summaryrefslogtreecommitdiffstats
path: root/arch/x86/include/asm/topology.h (follow)
Commit message (Collapse)AuthorAgeFilesLines
* Merge tag 'edac_updates_for_v6.9' of ↵Linus Torvalds2024-03-121-1/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/ras/ras Pull EDAC updates from Borislav Petkov: - Add a FRU (Field Replaceable Unit) memory poison manager which collects and manages previously encountered hw errors in order to save them to persistent storage across reboots. Previously recorded errors are "replayed" upon reboot in order to poison memory which has caused said errors in the past. The main use case is stacked, on-chip memory which cannot simply be replaced so poisoning faulty areas of it and thus making them inaccessible is the only strategy to prolong its lifetime. - Add an AMD address translation library glue which converts the reported addresses of hw errors into system physical addresses in order to be used by other subsystems like memory failure, for example. Add support for MI300 accelerators to that library. - igen6: Add support for Alder Lake-N SoC - i10nm: Add Grand Ridge support - The usual fixlets and cleanups * tag 'edac_updates_for_v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/ras/ras: EDAC/versal: Convert to platform remove callback returning void RAS/AMD/FMPM: Fix off by one when unwinding on error RAS/AMD/FMPM: Add debugfs interface to print record entries RAS/AMD/FMPM: Save SPA values RAS: Export helper to get ras_debugfs_dir RAS/AMD/ATL: Fix bit overflow in denorm_addr_df4_np2() RAS: Introduce a FRU memory poison manager RAS/AMD/ATL: Add MI300 row retirement support Documentation: Move RAS section to admin-guide EDAC/versal: Make the bit position of injected errors configurable EDAC/i10nm: Add Intel Grand Ridge micro-server support EDAC/igen6: Add one more Intel Alder Lake-N SoC support RAS/AMD/ATL: Add MI300 DRAM to normalized address translation support RAS/AMD/ATL: Fix array overflow in get_logical_coh_st_fabric_id_mi300() RAS/AMD/ATL: Add MI300 support Documentation: RAS: Add index and address translation section EDAC/amd64: Use new AMD Address Translation Library RAS: Introduce AMD Address Translation Library EDAC/synopsys: Convert to devm_platform_ioremap_resource()
* | x86/cpu/topology: Provide __num_[cores|threads]_per_packageThomas Gleixner2024-02-151-0/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Expose properly accounted information and accessors so the fiddling with other topology variables can be replaced. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Michael Kelley <mhklinux@outlook.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Link: https://lore.kernel.org/r/20240213210253.120958987@linutronix.de
* | x86/cpu/topology: Rename topology_max_die_per_package()Thomas Gleixner2024-02-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The plural of die is dies. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Michael Kelley <mhklinux@outlook.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Link: https://lore.kernel.org/r/20240213210253.065874205@linutronix.de
* | x86/cpu/topology: Rename smp_num_siblingsThomas Gleixner2024-02-151-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It's really a non-intuitive name. Rename it to __max_threads_per_core which is obvious. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Michael Kelley <mhklinux@outlook.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Link: https://lore.kernel.org/r/20240213210253.011307973@linutronix.de
* | x86/cpu/topology: Use topology logical mapping mechanismThomas Gleixner2024-02-151-8/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Replace the logical package and die management functionality and retrieve the logical IDs from the topology bitmaps. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Michael Kelley <mhklinux@outlook.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Link: https://lore.kernel.org/r/20240213210252.901865302@linutronix.de
* | x86/cpu/topology: Provide logical pkg/die mappingThomas Gleixner2024-02-151-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With the topology bitmaps in place the logical package and die IDs can trivially be retrieved by determining the bitmap weight of the relevant topology domain level up to and including the physical ID in question. Provide a function to that effect. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Michael Kelley <mhklinux@outlook.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Link: https://lore.kernel.org/r/20240213210252.846136196@linutronix.de
* | x86/cpu/topology: Use topology bitmaps for sizingThomas Gleixner2024-02-151-11/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that all possible APIC IDs are tracked in the topology bitmaps, its trivial to retrieve the real information from there. This gets rid of the guesstimates for the maximal packages and dies per package as the actual numbers can be determined before a single AP has been brought up. The number of SMT threads can now be determined correctly from the bitmaps in all situations. Up to now a system which has SMT disabled in the BIOS will still claim that it is SMT capable, because the lowest APIC ID bit is reserved for that and CPUID leaf 0xb/0x1f still enumerates the SMT domain accordingly. By calculating the bitmap weights of the SMT and the CORE domain and setting them into relation the SMT disabled in BIOS situation reports correctly that the system is not SMT capable. It also handles the situation correctly when a hybrid systems boot CPU does not have SMT as it takes the SMT capability of the APs fully into account. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Michael Kelley <mhklinux@outlook.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Link: https://lore.kernel.org/r/20240213210252.681709880@linutronix.de
* | x86/cpu/topology: Rework possible CPU managementThomas Gleixner2024-02-151-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Managing possible CPUs is an unreadable and uncomprehensible maze. Aside of that it's backwards because it applies command line limits after registering all APICs. Rewrite it so that it: - Applies the command line limits upfront so that only the allowed amount of APIC IDs can be registered. - Applies eventual late restrictions in an understandable way - Uses simple min_t() calculations which are trivial to follow. - Provides a separate function for resetting to UP mode late in the bringup process. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Michael Kelley <mhklinux@outlook.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Link: https://lore.kernel.org/r/20240213210252.290098853@linutronix.de
* | x86/apic/uv: Remove the private leaf 0xb parserThomas Gleixner2024-02-151-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The package shift has been already evaluated by the early CPU init. Put the mindless copy right next to the original leaf 0xb parser. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mhklinux@outlook.com> Tested-by: Zhang Rui <rui.zhang@intel.com> Tested-by: Wang Wendy <wendy.wang@intel.com> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Link: https://lore.kernel.org/r/20240212153625.637385562@linutronix.de
* | x86/cpu: Make topology_amd_node_id() use the actual node infoThomas Gleixner2024-02-151-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that everything is converted switch it over and remove the intermediate operation. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mhklinux@outlook.com> Tested-by: Zhang Rui <rui.zhang@intel.com> Tested-by: Wang Wendy <wendy.wang@intel.com> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Link: https://lore.kernel.org/r/20240212153625.334185785@linutronix.de
* | x86/mm/numa: Use core domain size on AMDThomas Gleixner2024-02-151-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cpuinfo::topo::x86_coreid_bits is about to be phased out. Use the core domain size from the topology information. Add a comment why the early MPTABLE parsing is required and decrapify the loop which sets the APIC ID to node map. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mhklinux@outlook.com> Tested-by: Zhang Rui <rui.zhang@intel.com> Tested-by: Wang Wendy <wendy.wang@intel.com> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Link: https://lore.kernel.org/r/20240212153625.270320718@linutronix.de
