summaryrefslogtreecommitdiffstats
path: root/arch/tile/mm/highmem.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* kmap_atomic_to_page() has no users, remove itNicolas Pitre2015-11-101-12/+0
| | | | | | | | | Removal started in commit 5bbeed12bdc3 ("sparc32: drop unused kmap_atomic_to_page"). Let's do it across the whole tree. Signed-off-by: Nicolas Pitre <nico@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* sched/preempt, mm/kmap: Explicitly disable/enable preemption in kmap_atomic_*David Hildenbrand2015-05-191-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The existing code relies on pagefault_disable() implicitly disabling preemption, so that no schedule will happen between kmap_atomic() and kunmap_atomic(). Let's make this explicit, to prepare for pagefault_disable() not touching preemption anymore. Reviewed-and-tested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David.Laight@ACULAB.COM Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: airlied@linux.ie Cc: akpm@linux-foundation.org Cc: benh@kernel.crashing.org Cc: bigeasy@linutronix.de Cc: borntraeger@de.ibm.com Cc: daniel.vetter@intel.com Cc: heiko.carstens@de.ibm.com Cc: herbert@gondor.apana.org.au Cc: hocko@suse.cz Cc: hughd@google.com Cc: mst@redhat.com Cc: paulus@samba.org Cc: ralf@linux-mips.org Cc: schwidefsky@de.ibm.com Cc: yang.shi@windriver.com Link: http://lkml.kernel.org/r/1431359540-32227-5-git-send-email-dahi@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* tile: Replace __get_cpu_var usesChristoph Lameter2014-08-261-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : #define __get_cpu_var(var) (*this_cpu_ptr(&(var))) __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Acked-by: Chris Metcalf <cmetcalf@tilera.com> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
* tile: remove calls to arch_flush_lazy_mmu_mode()Chris Metcalf2013-08-131-2/+0
| | | | | | | Since it's a no-op on tile anyway, there's no reason to be calling it in tile-specific code. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
* tile: remove usage of enum km_typeCong Wang2012-07-231-1/+1
| | | | | Acked-by: Chris Metcalf <cmetcalf@tilera.com> Signed-off-by: Cong Wang <amwang@redhat.com>
* highmem: kill all __kmap_atomic()Cong Wang2012-03-201-2/+2
| | | | | | | [swarren@nvidia.com: highmem: Fix ARM build break due to __kmap_atomic rename] Signed-off-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Cong Wang <amwang@redhat.com>
* arch/tile: complete migration to new kmap_atomic schemeChris Metcalf2010-11-011-1/+1
| | | | | | | | | | | This change makes KM_TYPE_NR independent of the actual deprecated list of km_type values, which are no longer used in tile code anywhere. For now we leave it set to 8, allowing that many nested mappings, and thus reserving 32MB of address space. A few remaining places using KM_* values were cleaned up as well. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
* mm: fix race in kunmap_atomic()Peter Zijlstra2010-10-281-1/+2
| | | | | | | | | | | | | | | | | | | | | Christoph reported a nice splat which illustrated a race in the new stack based kmap_atomic implementation. The problem is that we pop our stack slot before we're completely done resetting its state -- in particular clearing the PTE (sometimes that's CONFIG_DEBUG_HIGHMEM). If an interrupt happens before we actually clear the PTE used for the last slot, that interrupt can reuse the slot in a dirty state, which triggers a BUG in kmap_atomic(). Fix this by introducing kmap_atomic_idx() which reports the current slot index without actually releasing it and use that to find the PTE and delay the _pop() until after we're completely done. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Reported-by: Christoph Hellwig <hch@infradead.org> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: stack based kmap_atomic()Peter Zijlstra2010-10-271-62/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Keep the current interface but ignore the KM_type and use a stack based approach. The advantage is that we get rid of crappy code like: #define __KM_PTE \ (in_nmi() ? KM_NMI_PTE : \ in_irq() ? KM_IRQ_PTE : \ KM_PTE0) and in general can stop worrying about what context we're in and what kmap slots might be appropriate for that. The downside is that FRV kmap_atomic() gets more expensive. For now we use a CPP trick suggested by Andrew: #define kmap_atomic(page, args...) __kmap_atomic(page) to avoid having to touch all kmap_atomic() users in a single patch. [ not compiled on: - mn10300: the arch doesn't actually build with highmem to begin with ] [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix up drivers/gpu/drm/i915/intel_overlay.c] Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Chris Metcalf <cmetcalf@tilera.com> Cc: David Howells <dhowells@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: David Miller <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dave Airlie <airlied@linux.ie> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* arch/tile: support new kunmap_atomic() naming convention.Chris Metcalf2010-08-111-2/+2
| | | | | | See commit 597781f3e51f48ef8e67be772196d9e9673752c4. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
* arch/tile: Miscellaneous cleanup changes.Chris Metcalf2010-07-061-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit is primarily changes caused by reviewing "sparse" and "checkpatch" output on our sources, so is somewhat noisy, since things like "printk() -> pr_err()" (or whatever) throughout the codebase tend to get tedious to read. Rather than trying to tease apart precisely which things changed due to which type of code review, this commit includes various cleanups in the code: - sparse: Add declarations in headers for globals. - sparse: Fix __user annotations. - sparse: Using gfp_t consistently instead of int. - sparse: removing functions not actually used. - checkpatch: Clean up printk() warnings by using pr_info(), etc.; also avoid partial-line printks except in bootup code. - checkpatch: Use exposed structs rather than typedefs. - checkpatch: Change some C99 comments to C89 comments. In addition, a couple of minor other changes are rolled in to this commit: - Add support for a "raise" instruction to cause SIGFPE, etc., to be raised. - Remove some compat code that is unnecessary when we fully eliminate some of the deprecated syscalls from the generic syscall ABI. - Update the tile_defconfig to reflect current config contents. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com> Acked-by: Arnd Bergmann <arnd@arndb.de>
* arch/tile: core support for Tilera 32-bit chips.Chris Metcalf2010-06-041-0/+328
This change is the core kernel support for TILEPro and TILE64 chips. No driver support (except the console driver) is included yet. This includes the relevant Linux headers in asm/; the low-level low-level "Tile architecture" headers in arch/, which are shared with the hypervisor, etc., and are build-system agnostic; and the relevant hypervisor headers in hv/. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Reviewed-by: Paul Mundt <lethal@linux-sh.org>