sampat <psampat@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220217105321.52941-2-psampat@linux.ibm.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The hypervisor provides the available VAS GZIP capabilities such
as default or QoS window type and the target available credits in
each type. This patch creates sysfs entries and exports the target,
used and the available credits for each feature.
This interface can be used by the user space to determine the credits
usage or to set the target credits in the case of QoS type (for DLPAR).
/sys/devices/vas/vas0/gzip/default_capabilities (default GZIP capabilities)
nr_total_credits /* Total credits available. Can be
/* changed with DLPAR operation */
nr_used_credits /* Used credits */
/sys/devices/vas/vas0/gzip/qos_capabilities (QoS GZIP capabilities)
nr_total_credits
nr_used_credits
Signed-off-by: Haren Myneni <haren@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/702d8b626ebfac2b52f4995eebeafe1c9a6fcb75.camel@linux.ibm.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove the pseries scanlog driver.
This code supports functions from Power4-era servers that are not present
on targets currently supported by arch/powerpc. System manuals from this
time have this description:
Scan Dump data is a set of chip data that the service processor gathers
after a system malfunction. It consists of chip scan rings, chip trace
arrays, and Scan COM (SCOM) registers. This data is stored in the
scan-log partition of the system’s Nonvolatile Random Access
Memory (NVRAM).
PowerVM partition firmware development doesn't recognize the associated
function call or property, and they don't see any references to them in
their codebase. It seems to have been specific to non-virtualized pseries.
References:
Historical Linux commit from February 2003 (interesting to note this seems
to be the source of non-GPL exports for rtas_call etc):
https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git/commit/?id=f92e361842d5251e50562b09664082dcbd0548bb
IntelliStation and pSeries docs which refer to the feature:
http://ps-2.retropc.se/basil.holloway/ALL%20PDF/380635.pdf
http://ps-2.kev009.com/rs6000/manuals/p/p615-6C3-6E3/6C3_and_6E3_Users_Guide_SA38-0629.pdf
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Reviewed-by: Tyrel Datwyler <tyreld@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210920173203.1800475-1-nathanl@linux.ibm.com
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce a powerpc version of the cc_platform_has() function. This will
be used to replace the powerpc mem_encrypt_active() implementation, so
the implementation will initially only support the CC_ATTR_MEM_ENCRYPT
attribute.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lkml.kernel.org/r/20210928191009.32551-5-bp@alien8.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds VAS window allocatioa/close with the corresponding
hcalls. Also changes to integrate with the existing user space VAS
API and provide register/unregister functions to NX pseries driver.
The driver register function is used to create the user space
interface (/dev/crypto/nx-gzip) and unregister to remove this entry.
The user space process opens this device node and makes an ioctl
to allocate VAS window. The close interface is used to deallocate
window.
Signed-off-by: Haren Myneni <haren@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/e8d956bace3f182c4d2e66e343ff37cb0391d1fd.camel@linux.ibm.com
|
|
|
|
|
|
|
|
|
|
|
|
| |
The pseries Makefile (arch/powerpc/platforms/pseries/Makefile) is only
included by the platform Makefile (arch/powerpc/platform/Makefile)
when CONFIG_PPC_PSERIES is selected, so checking for
CONFIG_PPC_PSERIES in the pseries Makefile is pointless.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Reviewed-by: Tyrel Datwyler <tyreld@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200130063153.19915-2-oohall@gmail.com
|
|
|
|
|
|
|
|
|
|
| |
Introduce callback functions for platform specific operations like
register, unregister, invalidate & such. Also, define place-holders
for the same on pSeries platform.
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/156821330286.5656.15538934400074110770.stgit@hbathini.in.ibm.com
|
|
|
|
|
|
|
|
|
|
|
| |
Secure guests need to share the DTL buffers with the hypervisor. To that
end, use a kmem_cache constructor which converts the underlying buddy
allocated SLUB cache pages into shared memory.
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190820021326.6884-10-bauerman@linux.ibm.com
|
|
|
|
|
|
|
|
|
|
| |
hcall_vphn() is specific to pseries and will be used in a subsequent
patch. So, move it to a more appropriate place under
arch/powerpc/platforms/pseries. Also merge vphn.h into lppaca.h
and update vphn selftest to use the new files.