* | x86/cpu: Provide an AMD/HYGON specific topology parserThomas Gleixner2024-02-151-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | AMD/HYGON uses various methods for topology evaluation: - Leaf 0x80000008 and 0x8000001e based with an optional leaf 0xb, which is the preferred variant for modern CPUs. Leaf 0xb will be superseded by leaf 0x80000026 soon, which is just another variant of the Intel 0x1f leaf for whatever reasons. - Subleaf 0x80000008 and NODEID_MSR base - Legacy fallback That code is following the principle of random bits and pieces all over the place which results in multiple evaluations and impenetrable code flows in the same way as the Intel parsing did. Provide a sane implementation by clearly separating the three variants and bringing them in the proper preference order in one place. This provides the parsing for both AMD and HYGON because there is no point in having a separate HYGON parser which only differs by 3 lines of code. Any further divergence between AMD and HYGON can be handled in different functions, while still sharing the existing parsers. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mhklinux@outlook.com> Tested-by: Zhang Rui <rui.zhang@intel.com> Tested-by: Wang Wendy <wendy.wang@intel.com> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Link: https://lore.kernel.org/r/20240212153625.020038641@linutronix.de
* | x86/cpu/amd: Provide a separate accessor for Node IDThomas Gleixner2024-02-151-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | AMD (ab)uses topology_die_id() to store the Node ID information and topology_max_dies_per_pkg to store the number of nodes per package. This collides with the proper processor die level enumeration which is coming on AMD with CPUID 8000_0026, unless there is a correlation between the two. There is zero documentation about that. So provide new storage and new accessors which for now still access die_id and topology_max_die_per_pkg(). Will be mopped up after AMD and HYGON are converted over. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mhklinux@outlook.com> Tested-by: Zhang Rui <rui.zhang@intel.com> Tested-by: Wang Wendy <wendy.wang@intel.com> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Link: https://lore.kernel.org/r/20240212153624.956116738@linutronix.de
* | x86/cpu: Provide cpu_init/parse_topology()Thomas Gleixner2024-02-151-0/+19
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Topology evaluation is a complete disaster and impenetrable mess. It's scattered all over the place with some vendor implementations doing early evaluation and some not. The most horrific part is the permanent overwriting of smt_max_siblings and __max_die_per_package, instead of establishing them once on the boot CPU and validating the result on the APs. The goals are: - One topology evaluation entry point - Proper sharing of pointlessly duplicated code - Proper structuring of the evaluation logic and preferences. - Evaluating important system wide information only once on the boot CPU - Making the 0xb/0x1f leaf parsing less convoluted and actually fixing the short comings of leaf 0x1f evaluation. Start to consolidate the topology evaluation code by providing the entry points for the early boot CPU evaluation and for the final parsing on the boot CPU and the APs. Move the trivial pieces into that new code: - The initialization of cpuinfo_x86::topo - The evaluation of CPUID leaf 1, which presets topo::initial_apicid - topo_apicid is set to topo::initial_apicid when invoked from early boot. When invoked for the final evaluation on the boot CPU it reads the actual APIC ID, which makes apic_get_initial_apicid() obsolete once everything is converted over. Provide a temporary helper function topo_converted() which shields off the not yet converted CPU vendors from invoking code which would break them. This shielding covers all vendor CPUs which support SMP, but not the historical pure UP ones as they only need the topology info init and eventually the initial APIC initialization. Provide two new members in cpuinfo_x86::topo to store the maximum number of SMT siblings and the number of dies per package and add them to the debugfs readout. These two members will be used to populate this information on the boot CPU and to validate the APs against it. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mhklinux@outlook.com> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Tested-by: Wang Wendy <wendy.wang@intel.com> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240212153624.581436579@linutronix.de
* x86/cpu: Move cpu_l[l2]c_id into topology infoThomas Gleixner2023-10-101-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | The topology IDs which identify the LLC and L2 domains clearly belong to the per CPU topology information. Move them into cpuinfo_x86::cpuinfo_topo and get rid of the extra per CPU data and the related exports. This also paves the way to do proper topology evaluation during early boot because it removes the only per CPU dependency for that. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Reviewed-by: Arjan van de Ven <arjan@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230814085112.803864641@linutronix.de
* x86/cpu: Move logical package and die IDs into topology infoThomas Gleixner2023-10-101-2/+2
| | | | | | | | | | | | | | | | | Yet another topology related data pair. Rename logical_proc_id to logical_pkg_id so it fits the common naming conventions. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230814085112.745139505@linutronix.de
* x86/cpu: Move cpu_core_id into topology infoThomas Gleixner2023-10-101-1/+1
| | | | | | | | | | | | | | | | Rename it to core_id and stick it to the other ID fields. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230814085112.566519388@linutronix.de
* x86/cpu: Move cpu_die_id into topology infoThomas Gleixner2023-10-101-1/+1
| | | | | | | | | | | | | | | | Move the next member. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230814085112.388185134@linutronix.de
* x86/cpu: Move phys_proc_id into topology infoThomas Gleixner2023-10-101-1/+1
| | | | | | | | | | | | | | | | Rename it to pkg_id which is the terminology used in the kernel. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230814085112.329006989@linutronix.de
* cpu/SMT: Remove topology_smt_supported()Laurent Dufour2023-07-281-2/+0
| | | | | | | | | | | | Since the maximum number of threads is now passed to cpu_smt_set_num_threads(), checking that value is enough to know whether SMT is supported. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Zhang Rui <rui.zhang@intel.com> Link: https://lore.kernel.org/r/20230705145143.40545-6-ldufour@linux.ibm.com
* cpu/SMT: Move SMT prototypes into cpu_smt.hMichael Ellerman2023-07-281-0/+2
| | | | | | | | | | | | | | | | | | In order to export the cpuhp_smt_control enum as part of the interface between generic and architecture code, the architecture code needs to include asm/topology.h. But that leads to circular header dependencies. So split the enum and related declarations into a separate header. [ ldufour: Reworded the commit's description ] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Zhang Rui <rui.zhang@intel.com> Link: https://lore.kernel.org/r/20230705145143.40545-3-ldufour@linux.ibm.com
* x86/apic: Provide cpu_primary_thread maskThomas Gleixner2023-05-151-4/+15
| | | | | | | | | | | | | Make the primary thread tracking CPU mask based in preparation for simpler handling of parallel bootup. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Helge Deller <deller@gmx.de> # parisc Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck Link: https://lore.kernel.org/r/20230512205257.186599880@linutronix.de
* x86/smpboot: Cleanup topology_phys_to_logical_pkg()/die()Thomas Gleixner2023-05-151-3/+0
| | | | | | | | | | | | | Make topology_phys_to_logical_pkg_die() static as it's only used in smpboot.c and fixup the kernel-doc warnings for both functions. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Helge Deller <deller@gmx.de> # parisc Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck Link: https://lore.kernel.org/r/20230512205255.493750666@linutronix.de
* x86/aperfperf: Make it correct on 32bit and UP kernelsThomas Gleixner2022-05-021-3/+3
