summaryrefslogtreecommitdiffstats
path: root/arch/tile/gxio/Makefile (follow)
Commit message (Collapse)AuthorAgeFilesLines
* arch: remove tile portArnd Bergmann2018-03-161-11/+0
| | | | | | | | | | | | | | | | | | | | | | | | The Tile architecture port was added by Chris Metcalf in 2010, and maintained until early 2018 when he orphaned it due to his departure from Mellanox, and nobody else stepped up to maintain it. The product line is still around in the form of the BlueField SoC, but no longer uses the Tile architecture. There are also still products for sale with Tile-GX SoCs, notably the Mikrotik CCR router family. The products all use old (linux-3.3) kernels with lots of patches and won't be upgraded by their manufacturers. There have been efforts to port both OpenWRT and Debian to these, but both projects have stalled and are very unlikely to be continued in the future. Given that we are reasonably sure that nobody is still using the port with an upstream kernel any more, it seems better to remove it now while the port is in a good shape than to let it bitrot for a few years first. Cc: Chris Metcalf <chris.d.metcalf@gmail.com> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Link: http://www.mellanox.com/page/npu_multicore_overview Link: https://jenkins.debian.net/view/rebootstrap/job/rebootstrap_tilegx_gcc7/ Signed-off-by: Arnd Bergmann <arnd@arndb.de>
* License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman2017-11-021-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* tilegx: provide kernel support for the tilegx UART shimChris Metcalf2013-09-031-0/+1
| | | | | | | | | | The TILE-Gx chip includes an on-chip UART. This change adds support for using the UART from within the kernel. The UART shim has more functionality than is exposed here, but to keep the kernel code and binary simpler, this is a subset of the full API designed to enable a standard Linux tty serial driver only. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
* arch/tile: provide kernel support for the tilegx USB shimChris Metcalf2012-07-181-0/+1
| | | | | | | | | | | | | | | This change adds support for accessing the USB shim from within the kernel. Note that this change by itself does not allow the kernel to act as a host or as a device; it merely exposes the built-in on-chip hardware to the kernel. The <arch/usb_host.h> and <arch/usb_host_def.h> headers are empty at the moment because the kernel does not require any types or definitions specific to the tilegx USB shim; the generic USB core code is all we need. The headers are left in as stubs so that we don't need to modify the hypervisor header (drv_usb_host_intf.h) from upstream. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
* arch/tile: provide kernel support for the tilegx TRIO shimChris Metcalf2012-07-111-0/+1
| | | | | | | | | | Provide kernel support for the tilegx "Transaction I/O" (TRIO) on-chip hardware. This hardware implements the PCIe interface for tilegx; the driver changes to use TRIO for PCIe are in a subsequent commit. The change is layered on top of the tilegx GXIO IORPC subsystem. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
* arch/tile: provide kernel support for the tilegx mPIPE shimChris Metcalf2012-07-111-0/+1
| | | | | | | | | | | The TILE-Gx chip includes a packet-processing network engine called mPIPE ("Multicore Programmable Intelligent Packet Engine"). This change adds support for using the mPIPE engine from within the kernel. The engine has more functionality than is exposed here, but to keep the kernel code and binary simpler, this is a subset of the full API designed to enable standard Linux networking only. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
* arch/tile: common DMA code for the GXIO IORPC subsystemChris Metcalf2012-07-111-0/+1
| | | | | | | | The dma_queue support is used by both the mPipe (networking) and Trio (PCI) hardware shims on tilegx. This common code is selected when either of those drivers is built. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
* arch/tile: introduce GXIO IORPC framework for tilegxChris Metcalf2012-07-111-0/+5
The GXIO I/O RPC subsystem handles exporting I/O hardware resources to Linux and to applications running under Linux. For instance, memory which is made available for I/O DMA must be mapped by an I/O TLB; that means that such memory must be locked down by Linux, so that it is not swapped or otherwise reused, as long as those I/O TLB entries are active. Similarly, configuring direct hardware access introduces new validation requirements. If a user application registers memory, Linux must ensure that the supplied virtual addresses are valid, and turn them into client physical addresses. Similarly, when Linux then supplies those client physical addresses to the Tilera hypervisor, it must in turn validate those before turning them into the real physical addresses which are required by the hardware. To the extent that these sorts of activities were required on previous TILE architecture processors, they were implemented in a device-specific fashion. This meant that every I/O device had its own Tilera hypervisor driver, its own Linux driver, and in some cases its own user-level library support. There was a large amount of more-or-less functionally identical code in different places, particularly in the different Linux drivers. For TILE-Gx, this support has been generalized into a common framework, known as the I/O RPC framework or just IORPC. The two "gxio" directories (one for headers, one for sources) start with just a few files in each with this infrastructure commit, but after adding support for the on-board I/O shims for networking, PCI, USB, crypto, compression, I2CS, etc., there end up being about 20 files in each directory. More information on the IORPC framework is in the <hv/iorpc.h> header, included in this commit. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>