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adds a driver that implements support for enabling and accessing PAPR
SCM regions. Unfortunately due to how the PAPR interface works we can't
use the existing of_pmem driver (yet) because:
a) The guest is required to use the H_SCM_BIND_MEM h-call to add
add the SCM region to it's physical address space, and
b) There is currently no mechanism for relating a bare of_pmem region
to the backing DIMM (or not-a-DIMM for our case).
Both of these are easily handled by rolling the functionality into a
seperate driver so here we are...
Acked-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
| |
This patch implements support for discovering storage class memory
devices at boot and for handling hotplug of new regions via RTAS
hotplug events.
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
[mpe: Fix CONFIG_MEMORY_HOTPLUG=n build]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
| |
In Makefiles if we're testing a CONFIG_FOO symbol for equality with 'y'
we can instead just use ifdef. The latter reads easily, so convert to
it where possible.
Signed-off-by: Rodrigo R. Galvao <rosattig@linux.vnet.ibm.com>
Reviewed-by: Mauro S. M. Rodrigues <maurosr@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 2965faa5e03d ("kexec: split kexec_load syscall from kexec core
code") introduced CONFIG_KEXEC_CORE so that CONFIG_KEXEC means whether
the kexec_load system call should be compiled-in and CONFIG_KEXEC_FILE
means whether the kexec_file_load system call should be compiled-in.
These options can be set independently from each other.
Since until now powerpc only supported kexec_load, CONFIG_KEXEC and
CONFIG_KEXEC_CORE were synonyms. That is not the case anymore, so we
need to make a distinction. Almost all places where CONFIG_KEXEC was
being used should be using CONFIG_KEXEC_CORE instead, since
kexec_file_load also needs that code compiled in.
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
| |
ibmebus.c is pseries only code, so move it in there.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
| |
vio.c is pseries only code, so move it in there.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
| |
Now that pseries selects PCI_MSI && PCI, EEH will always be true, and
therefore CONFIG_PSERIES_MSI will always be true. So drop it, and move
msi.o to obj-y.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
| |
Make it entirely clear in the Makefile that we always build the pci
related files by moving them to obj-y.
Note that CONFIG_EEH is now always enabled on pseries, because it
depends on PSERIES && PCI.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
| |
Extract a new module to share the code between other modules.
There is no functional change.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
|
|
|
|
|
|
|
|
|
| |
Move the file from arch specific pseries/processor_idle.c
to drivers/cpuidle/cpuidle-pseries.c
Make the relevant Makefile and Kconfig changes.
Also, introduce Kconfig.powerpc in drivers/cpuidle
for all powerpc cpuidle drivers.
Signed-off-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
| |
Add support for the arch_get_random_long() hook based on the H_RANDOM
hypervisor call. We trust the hypervisor to provide us with random data,
ie. we don't whiten it in anyway.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
| |
This file is entirely pseries specific nowadays, so move it out
of arch/powerpc/kernel where it doesn't belong anymore.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The patch moves the common part of EEH core into arch/powerpc/kernel
directory so that we needn't PPC_PSERIES while compiling POWERNV
platform:
* Move the EEH common part into arch/powerpc/kernel
* Move the functions for PCI hotplug from pSeries platform to
arch/powerpc/kernel/pci-hotplug.c
* Move CONFIG_EEH from arch/powerpc/platforms/pseries/Kconfig to
arch/powerpc/platforms/Kconfig
* Adjust makefile accordingly
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Finally remove the two level TOC and build with -mcmodel=medium.
Unfortunately we can't build modules with -mcmodel=medium due to
the tricks the kernel module loader plays with percpu data:
# -mcmodel=medium breaks modules because it uses 32bit offsets from
# the TOC pointer to create pointers where possible. Pointers into the
# percpu data area are created by this method.
#
# The kernel module loader relocates the percpu data section from the
# original location (starting with 0xd...) to somewhere in the base
# kernel percpu data space (starting with 0xc...). We need a full
# 64bit relocation for this to work, hence -mcmodel=large.
On older kernels we fall back to the two level TOC (-mminimal-toc)
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For one particular PE, it's only meaningful in the ancestor PHB
domain. Therefore, each PHB should have its own PE hierarchy tree
to trace those PEs created against the PHB.