| | | | | | | | | | | | | The utilization of arch_scale_freq_tick() for CPU frequency readouts is incomplete as it failed to move the function prototype and the define out of the CONFIG_SMP && CONFIG_X86_64 #ifdef. Make them unconditionally available. Fixes: bb6e89df9028 ("x86/aperfmperf: Make parts of the frequency invariance code unconditional") Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/lkml/202205010106.06xRBR2C-lkp@intel.com
* x86/aperfmperf: Make parts of the frequency invariance code unconditionalThomas Gleixner2022-04-271-4/+0
| | | | | | | | | | | | | | | | | | | | | | | | | The frequency invariance support is currently limited to x86/64 and SMP, which is the vast majority of machines. arch_scale_freq_tick() is called every tick on all CPUs and reads the APERF and MPERF MSRs. The CPU frequency getters function do the same via dedicated IPIs. While it could be argued that on systems where frequency invariance support is disabled (32bit, !SMP) the per tick read of the APERF and MPERF MSRs can be avoided, it does not make sense to keep the extra code and the resulting runtime issues of mass IPIs around. As a first step split out the non frequency invariance specific initialization code and the read MSR portion of arch_scale_freq_tick(). The rest of the code is still conditional and guarded with a static key. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Paul E. McKenney <paulmck@kernel.org> Link: https://lore.kernel.org/r/20220415161206.761988704@linutronix.de
* x86/aperfmperf: Untangle Intel and AMD frequency invariance initThomas Gleixner2022-04-271-9/+4
| | | | | | | | | | | | | | | | | | | | AMD boot CPU initialization happens late via ACPI/CPPC which prevents the Intel parts from being marked __init. Split out the common code and provide a dedicated interface for the AMD initialization and mark the Intel specific code and data __init. The remaining text size is almost cut in half: text: 2614 -> 1350 init.text: 0 -> 786 Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Paul E. McKenney <paulmck@kernel.org> Link: https://lore.kernel.org/r/20220415161206.592465719@linutronix.de
* x86/aperfmperf: Separate AP/BP frequency invariance initThomas Gleixner2022-04-271-7/+5
| | | | | | | | | | | | | | | | This code is convoluted and because it can be invoked post init via the ACPI/CPPC code, all of the initialization functionality is built in instead of being part of init text and init data. As a first step create separate calls for the boot and the application processors. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Paul E. McKenney <paulmck@kernel.org> Link: https://lore.kernel.org/r/20220415161206.536733494@linutronix.de
* Merge tag 'acpi-5.18-rc1' of ↵Linus Torvalds2022-03-211-2/+13
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull ACPI updates from Rafael Wysocki: "From the new functionality perspective, the most significant items here are the new driver for the 'ARM Generic Diagnostic Dump and Reset' device, the extension of fine grain fan control in the ACPI fan driver, and the change making it possible to use CPPC information to obtain CPU capacity. There are also a few new quirks, a bunch of fixes, including the platform-level _OSC handling change to make it actually take the platform firmware response into account, some code and documentation cleanups, and a notable update of the ACPI device enumeration documentation. Specifics: - Use uintptr_t and offsetof() in the ACPICA code to avoid compiler warnings regarding NULL pointer arithmetic (Rafael Wysocki). - Fix possible NULL pointer dereference in acpi_ns_walk_namespace() when passed "acpi=off" in the command line (Rafael Wysocki). - Fix and clean up acpi_os_read/write_port() (Rafael Wysocki). - Introduce acpi_bus_for_each_dev() and use it for walking all ACPI device objects in the Type C code (Rafael Wysocki). - Fix the _OSC platform capabilities negotioation and prevent CPPC from being used if the platform firmware indicates that it not supported via _OSC (Rafael Wysocki). - Use ida_alloc() instead of ida_simple_get() for ACPI enumeration of devices (Rafael Wysocki). - Add AGDI and CEDT to the list of known ACPI table signatures (Ilkka Koskinen, Robert Kiraly). - Add power management debug messages related to suspend-to-idle in two places (Rafael Wysocki). - Fix __acpi_node_get_property_reference() return value and clean up that function (Andy Shevchenko, Sakari Ailus). - Fix return value of the __setup handler in the ACPI PM timer clock source driver (Randy Dunlap). - Clean up double words in two comments (Tom Rix). - Add "skip i2c clients" quirks for Lenovo Yoga Tablet 1050F/L and Nextbook Ares 8 (Hans de Goede). - Clean up frequency invariance handling on x86 in the ACPI CPPC library (Huang Rui). - Work around broken XSDT on the Advantech DAC-BJ01 board (Mark Cilissen). - Make wakeup events checks in the ACPI EC driver more straightforward and clean up acpi_ec_submit_event() (Rafael Wysocki). - Make it possible to obtain the CPU capacity with the help of CPPC information (Ionela Voinescu). - Improve fine grained fan control in the ACPI fan driver and document it (Srinivas Pandruvada). - Add device HID and quirk for Microsoft Surface Go 3 to the ACPI battery driver (Maximilian Luz). - Make the ACPI driver for Intel SoCs (LPSS) let the SPI driver know the exact type of the controller (Andy Shevchenko). - Force native backlight mode on Clevo NL5xRU and NL5xNU (Werner Sembach). - Fix return value of __setup handlers in the APEI code (Randy Dunlap). - Add Arm Generic Diagnostic Dump and Reset device driver (Ilkka Koskinen). - Limit printable size of BERT table data (Darren Hart). - Fix up HEST and GHES initialization (Shuai Xue). - Update the ACPI device enumeration documentation and unify the ASL style in GPIO-related examples (Andy Shevchenko)" * tag 'acpi-5.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (52 commits) clocksource: acpi_pm: fix return value of __setup handler ACPI: bus: Avoid using CPPC if not supported by firmware Revert "ACPI: Pass the same capabilities to the _OSC regardless of the query flag" ACPI: video: Force backlight native for Clevo NL5xRU and NL5xNU arm64, topology: enable use of init_cpu_capacity_cppc() arch_topology: obtain cpu capacity using information from CPPC x86, ACPI: rename init_freq_invariance_cppc() to arch_init_invariance_cppc() ACPI: AGDI: Add driver for Arm Generic Diagnostic Dump and Reset device ACPI: tables: Add AGDI to the list of known table signatures ACPI/APEI: Limit printable size of BERT table data ACPI: docs: gpio-properties: Unify ASL style for GPIO examples ACPI / x86: Work around broken XSDT on Advantech DAC-BJ01 board ACPI: APEI: fix return value of __setup handlers x86/ACPI: CPPC: Move init_freq_invariance_cppc() into x86 CPPC x86: Expose init_freq_invariance() to topology header x86/ACPI: CPPC: Move AMD maximum frequency ratio setting function into x86 CPPC x86/ACPI: CPPC: Rename cppc_msr.c to cppc.c ACPI / x86: Add skip i2c clients quirk for Lenovo Yoga Tablet 1050F/L ACPI / x86: Add skip i2c clients quirk for Nextbook Ares 8 ACPICA: Avoid walking the ACPI Namespace if it is not there ...
| * x86, ACPI: rename init_freq_invariance_cppc() to arch_init_invariance_cppc()Ionela Voinescu2022-03-101-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | init_freq_invariance_cppc() was called in acpi_cppc_processor_probe(), after CPU performance information and controls were populated from the per-cpu _CPC objects. But these _CPC objects provide information that helps with both CPU (u-arch) and frequency invariance. Therefore, change the function name to a more generic one, while adding the arch_ prefix, as this function is expected to be defined differently by different architectures. Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
| * x86/ACPI: CPPC: Move init_freq_invariance_cppc() into x86 CPPCHuang Rui2022-03-081-3/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The init_freq_invariance_cppc code actually doesn't need the SMP functionality. So setting the CONFIG_SMP as the check condition for init_freq_invariance_cppc may cause the confusion to misunderstand the CPPC. And the x86 CPPC file is better space to store the CPPC related functions, while the init_freq_invariance_cppc is out of smpboot, that means, the CONFIG_SMP won't be mandatory condition any more. And It's more clear than before. Signed-off-by: Huang Rui <ray.huang@amd.com> [ rjw: Subject adjustment ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
| * x86: Expose init_freq_invariance() to topology headerHuang Rui2022-03-081-0/+4
| | | | | | | | | | | | | | | | | | The function init_freq_invariance will be used on x86 CPPC, so expose it in the topology header. Signed-off-by: Huang Rui <ray.huang@amd.com> [ rjw: Subject adjustment ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
| * x86/ACPI: CPPC: Move AMD maximum frequency ratio setting function into x86 CPPCHuang Rui2022-03-081-0/+9
| | | | | | | | | | | | | | | | | | The AMD maximum frequency ratio setting function depends on CPPC, so the x86 CPPC implementation file is better space for this function. Signed-off-by: Huang Rui <ray.huang@amd.com> [ rjw: Subject adjustment ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* | topology/sysfs: Add PPIN in sysfs under cpu topologyTony Luck2022-02-011-0/+1
|/ | | | | | | | | | | | | | | | | | | PPIN is the Protected Processor Identification Number. This is used to identify the socket as a Field Replaceable Unit (FRU). Existing code only displays this when reporting errors. But this makes it inconvenient for large clusters to use it for its intended purpose of inventory control. Add ppin to /sys/devices/system/cpu/cpu*/topology to make what is already available using RDMSR more easily accessible. Make the file read only for root in case there are still people concerned about making a unique system "serial number" available. Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Link: https://lore.kernel.org/r/20220131230111.2004669-6-tony.luck@intel.com
* x86, sched: Fix undefined reference to init_freq_invariance_cppc() build errorHuang Rui2022-01-061-1/+1
| | | | | | | | | | | | | | | | | | | | | | | The init_freq_invariance_cppc function is implemented in smpboot and depends on CONFIG_SMP. MODPOST vmlinux.symvers MODINFO modules.builtin.modinfo GEN modules.builtin LD .tmp_vmlinux.kallsyms1 ld: drivers/acpi/cppc_acpi.o: in function `acpi_cppc_processor_probe': /home/ray/brahma3/linux/drivers/acpi/cppc_acpi.c:819: undefined reference to `init_freq_invariance_cppc' make: *** [Makefile:1161: vmlinux] Error 1 See https://lore.kernel.org/lkml/484af487-7511-647e-5c5b-33d4429acdec@infradead.org/. Fixes: 41ea667227ba ("x86, sched: Calculate frequency invariance for AMD systems") Reported-by: kernel test robot <lkp@intel.com> Reported-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Huang Rui <ray.huang@amd.com> [ rjw: Subject edits ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* sched: Add cluster scheduler level for x86Tim Chen2021-10-151-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are x86 CPU architectures (e.g. Jacobsville) where L2 cahce is shared among a cluster of cores instead of being exclusive to one single core. To prevent oversubscription of L2 cache, load should be balanced between such L2 clusters, especially for tasks with no shared data. On benchmark such as SPECrate mcf test, this change provides a boost to performance especially on medium load system on Jacobsville. on a Jacobsville that has 24 Atom cores, arranged into 6 clusters of 4 cores each, the benchmark number is as follow: Improvement over baseline kernel for mcf_r copies run time base rate 1 -0.1% -0.2% 6 25.1% 25.1% 12 18.8% 19.0% 24 0.3% 0.3% So this looks pretty good. In terms of the system's task distribution, some pretty bad clumping can be seen for the vanilla kernel without the L2 cluster domain for the 6 and 12 copies case. With the extra domain for cluster, the load does get evened out between the clusters. Note this patch isn't an universal win as spreading isn't necessarily a win, particually for those workload who can benefit from packing. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210924085104.44806-4-21cnbao@gmail.com
* x86/topology: Make __max_die_per_package available unconditionallyBorislav Petkov2021-01-141-2/+2
| | | | | | | | | | | Move it outside of CONFIG_SMP in order to avoid ifdeffery at the usage sites. Fixes: 76e2fc63ca40 ("x86/cpu/amd: Set __max_die_per_package on AMD") Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20210114111814.5346-1-bp@alien8.de
* x86, sched: Calculate frequency invariance for AMD systemsNathan Fontenot2020-12-111-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is the first pass in creating the ability to calculate the frequency invariance on AMD systems. This approach uses the CPPC highest performance and nominal performance values that range from 0 - 255 instead of a high and base frquency. This is because we do not have the ability on AMD to get a highest frequency value. On AMD systems the highest performance and nominal performance vaues do correspond to the highest and base frequencies for the system so using them should produce an appropriate ratio but some tweaking is likely necessary. Due to CPPC being initialized later in boot than when the frequency invariant calculation is currently made, I had to create a callback from the CPPC init code to do the calculation after we have CPPC data. Special thanks to "kernel test robot <lkp@intel.com>" for reporting that compilation of drivers/acpi/cppc_acpi.c is conditional to CONFIG_ACPI_CPPC_LIB, not just CONFIG_ACPI. [ ggherdovich@suse.cz: made safe under CPU hotplug, edited changelog. ] Signed-off-by: Nathan Fontenot <nathan.fontenot@amd.com> Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20201112182614.10700-2-ggherdovich@suse.cz
* x86, sched: check for counters overflow in frequency invariant accountingGiovanni Gherdovich2020-06-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The product mcnt * arch_max_freq_ratio can overflows u64. For context, a large value for arch_max_freq_ratio would be 5000, corresponding to a turbo_freq/base_freq ratio of 5 (normally it's more like 1500-2000). A large increment frequency for the MPERF counter would be 5GHz (the base clock of all CPUs on the market today is less than that). With these figures, a CPU would need to go without a scheduler tick for around 8 days for the u64 overflow to happen. It is unlikely, but the check is warranted. Under similar conditions, the difference acnt of two consecutive APERF readings can overflow as well. In these circumstances is appropriate to disable frequency invariant accounting: the feature relies on measures of the clock frequency done at every scheduler tick, which need to be "fresh" to be at all meaningful. A note on i386: prior to version 5.1, the GCC compiler didn't have the builtin function __builtin_mul_overflow. In these GCC versions the macro check_mul_overflow needs __udivdi3() to do (u64)a/b, which the kernel doesn't provide. For this reason this change fails to build on i386 if GCC<5.1, and we protect the entire frequency invariant code behind CONFIG_X86_64 (special thanks to "kbuild test robot" <lkp@intel.com>). Fixes: 1567c3e3467c ("x86, sched: Add support for frequency invariance") Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lkml.kernel.org/r/20200531182453.15254-2-ggherdovich@suse.cz
* x86/intel_pstate: Handle runtime turbo disablement/enablement in frequency ↵Giovanni Gherdovich2020-01-281-0/+5
| | | | | | | | | | | | | | | | | | | invariance On some platforms such as the Dell XPS 13 laptop the firmware disables turbo when the machine is disconnected from AC, and viceversa it enables it again when it's reconnected. In these cases a _PPC ACPI notification is issued. The scheduler needs to know freq_max for frequency-invariant calculations. To account for turbo availability to come and go, record freq_max at boot as if turbo was available and store it in a helper variable. Use a setter function to swap between freq_base and freq_max every time turbo goes off or on. Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lkml.kernel.org/r/20200122151617.531-7-ggherdovich@suse.cz