The patch creates PEs for the PHBs and put those PEs into the
global link list traced by "eeh_phb_pe". The link list of PEs
would be first level of overall PE hierarchy tree across the
system.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Original EEH implementation depends on struct pci_dn heavily. However,
EEH shouldn't depend on that actually because EEH needn't share much
information with other PCI components. That's to say, EEH should have
worked independently.
The patch introduces struct eeh_dev so that EEH core components needn't
be working based on struct pci_dn in future. Also, struct pci_dn, struct
eeh_dev instances are created in dynamic fasion and the binding with EEH
device, OF node, PCI device is implemented as well.
The EEH devices are created after PHBs are detected and initialized, but
PCI emunation hasn't started yet. Apart from that, PHB might be created
dynamically through DLPAR component and the EEH devices should be creatd
as well. Another case might be OF node is created dynamically by DR
(Dynamic Reconfiguration), which has been defined by PAPR. For those OF
nodes created by DR, EEH devices should be also created accordingly. The
binding between EEH device and OF node is done while the EEH device is
initially created.
The binding between EEH device and PCI device should be done after PCI
emunation is done. Besides, PCI hotplug also needs the binding so that
the EEH devices could be traced from the newly coming PCI buses or PCI
devices.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
EEH has been implemented on RTAS-compliant pSeries platform.
That's to say, the EEH operations will be implemented through RTAS
calls eventually. The situation limited feasible extension on EEH.
In order to support EEH on multiple platforms like pseries and powernv
simutaneously. We have to split the platform dependent EEH options
up out of current implementation.
The patch addresses supporting EEH on multiple platforms. The pseries
platform dependent EEH operations will be abstracted by struct eeh_ops.
EEH core components will be built based on the registered EEH operations.
With the mechanism, what the individual platform needs to do is implement
platform dependent EEH operations.
For now, the pseries platform is covered under the mechanism. That means
we have to think about other platforms to support EEH, like powernv.
Besides, we only have framework for the mechanism and we have to implement
it for pseries platform later.
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
| |
Remove the phyp assisted dump implementation which is not is use.
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements a back-end cpuidle driver for pSeries
based on pseries_dedicated_idle_loop and pseries_shared_idle_loop
routines. The driver is built only if CONFIG_CPU_IDLE is set. This
cpuidle driver uses global registration of idle states and
not per-cpu.
Signed-off-by: Deepthi Dharwar <deepthi@linux.vnet.ibm.com>
Signed-off-by: Trinabh Gupta <g.trinabh@gmail.com>
Signed-off-by: Arun R Bharadwaj <arun.r.bharadwaj@gmail.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support for handling IO Event interrupts which come
through at the /event-sources/ibm,io-events device tree node.
The interrupts come through ibm,io-events device tree node are generated
by the firmware to report IO events. The firmware uses the same interrupt
to report multiple types of events for multiple devices. Each device may
have its own event handler. This patch implements a plateform interrupt
handler that is triggered by the IO event interrupts come through
ibm,io-events device tree node, pull in the IO events from RTAS and call
device event handlers registered in the notifier list.
Device event handlers are expected to use atomic_notifier_chain_register()
and atomic_notifier_chain_unregister() to register/unregister their
event handler in pseries_ioei_notifier_list list with IO event interrupt.
Device event handlers are responsible to identify if the event belongs
to the device event handler. The device event handle should return NOTIFY_OK
after the event is handled if the event belongs to the device event handler,
or NOTIFY_DONE otherwise.
Signed-off-by: Tseng-Hui (Frank) Lin <thlin@us.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a significant rework of the XICS driver, too significant to
conveniently break it up into a series of smaller patches to be honest.
The driver is moved to a more generic location to allow new platforms
to use it, and is broken up into separate ICP and ICS "backends". For
now we have the native and "hypervisor" ICP backends and one common
RTAS ICS backend.