* x86, sched: Add support for frequency invarianceGiovanni Gherdovich2020-01-281-0/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Implement arch_scale_freq_capacity() for 'modern' x86. This function is used by the scheduler to correctly account usage in the face of DVFS. The present patch addresses Intel processors specifically and has positive performance and performance-per-watt implications for the schedutil cpufreq governor, bringing it closer to, if not on-par with, the powersave governor from the intel_pstate driver/framework. Large performance gains are obtained when the machine is lightly loaded and no regression are observed at saturation. The benchmarks with the largest gains are kernel compilation, tbench (the networking version of dbench) and shell-intensive workloads. 1. FREQUENCY INVARIANCE: MOTIVATION * Without it, a task looks larger if the CPU runs slower 2. PECULIARITIES OF X86 * freq invariance accounting requires knowing the ratio freq_curr/freq_max 2.1 CURRENT FREQUENCY * Use delta_APERF / delta_MPERF * freq_base (a.k.a "BusyMHz") 2.2 MAX FREQUENCY * It varies with time (turbo). As an approximation, we set it to a constant, i.e. 4-cores turbo frequency. 3. EFFECTS ON THE SCHEDUTIL FREQUENCY GOVERNOR * The invariant schedutil's formula has no feedback loop and reacts faster to utilization changes 4. KNOWN LIMITATIONS * In some cases tasks can't reach max util despite how hard they try 5. PERFORMANCE TESTING 5.1 MACHINES * Skylake, Broadwell, Haswell 5.2 SETUP * baseline Linux v5.2 w/ non-invariant schedutil. Tested freq_max = 1-2-3-4-8-12 active cores turbo w/ invariant schedutil, and intel_pstate/powersave 5.3 BENCHMARK RESULTS 5.3.1 NEUTRAL BENCHMARKS * NAS Parallel Benchmark (HPC), hackbench 5.3.2 NON-NEUTRAL BENCHMARKS * tbench (10-30% better), kernbench (10-15% better), shell-intensive-scripts (30-50% better) * no regressions 5.3.3 SELECTION OF DETAILED RESULTS 5.3.4 POWER CONSUMPTION, PERFORMANCE-PER-WATT * dbench (5% worse on one machine), kernbench (3% worse), tbench (5-10% better), shell-intensive-scripts (10-40% better) 6. MICROARCH'ES ADDRESSED HERE * Xeon Core before Scalable Performance processors line (Xeon Gold/Platinum etc have different MSRs semantic for querying turbo levels) 7. REFERENCES * MMTests performance testing framework, github.com/gormanm/mmtests +-------------------------------------------------------------------------+ | 1. FREQUENCY INVARIANCE: MOTIVATION +-------------------------------------------------------------------------+ For example; suppose a CPU has two frequencies: 500 and 1000 Mhz. When running a task that would consume 1/3rd of a CPU at 1000 MHz, it would appear to consume 2/3rd (or 66.6%) when running at 500 MHz, giving the false impression this CPU is almost at capacity, even though it can go faster [*]. In a nutshell, without frequency scale-invariance tasks look larger just because the CPU is running slower. [*] (footnote: this assumes a linear frequency/performance relation; which everybody knows to be false, but given realities its the best approximation we can make.) +-------------------------------------------------------------------------+ | 2. PECULIARITIES OF X86 +-------------------------------------------------------------------------+ Accounting for frequency changes in PELT signals requires the computation of the ratio freq_curr / freq_max. On x86 neither of those terms is readily available. 2.1 CURRENT FREQUENCY ==================== Since modern x86 has hardware control over the actual frequency we run at (because amongst other things, Turbo-Mode), we cannot simply use the frequency as requested through cpufreq. Instead we use the APERF/MPERF MSRs to compute the effective frequency over the recent past. Also, because reading MSRs is expensive, don't do so every time we need the value, but amortize the cost by doing it every tick. 2.2 MAX FREQUENCY ================= Obtaining freq_max is also non-trivial because at any time the hardware can provide a frequency boost to a selected subset of cores if the package has enough power to spare (eg: Turbo Boost). This means that the maximum frequency available to a given core changes with time. The approach taken in this change is to arbitrarily set freq_max to a constant value at boot. The value chosen is the "4-cores (4C) turbo frequency" on most microarchitectures, after evaluating the following candidates: * 1-core (1C) turbo frequency (the fastest turbo state available) * around base frequency (a.k.a. max P-state) * something in between, such as 4C turbo To interpret these options, consider that this is the denominator in freq_curr/freq_max, and that ratio will be used to scale PELT signals such as util_avg and load_avg. A large denominator will undershoot (util_avg looks a bit smaller than it really is), viceversa with a smaller denominator PELT signals will tend to overshoot. Given that PELT drives frequency selection in the schedutil governor, we will have: freq_max set to | effect on DVFS --------------------+------------------ 1C turbo | power efficiency (lower freq choices) base freq | performance (higher util_avg, higher freq requests) 4C turbo | a bit of both 4C turbo proves to be a good compromise in a number of benchmarks (see below). +-------------------------------------------------------------------------+ | 3. EFFECTS ON THE SCHEDUTIL FREQUENCY GOVERNOR +-------------------------------------------------------------------------+ Once an architecture implements a frequency scale-invariant utilization (the PELT signal util_avg), schedutil switches its frequency selection formula from freq_next = 1.25 * freq_curr * util [non-invariant util signal] to freq_next = 1.25 * freq_max * util [invariant util signal] where, in the second formula, freq_max is set to the 1C turbo frequency (max turbo). The advantage of the second formula, whose usage we unlock with this patch, is that freq_next doesn't depend on the current frequency in an iterative fashion, but can jump to any frequency in a single update. This absence of feedback in the formula makes it quicker to react to utilization changes and more robust against pathological instabilities. Compare it to the update formula of intel_pstate/powersave: freq_next = 1.25 * freq_max * Busy% where again freq_max is 1C turbo and Busy% is the percentage of time not spent idling (calculated with delta_MPERF / delta_TSC); essentially the same as invariant schedutil, and largely responsible for intel_pstate/powersave good reputation. The non-invariant schedutil formula is derived from the invariant one by approximating util_inv with util_raw * freq_curr / freq_max, but this has limitations. Testing shows improved performances due to better frequency selections when the machine is lightly loaded, and essentially no change in behaviour at saturation / overutilization. +-------------------------------------------------------------------------+ | 4. KNOWN LIMITATIONS +-------------------------------------------------------------------------+ It's been shown that it is possible to create pathological scenarios where a CPU-bound task cannot reach max utilization, if the normalizing factor freq_max is fixed to a constant value (see [Lelli-2018]). If freq_max is set to 4C turbo as we do here, one needs to peg at least 5 cores in a package doing some busywork, and observe that none of those task will ever reach max util (1024) because they're all running at less than the 4C turbo frequency. While this concern still applies, we believe the performance benefit of frequency scale-invariant PELT signals outweights the cost of this limitation. [Lelli-2018] https://lore.kernel.org/lkml/20180517150418.GF22493@localhost.localdomain/ +-------------------------------------------------------------------------+ | 5. PERFORMANCE TESTING +-------------------------------------------------------------------------+ 5.1 MACHINES ============ We tested the patch on three machines, with Skylake, Broadwell and Haswell CPUs. The details are below, together with the available turbo ratios as reported by the appropriate MSRs. * 8x-SKYLAKE-UMA: Single socket E3-1240 v5, Skylake 4 cores/8 threads Max EFFiciency, BASE frequency and available turbo levels (MHz): EFFIC 800 |******** BASE 3500 |*********************************** 4C 3700 |************************************* 3C 3800 |************************************** 2C 3900 |*************************************** 1C 3900 |*************************************** * 80x-BROADWELL-NUMA: Two sockets E5-2698 v4, 2x Broadwell 20 cores/40 threads Max EFFiciency, BASE frequency and available turbo levels (MHz): EFFIC 1200 |************ BASE 2200 |********************** 8C 2900 |***************************** 7C 3000 |****************************** 6C 3100 |******************************* 5C 3200 |******************************** 4C 3300 |********************************* 3C 3400 |********************************** 2C 3600 |************************************ 1C 3600 |************************************ * 48x-HASWELL-NUMA Two sockets E5-2670 v3, 2x Haswell 12 cores/24 threads Max EFFiciency, BASE frequency and available turbo levels (MHz): EFFIC 1200 |************ BASE 2300 |*********************** 12C 2600 |************************** 11C 2600 |************************** 10C 2600 |************************** 9C 2600 |************************** 8C 2600 |************************** 7C 2600 |************************** 6C 2600 |************************** 5C 2700 |*************************** 4C 2800 |**************************** 3C 2900 |***************************** 2C 3100 |******************************* 1C 3100 |******************************* 5.2 SETUP ========= * The baseline is Linux v5.2 with schedutil (non-invariant) and the intel_pstate driver in passive mode. * The rationale for choosing the various freq_max values to test have been to try all the 1-2-3-4C turbo levels (note that 1C and 2C turbo are identical on all machines), plus one more value closer to base_freq but still in the turbo range (8C turbo for both 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA). * In addition we've run all tests with intel_pstate/powersave for comparison. * The filesystem is always XFS, the userspace is openSUSE Leap 15.1. * 8x-SKYLAKE-UMA is capable of HWP (Hardware-Managed P-States), so the runs with active intel_pstate on this machine use that. This gives, in terms of combinations tested on each machine: * 8x-SKYLAKE-UMA * Baseline: Linux v5.2, non-invariant schedutil, intel_pstate passive * intel_pstate active + powersave + HWP * invariant schedutil, freq_max = 1C turbo * invariant schedutil, freq_max = 3C turbo * invariant schedutil, freq_max = 4C turbo * both 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA * [same as 8x-SKYLAKE-UMA, but no HWP capable] * invariant schedutil, freq_max = 8C turbo (which on 48x-HASWELL-NUMA is the same as 12C turbo, or "all cores turbo") 5.3 BENCHMARK RESULTS ===================== 5.3.1 NEUTRAL BENCHMARKS ------------------------ Tests that didn't show any measurable difference in performance on any of the test machines between non-invariant schedutil and our patch are: * NAS Parallel Benchmarks (NPB) using either MPI or openMP for IPC, any computational kernel * flexible I/O (FIO) * hackbench (using threads or processes, and using pipes or sockets) 5.3.2 NON-NEUTRAL BENCHMARKS ---------------------------- What follow are summary tables where each benchmark result is given a score. * A tilde (~) means a neutral result, i.e. no difference from baseline. * Scores are computed with the ratio result_new / result_baseline, so a tilde means a score of 1.00. * The results in the score ratio are the geometric means of results running the benchmark with different parameters (eg: for kernbench: using 1, 2, 4, ... number of processes; for pgbench: varying the number of clients, and so on). * The first three tables show higher-is-better kind of tests (i.e. measured in operations/second), the subsequent three show lower-is-better kind of tests (i.e. the workload is fixed and we measure elapsed time, think kernbench). * "gitsource" is a name we made up for the test consisting in running the entire unit tests suite of the Git SCM and measuring how long it takes. We take it as a typical example of shell-intensive serialized workload. * In the "I_PSTATE" column we have the results for intel_pstate/powersave. Other columns show invariant schedutil for different values of freq_max. 4C turbo is circled as it's the value we've chosen for the final implementation. 80x-BROADWELL-NUMA (comparison ratio; higher is better) +------+ I_PSTATE 1C 3C | 4C | 8C pgbench-ro 1.14 ~ ~ | 1.11 | 1.14 pgbench-rw ~ ~ ~ | ~ | ~ netperf-udp 1.06 ~ 1.06 | 1.05 | 1.07 netperf-tcp ~ 1.03 ~ | 1.01 | 1.02 tbench4 1.57 1.18 1.22 | 1.30 | 1.56 +------+ 8x-SKYLAKE-UMA (comparison ratio; higher is better) +------+ I_PSTATE/HWP 1C 3C | 4C | pgbench-ro ~ ~ ~ | ~ | pgbench-rw ~ ~ ~ | ~ | netperf-udp ~ ~ ~ | ~ | netperf-tcp ~ ~ ~ | ~ | tbench4 1.30 1.14 1.14 | 1.16 | +------+ 48x-HASWELL-NUMA (comparison ratio; higher is better) +------+ I_PSTATE 1C 3C | 4C | 12C pgbench-ro 1.15 ~ ~ | 1.06 | 1.16 pgbench-rw ~ ~ ~ | ~ | ~ netperf-udp 1.05 0.97 1.04 | 1.04 | 1.02 netperf-tcp 0.96 1.01 1.01 | 1.01 | 1.01 tbench4 1.50 1.05 1.13 | 1.13 | 1.25 +------+ In the table above we see that active intel_pstate is slightly better than our 4C-turbo patch (both in reference to the baseline non-invariant schedutil) on read-only pgbench and much better on tbench. Both cases are notable in which it shows that lowering our freq_max (to 8C-turbo and 12C-turbo on 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA respectively) helps invariant schedutil to get closer. If we ignore active intel_pstate and focus on the comparison with baseline alone, there are several instances of double-digit performance improvement. 80x-BROADWELL-NUMA (comparison ratio; lower is better) +------+ I_PSTATE 1C 3C | 4C | 8C dbench4 1.23 0.95 0.95 | 0.95 | 0.95 kernbench 0.93 0.83 0.83 | 0.83 | 0.82 gitsource 0.98 0.49 0.49 | 0.49 | 0.48 +------+ 8x-SKYLAKE-UMA (comparison ratio; lower is better) +------+ I_PSTATE/HWP 1C 3C | 4C | dbench4 ~ ~ ~ | ~ | kernbench ~ ~ ~ | ~ | gitsource 0.92 0.55 0.55 | 0.55 | +------+ 48x-HASWELL-NUMA (comparison ratio; lower is better) +------+ I_PSTATE 1C 3C | 4C | 8C dbench4 ~ ~ ~ | ~ | ~ kernbench 0.94 0.90 0.89 | 0.90 | 0.90 gitsource 0.97 0.69 0.69 | 0.69 | 0.69 +------+ dbench is not very remarkable here, unless we notice how poorly active intel_pstate is performing on 80x-BROADWELL-NUMA: 23% regression versus non-invariant schedutil. We repeated that run getting consistent results. Out of scope for the patch at hand, but deserving future investigation. Other than that, we previously ran this campaign with Linux v5.0 and saw the patch doing better on dbench a the time. We haven't checked closely and can only speculate at this point. On the NUMA boxes kernbench gets 10-15% improvements on average; we'll see in the detailed tables that the gains concentrate on low process counts (lightly loaded machines). The test we call "gitsource" (running the git unit test suite, a long-running single-threaded shell script) appears rather spectacular in this table (gains of 30-50% depending on the machine). It is to be noted, however, that gitsource has no adjustable parameters (such as the number of jobs in kernbench, which we average over in order to get a single-number summary score) and is exactly the kind of low-parallelism workload that benefits the most from this patch. When looking at the detailed tables of kernbench or tbench4, at low process or client counts one can see similar numbers. 5.3.3 SELECTION OF DETAILED RESULTS ----------------------------------- Machine : 48x-HASWELL-NUMA Benchmark : tbench4 (i.e. dbench4 over the network, actually loopback) Varying parameter : number of clients Unit : MB/sec (higher is better) 5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate 5.2.0 1C-turbo - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Hmean 1 126.73 +- 0.31% ( ) 315.91 +- 0.66% ( 149.28%) 125.03 +- 0.76% ( -1.34%) Hmean 2 258.04 +- 0.62% ( ) 614.16 +- 0.51% ( 138.01%) 269.58 +- 1.45% ( 4.47%) Hmean 4 514.30 +- 0.67% ( ) 1146.58 +- 0.54% ( 122.94%) 533.84 +- 1.99% ( 3.80%) Hmean 8 1111.38 +- 2.52% ( ) 2159.78 +- 0.38% ( 94.33%) 1359.92 +- 1.56% ( 22.36%) Hmean 16 2286.47 +- 1.36% ( ) 3338.29 +- 0.21% ( 46.00%) 2720.20 +- 0.52% ( 18.97%) Hmean 32 4704.84 +- 0.35% ( ) 4759.03 +- 0.43% ( 1.15%) 4774.48 +- 0.30% ( 1.48%) Hmean 64 7578.04 +- 0.27% ( ) 7533.70 +- 0.43% ( -0.59%) 7462.17 +- 0.65% ( -1.53%) Hmean 128 6998.52 +- 0.16% ( ) 6987.59 +- 0.12% ( -0.16%) 6909.17 +- 0.14% ( -1.28%) Hmean 192 6901.35 +- 0.25% ( ) 6913.16 +- 0.10% ( 0.17%) 6855.47 +- 0.21% ( -0.66%) 5.2.0 3C-turbo 5.2.0 4C-turbo 5.2.0 12C-turbo - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Hmean 1 128.43 +- 0.28% ( 1.34%) 130.64 +- 3.81% ( 3.09%) 153.71 +- 5.89% ( 21.30%) Hmean 2 311.70 +- 6.15% ( 20.79%) 281.66 +- 3.40% ( 9.15%) 305.08 +- 5.70% ( 18.23%) Hmean 4 641.98 +- 2.32% ( 24.83%) 623.88 +- 5.28% ( 21.31%) 906.84 +- 4.65% ( 76.32%) Hmean 8 1633.31 +- 1.56% ( 46.96%) 1714.16 +- 0.93% ( 54.24%) 2095.74 +- 0.47% ( 88.57%) Hmean 16 3047.24 +- 0.42% ( 33.27%) 3155.02 +- 0.30% ( 37.99%) 