The driver supports one ICP backend instanciation, and many ICS ones,
in order to accomodate future platforms with multiple possibly different
interrupt "sources" mechanisms.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Create sysfs interface to export data from H_BEST_ENERGY hcall
that can be used by administrative tools on supported pseries
platforms for energy management optimizations.
sys/device/system/cpu/pseries_(de)activate_hint_list and
sys/device/system/cpu/cpuN/pseries_(de)activate_hint will provide
hints for activation and deactivation of cpus respectively.
These hints are abstract number given by the hypervisor based
on the extended knowledge the hypervisor has regarding the
system topology and resource mappings.
The activate and the deactivate sysfs entry is for the two
distinct operations that we could do for energy savings. When
we have more capacity than required, we could deactivate few
core to save energy. The choice of the core to deactivate
will be based on /sys/devices/system/cpu/deactivate_hint_list.
The comma separated list of cpus (cores) will be the preferred
choice. If we have to activate some of the deactivated cores,
then /sys/devices/system/cpu/activate_hint_list will be used.
The per-cpu file
/sys/device/system/cpu/cpuN/pseries_(de)activate_hint further
provide more fine grain information by exporting the value of
the hint itself.
Added new driver module
arch/powerpc/platforms/pseries/pseries_energy.c
under new config option CONFIG_PSERIES_ENERGY
Signed-off-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
| |
Replace EXTRA_CFLAGS with ccflags-y and EXTRA_AFLAGS with asflags-y.
Signed-off-by: matt mooney <mfm@muteddisk.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Enable partition migration in the kernel. To do this a new sysfs file,
/sys/kernel/mobility/migration, is created. In order to initiate a migration
the stream id (generated by the HMC managing the system) is written to this
file.
After a migration occurs, and what is the majority of this code, the device
tree needs to be updated for the new system the partition is running on. This
is done via the ibm,update-nodes and ibm,update-properties rtas calls which
return information regarding which nodes and properties of the device tree
are to be added/removed/updated.
Signed-off-by: Nathan Fontenot <nfont@austin.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
| |
Enables support for HMC initiated partition hibernation. This is
a firmware assisted hibernation, since the firmware handles writing
the memory out to disk, along with other partition information,
so we just mimic suspend to ram.
Signed-off-by: Brian King <brking@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
At the moment only the RAS code uses event-sources interrupts (for EPOW
events and internal errors) so request_ras_irqs() (which actually requests
the event-sources interrupts) is found in ras.c and is static.
We want to be able to use event-sources interrupts in other pseries code,
so let's rename request_ras_irqs() to request_event_sources_irqs() and
move it to event_sources.c.
This will be used in an upcoming patch that adds support for IO Event
interrupts that come through as event sources.
Signed-off-by: Mark Nelson <markn@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Dynamic Logical Partitioning capabilities of the powerpc pseries platform
allows for the addition and removal of resources (i.e. CPU's, memory, and PCI
devices) from a partition. The removal of a resource involves
removing the resource's node from the device tree and then returning the
resource to firmware via the rtas set-indicator call. To add a resource, it
is first obtained from firmware via the rtas set-indicator call and then a
new device tree node is created using the ibm,configure-coinnector rtas call
and added to the device tree.
This patch provides the kernel DLPAR infrastructure in a new filed named
dlpar.c. The functionality provided is for acquiring and releasing a resource
from firmware and the parsing of information returned from the
ibm,configure-connector rtas call. Additionally this exports the pSeries
reconfiguration notifier chain so that it can be invoked when device tree
updates are made.
Signed-off-by: Nathan Fontenot <nfont@austin.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The CHRP code has some fishy timer based code to scan the RTAS event
log, which uses a 1KB stack buffer and doesn't even use the results.
The pSeries code as a nicer daemon that allows userspace to read the
event log and basically uses the same RTAS interface
This patch moves rtasd.c out of platform/pseries and makes it usable
by CHRP, after removing the old crufty event log mechanism in there.
The nvram logging part of the daemon is still only available on 64-bit
since the underlying nvram management routines aren't currently shared.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
pseries SPLPAR machines are able to retrieve a log of dispatch and
preempt events from the hypervisor. With this information, we can
see when and why each dispatch & preempt is occuring.
This change adds a set of debugfs files allowing userspace to read this
dispatch log.
Based on initial patches from Nishanth Aravamudan <nacc@us.ibm.com>.
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
| |
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|