3634.58 +- 0.15% ( 58.96%) Hmean 32 4734.31 +- 0.60% ( 0.63%) 4804.38 +- 0.23% ( 2.12%) 4674.62 +- 0.27% ( -0.64%) Hmean 64 7699.74 +- 0.35% ( 1.61%) 7499.72 +- 0.34% ( -1.03%) 7659.03 +- 0.25% ( 1.07%) Hmean 128 6935.18 +- 0.15% ( -0.91%) 6942.54 +- 0.10% ( -0.80%) 7004.85 +- 0.12% ( 0.09%) Hmean 192 6901.62 +- 0.12% ( 0.00%) 6856.93 +- 0.10% ( -0.64%) 6978.74 +- 0.10% ( 1.12%) This is one of the cases where the patch still can't surpass active intel_pstate, not even when freq_max is as low as 12C-turbo. Otherwise, gains are visible up to 16 clients and the saturated scenario is the same as baseline. The scores in the summary table from the previous sections are ratios of geometric means of the results over different clients, as seen in this table. Machine : 80x-BROADWELL-NUMA Benchmark : kernbench (kernel compilation) Varying parameter : number of jobs Unit : seconds (lower is better) 5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate 5.2.0 1C-turbo - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Amean 2 379.68 +- 0.06% ( ) 330.20 +- 0.43% ( 13.03%) 285.93 +- 0.07% ( 24.69%) Amean 4 200.15 +- 0.24% ( ) 175.89 +- 0.22% ( 12.12%) 153.78 +- 0.25% ( 23.17%) Amean 8 106.20 +- 0.31% ( ) 95.54 +- 0.23% ( 10.03%) 86.74 +- 0.10% ( 18.32%) Amean 16 56.96 +- 1.31% ( ) 53.25 +- 1.22% ( 6.50%) 48.34 +- 1.73% ( 15.13%) Amean 32 34.80 +- 2.46% ( ) 33.81 +- 0.77% ( 2.83%) 30.28 +- 1.59% ( 12.99%) Amean 64 26.11 +- 1.63% ( ) 25.04 +- 1.07% ( 4.10%) 22.41 +- 2.37% ( 14.16%) Amean 128 24.80 +- 1.36% ( ) 23.57 +- 1.23% ( 4.93%) 21.44 +- 1.37% ( 13.55%) Amean 160 24.85 +- 0.56% ( ) 23.85 +- 1.17% ( 4.06%) 21.25 +- 1.12% ( 14.49%) 5.2.0 3C-turbo 5.2.0 4C-turbo 5.2.0 8C-turbo - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Amean 2 284.08 +- 0.13% ( 25.18%) 283.96 +- 0.51% ( 25.21%) 285.05 +- 0.21% ( 24.92%) Amean 4 153.18 +- 0.22% ( 23.47%) 154.70 +- 1.64% ( 22.71%) 153.64 +- 0.30% ( 23.24%) Amean 8 87.06 +- 0.28% ( 18.02%) 86.77 +- 0.46% ( 18.29%) 86.78 +- 0.22% ( 18.28%) Amean 16 48.03 +- 0.93% ( 15.68%) 47.75 +- 1.99% ( 16.17%) 47.52 +- 1.61% ( 16.57%) Amean 32 30.23 +- 1.20% ( 13.14%) 30.08 +- 1.67% ( 13.57%) 30.07 +- 1.67% ( 13.60%) Amean 64 22.59 +- 2.02% ( 13.50%) 22.63 +- 0.81% ( 13.32%) 22.42 +- 0.76% ( 14.12%) Amean 128 21.37 +- 0.67% ( 13.82%) 21.31 +- 1.15% ( 14.07%) 21.17 +- 1.93% ( 14.63%) Amean 160 21.68 +- 0.57% ( 12.76%) 21.18 +- 1.74% ( 14.77%) 21.22 +- 1.00% ( 14.61%) The patch outperform active intel_pstate (and baseline) by a considerable margin; the summary table from the previous section says 4C turbo and active intel_pstate are 0.83 and 0.93 against baseline respectively, so 4C turbo is 0.83/0.93=0.89 against intel_pstate (~10% better on average). There is no noticeable difference with regard to the value of freq_max. Machine : 8x-SKYLAKE-UMA Benchmark : gitsource (time to run the git unit test suite) Varying parameter : none Unit : seconds (lower is better) 5.2.0 vanilla 5.2.0 intel_pstate/hwp 5.2.0 1C-turbo - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Amean 858.85 +- 1.16% ( ) 791.94 +- 0.21% ( 7.79%) 474.95 ( 44.70%) 5.2.0 3C-turbo 5.2.0 4C-turbo - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Amean 475.26 +- 0.20% ( 44.66%) 474.34 +- 0.13% ( 44.77%) In this test, which is of interest as representing shell-intensive (i.e. fork-intensive) serialized workloads, invariant schedutil outperforms intel_pstate/powersave by a whopping 40% margin. 5.3.4 POWER CONSUMPTION, PERFORMANCE-PER-WATT --------------------------------------------- The following table shows average power consumption in watt for each benchmark. Data comes from turbostat (package average), which in turn is read from the RAPL interface on CPUs. We know the patch affects CPU frequencies so it's reasonable to ignore other power consumers (such as memory or I/O). Also, we don't have a power meter available in the lab so RAPL is the best we have. turbostat sampled average power every 10 seconds for the entire duration of each benchmark. We took all those values and averaged them (i.e. with don't have detail on a per-parameter granularity, only on whole benchmarks). 80x-BROADWELL-NUMA (power consumption, watts) +--------+ BASELINE I_PSTATE 1C 3C | 4C | 8C pgbench-ro 130.01 142.77 131.11 132.45 | 134.65 | 136.84 pgbench-rw 68.30 60.83 71.45 71.70 | 71.65 | 72.54 dbench4 90.25 59.06 101.43 99.89 | 101.10 | 102.94 netperf-udp 65.70 69.81 66.02 68.03 | 68.27 | 68.95 netperf-tcp 88.08 87.96 88.97 88.89 | 88.85 | 88.20 tbench4 142.32 176.73 153.02 163.91 | 165.58 | 176.07 kernbench 92.94 101.95 114.91 115.47 | 115.52 | 115.10 gitsource 40.92 41.87 75.14 75.20 | 75.40 | 75.70 +--------+ 8x-SKYLAKE-UMA (power consumption, watts) +--------+ BASELINE I_PSTATE/HWP 1C 3C | 4C | pgbench-ro 46.49 46.68 46.56 46.59 | 46.52 | pgbench-rw 29.34 31.38 30.98 31.00 | 31.00 | dbench4 27.28 27.37 27.49 27.41 | 27.38 | netperf-udp 22.33 22.41 22.36 22.35 | 22.36 | netperf-tcp 27.29 27.29 27.30 27.31 | 27.33 | tbench4 41.13 45.61 43.10 43.33 | 43.56 | kernbench 42.56 42.63 43.01 43.01 | 43.01 | gitsource 13.32 13.69 17.33 17.30 | 17.35 | +--------+ 48x-HASWELL-NUMA (power consumption, watts) +--------+ BASELINE I_PSTATE 1C 3C | 4C | 12C pgbench-ro 128.84 136.04 129.87 132.43 | 132.30 | 134.86 pgbench-rw 37.68 37.92 37.17 37.74 | 37.73 | 37.31 dbench4 28.56 28.73 28.60 28.73 | 28.70 | 28.79 netperf-udp 56.70 60.44 56.79 57.42 | 57.54 | 57.52 netperf-tcp 75.49 75.27 75.87 76.02 | 76.01 | 75.95 tbench4 115.44 139.51 119.53 123.07 | 123.97 | 130.22 kernbench 83.23 91.55 95.58 95.69 | 95.72 | 96.04 gitsource 36.79 36.99 39.99 40.34 | 40.35 | 40.23 +--------+ A lower power consumption isn't necessarily better, it depends on what is done with that energy. Here are tables with the ratio of performance-per-watt on each machine and benchmark. Higher is always better; a tilde (~) means a neutral ratio (i.e. 1.00). 80x-BROADWELL-NUMA (performance-per-watt ratios; higher is better) +------+ I_PSTATE 1C 3C | 4C | 8C pgbench-ro 1.04 1.06 0.94 | 1.07 | 1.08 pgbench-rw 1.10 0.97 0.96 | 0.96 | 0.97 dbench4 1.24 0.94 0.95 | 0.94 | 0.92 netperf-udp ~ 1.02 1.02 | ~ | 1.02 netperf-tcp ~ 1.02 ~ | ~ | 1.02 tbench4 1.26 1.10 1.06 | 1.12 | 1.26 kernbench 0.98 0.97 0.97 | 0.97 | 0.98 gitsource ~ 1.11 1.11 | 1.11 | 1.13 +------+ 8x-SKYLAKE-UMA (performance-per-watt ratios; higher is better) +------+ I_PSTATE/HWP 1C 3C | 4C | pgbench-ro ~ ~ ~ | ~ | pgbench-rw 0.95 0.97 0.96 | 0.96 | dbench4 ~ ~ ~ | ~ | netperf-udp ~ ~ ~ | ~ | netperf-tcp ~ ~ ~ | ~ | tbench4 1.17 1.09 1.08 | 1.10 | kernbench ~ ~ ~ | ~ | gitsource 1.06 1.40 1.40 | 1.40 | +------+ 48x-HASWELL-NUMA (performance-per-watt ratios; higher is better) +------+ I_PSTATE 1C 3C | 4C | 12C pgbench-ro 1.09 ~ 1.09 | 1.03 | 1.11 pgbench-rw ~ 0.86 ~ | ~ | 0.86 dbench4 ~ 1.02 1.02 | 1.02 | ~ netperf-udp ~ 0.97 1.03 | 1.02 | ~ netperf-tcp 0.96 ~ ~ | ~ | ~ tbench4 1.24 ~ 1.06 | 1.05 | 1.11 kernbench 0.97 0.97 0.98 | 0.97 | 0.96 gitsource 1.03 1.33 1.32 | 1.32 | 1.33 +------+ These results are overall pleasing: in plenty of cases we observe performance-per-watt improvements. The few regressions (read/write pgbench and dbench on the Broadwell machine) are of small magnitude. kernbench loses a few percentage points (it has a 10-15% performance improvement, but apparently the increase in power consumption is larger than that). tbench4 and gitsource, which benefit the most from the patch, keep a positive score in this table which is a welcome surprise; that suggests that in those particular workloads the non-invariant schedutil (and active intel_pstate, too) makes some rather suboptimal frequency selections. +-------------------------------------------------------------------------+ | 6. MICROARCH'ES ADDRESSED HERE +-------------------------------------------------------------------------+ The patch addresses Xeon Core processors that use MSR_PLATFORM_INFO and MSR_TURBO_RATIO_LIMIT to advertise their base frequency and turbo frequencies respectively. This excludes the recent Xeon Scalable Performance processors line (Xeon Gold, Platinum etc) whose MSRs have to be parsed differently. Subsequent patches will address: * Xeon Scalable Performance processors and Atom Goldmont/Goldmont Plus * Xeon Phi (Knights Landing, Knights Mill) * Atom Silvermont +-------------------------------------------------------------------------+ | 7. REFERENCES +-------------------------------------------------------------------------+ Tests have been run with the help of the MMTests performance testing framework, see github.com/gormanm/mmtests. The configuration file names for the benchmark used are: db-pgbench-timed-ro-small-xfs db-pgbench-timed-rw-small-xfs io-dbench4-async-xfs network-netperf-unbound network-tbench scheduler-unbound workload-kerndevel-xfs workload-shellscripts-xfs hpc-nas-c-class-mpi-full-xfs hpc-nas-c-class-omp-full All those benchmarks are generally available on the web: pgbench: https://www.postgresql.org/docs/10/pgbench.html netperf: https://hewlettpackard.github.io/netperf/ dbench/tbench: https://dbench.samba.org/ gitsource: git unit test suite, github.com/git/git NAS Parallel Benchmarks: https://www.nas.nasa.gov/publications/npb.html hackbench: https://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Doug Smythies <dsmythies@telus.net> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lkml.kernel.org/r/20200122151617.531-2-ggherdovich@suse.cz
* topology: Create core_cpus and die_cpus sysfs attributesLen Brown2019-05-231-0/+1
| | | | | | | | | | | | | | | | | | | | | | Create CPU topology sysfs attributes: "core_cpus" and "core_cpus_list" These attributes represent all of the logical CPUs that share the same core. These attriutes is synonymous with the existing "thread_siblings" and "thread_siblings_list" attribute, which will be deprecated. Create CPU topology sysfs attributes: "die_cpus" and "die_cpus_list". These attributes represent all of the logical CPUs that share the same die. Suggested-by: Brice Goglin <Brice.Goglin@inria.fr> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/071c23a298cd27ede6ed0b6460cae190d193364f.1557769318.git.len.brown@intel.com
* x86/topology: Define topology_logical_die_id()Len Brown2019-05-231-0/+5
| | | | | | | | | | | | Define topology_logical_die_id() ala existing topology_logical_package_id() Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Zhang Rui <rui.zhang@intel.com> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/2f3526e25ae14fbeff26fb26e877d159df8946d9.1557769318.git.len.brown@intel.com
* x86/topology: Define topology_die_id()Len Brown2019-05-231-0/+1
| | | | | | | | | | | | topology_die_id(cpu) is a simple macro for use inside the kernel to get the die_id associated with the given cpu. Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/6463bc422b1b05445a502dc505c1d7c6756bda6a.1557769318.git.len.brown@intel.com
* x86/topology: Create topology_max_die_per_package()Len Brown2019-05-231-0/+10
| | | | | | | | | | | | | | | | | | topology_max_packages() is available to size resources to cover all packages in the system. But now multi-die/package systems are coming up, and some resources are per-die. Create topology_max_die_per_package(), for detecting multi-die/package systems, and sizing any per-die resources. Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/e6eaf384571ae52ac7d0ca41510b7fb7d2fda0e4.1557769318.git.len.brown@intel.com
* x86/topology: Provide topology_smt_supported()Thomas Gleixner2018-06-211-0/+2
| | | | | | | | | Provide information whether SMT is supoorted by the CPUs. Preparatory patch for SMT control mechanism. Suggested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Ingo Molnar <mingo@kernel.org>
* x86/smp: Provide topology_is_primary_thread()Thomas Gleixner2018-06-211-1/+3
| | | | | | | | | | | | | | | | If the CPU is supporting SMT then the primary thread can be found by checking the lower APIC ID bits for zero. smp_num_siblings is used to build the mask for the APIC ID bits which need to be taken into account. This uses the MPTABLE or ACPI/MADT supplied APIC ID, which can be different than the initial APIC ID in CPUID. But according to AMD the lower bits have to be consistent. Intel gave a tentative confirmation as well. Preparatory patch to support disabling SMT at boot/runtime. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org>
* x86/topology: Remove the unused parent_node() macroDou Liyang2017-07-271-6/+0
| | | | | | | | | | | | | | | | Commit: a7be6e5a7f8d ("mm: drop useless local parameters of __register_one_node()") ... removed the last user of parent_node(), so remove the macro. Reported-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1501076076-1974-11-git-send-email-douly.fnst@cn.fujitsu.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* sched/x86: Change CONFIG_SCHED_ITMT to CONFIG_SCHED_MC_PRIOTim Chen2016-11-301-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | Rename CONFIG_SCHED_ITMT for Intel Turbo Boost Max Technology 3.0 to CONFIG_SCHED_MC_PRIO. This makes the configuration extensible in future to other architectures that wish to similarly establish CPU core priorities support in the scheduler. The description in Kconfig is updated to reflect this change with added details for better clarity. The configuration is explicitly default-y, to enable the feature on CPUs that have this feature. It has no effect on non-TBM3 CPUs. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bp@suse.de Cc: jolsa@redhat.com Cc: linux-acpi@vger.kernel.org Cc: linux-pm@vger.kernel.org Cc: rjw@rjwysocki.net Link: http://lkml.kernel.org/r/2b2ee29d93e3f162922d72d0165a1405864fbb23.1480444902.git.tim.c.chen@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* x86/sysctl: Add sysctl for ITMT scheduling featureTim Chen2016-11-241-2/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Intel Turbo Boost Max Technology 3.0 (ITMT) feature allows some cores to be boosted to higher turbo frequency than others. Add /proc/sys/kernel/sched_itmt_enabled so operator can enable/disable scheduling of tasks that favor cores with higher turbo boost frequency potential. By default, system that is ITMT capable and single socket has this feature turned on. It is more likely to be lightly loaded and operates in Turbo range. When there is a change in the ITMT scheduling operation desired, a rebuild of the sched domain is initiated so the scheduler can set up sched domains with appropriate flag to enable/disable ITMT scheduling operations. Co-developed-by: Peter Zijlstra (Intel) <peterz@infradead.org> Co-developed-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Cc: linux-pm@vger.kernel.org Cc: peterz@infradead.org Cc: jolsa@redhat.com Cc: rjw@rjwysocki.net Cc: linux-acpi@vger.kernel.org Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: bp@suse.de Link: http://lkml.kernel.org/r/07cc62426a28bad57b01ab16bb903a9c84fa5421.1479844244.git.tim.c.chen@linux.intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* x86: Enable Intel Turbo Boost Max Technology 3.0Tim Chen2016-11-241-0/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On platforms supporting Intel Turbo Boost Max Technology 3.0, the maximum turbo frequencies of some cores in a CPU package may be higher than for the other cores in the same package. In that case, better performance (and possibly lower energy consumption as well) can be achieved by making the scheduler prefer to run tasks on the CPUs with higher max turbo frequencies. To that end, set up a core priority metric to abstract the core preferences based on the maximum turbo frequency. In that metric, the cores with higher maximum turbo frequencies are higher-priority than the other cores in the same package and that causes the scheduler to favor them when making load-balancing decisions using the asymmertic packing approach. At the same time, the priority of SMT threads with a higher CPU number is reduced so as to avoid scheduling tasks on all of the threads that belong to a favored core before all of the other cores have been given a task to run. The priority metric will be initialized by the P-state driver with the help of the sched_set_itmt_core_prio() function. The P-state driver will also determine whether or not ITMT is supported by the platform and will call sched_set_itmt_support() to indicate that. Co-developed-by: Peter Zijlstra (Intel) <peterz@infradead.org> Co-developed-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Cc: linux-pm@vger.kernel.org Cc: peterz@infradead.org Cc: jolsa@redhat.com Cc: rjw@rjwysocki.net Cc: linux-acpi@vger.kernel.org Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: bp@suse.de Link: http://lkml.kernel.org/r/cd401ccdff88f88c8349314febdc25d51f7c48f7.1479844244.git.tim.c.chen@linux.intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>