summaryrefslogtreecommitdiffstats
path: root/arch/x86/include/asm/word-at-a-time.h (follow)
Commit message (Collapse)AuthorAgeFilesLines
* x86-64: word-at-a-time: improve byte count calculationsLinus Torvalds2024-06-191-34/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This switches x86-64 over to using 'tzcount' instead of the integer multiply trick to turn the bytemask information into actual byte counts. We even had a comment saying that a fast bit count instruction is better than a multiply, but x86 bit counting has traditionally been "questionably fast", and so avoiding it was the right thing back in the days. Now, on any half-way modern core, using bit counting is cheaper and smaller than the large constant multiply, so let's just switch over. Note that as part of switching over to counting bits, we also do it at a different point. We used to create the byte count from the final byte mask, but once you use the 'tzcount' instruction (aka 'bsf' on older CPU's), you can actually count the leading zeroes using a value we have available earlier. In fact, we can just use the very first mask of bits that tells us whether we have any zero bytes at all. The zero bytes in the word will have the high bit set, so just doing 'tzcount' on that value and dividing by 8 will give the number of bytes that precede the first NUL character, which is exactly what we want. Note also that the input value to the tzcount is by definition not zero, since that is the condition that we already used to check the whole "do we have any zero bytes at all". So we don't need to worry about the legacy instruction behavior of pre-lzcount days when 'bsf' didn't have a result for zero input. The 32-bit code continues to use the bimple bit op trick that is faster even on newer cores, but particularly on the older 32-bit-only ones. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* kernel.h: removed REPEAT_BYTE from kernel.hTanzir Hasan2024-02-011-1/+2
| | | | | | | | | | | | | | | | This patch creates wordpart.h and includes it in asm/word-at-a-time.h for all architectures. WORD_AT_A_TIME_CONSTANTS depends on kernel.h because of REPEAT_BYTE. Moving this to another header and including it where necessary allows us to not include the bloated kernel.h. Making this implicit dependency on REPEAT_BYTE explicit allows for later improvements in the lib/string.c inclusion list. Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Suggested-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Tanzir Hasan <tanzirh@google.com> Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Link: https://lore.kernel.org/r/20231226-libstringheader-v6-1-80aa08c7652c@google.com Signed-off-by: Kees Cook <keescook@chromium.org>
* x86: simplify load_unaligned_zeropad() implementationLinus Torvalds2022-08-161-43/+3
| | | | | | | | | | | | | | | | | The exception for the "unaligned access at the end of the page, next page not mapped" never happens, but the fixup code ends up causing trouble for compilers to optimize well. clang in particular ends up seeing it being in the middle of a loop, and tries desperately to optimize the exception fixup code that is never really reached. The simple solution is to just move all the fixups into the exception handler itself, which moves it all out of the hot case code, and means that the compiler never sees it or needs to worry about it. Acked-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* x86/word-at-a-time: Remove .fixup usagePeter Zijlstra2021-12-111-19/+47
| | | | | | | | | | | | Rewrite load_unaligned_zeropad() to not require .fixup text. This is easiest done using asm-goto-output, where we can stick a C label in the exception table entry. The fallback version isn't nearly so nice but should work. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20211110101326.141775772@infradead.org
* License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman2017-11-021-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* word-at-a-time: make the interfaces truly genericLinus Torvalds2012-05-261-3/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This changes the interfaces in <asm/word-at-a-time.h> to be a bit more complicated, but a lot more generic. In particular, it allows us to really do the operations efficiently on both little-endian and big-endian machines, pretty much regardless of machine details. For example, if you can rely on a fast population count instruction on your architecture, this will allow you to make your optimized <asm/word-at-a-time.h> file with that. NOTE! The "generic" version in include/asm-generic/word-at-a-time.h is not truly generic, it actually only works on big-endian. Why? Because on little-endian the generic algorithms are wasteful, since you can inevitably do better. The x86 implementation is an example of that. (The only truly non-generic part of the asm-generic implementation is the "find_zero()" function, and you could make a little-endian version of it. And if the Kbuild infrastructure allowed us to pick a particular header file, that would be lovely) The <asm/word-at-a-time.h> functions are as follows: - WORD_AT_A_TIME_CONSTANTS: specific constants that the algorithm uses. - has_zero(): take a word, and determine if it has a zero byte in it. It gets the word, the pointer to the constant pool, and a pointer to an intermediate "data" field it can set. This is the "quick-and-dirty" zero tester: it's what is run inside the hot loops. - "prep_zero_mask()": take the word, the data that has_zero() produced, and the constant pool, and generate an *exact* mask of which byte had the first zero. This is run directly *outside* the loop, and allows the "has_zero()" function to answer the "is there a zero byte" question without necessarily getting exactly *which* byte is the first one to contain a zero. If you do multiple byte lookups concurrently (eg "hash_name()", which looks for both NUL and '/' bytes), after you've done the prep_zero_mask() phase, the result of those can be or'ed together to get the "either or" case. - The result from "prep_zero_mask()" can then be fed into "find_zero()" (to find the byte offset of the first byte that was zero) or into "zero_bytemask()" (to find the bytemask of the bytes preceding the zero byte). The existence of zero_bytemask() is optional, and is not necessary for the normal string routines. But dentry name hashing needs it, so if you enable DENTRY_WORD_AT_A_TIME you need to expose it. This changes the generic strncpy_from_user() function and the dentry hashing functions to use these modified word-at-a-time interfaces. This gets us back to the optimized state of the x86 strncpy that we lost in the previous commit when moving over to the generic version. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* kernel: Move REPEAT_BYTE definition into linux/kernel.hDavid S. Miller2012-05-241-2/+2
| | | | | | | And make sure that everything using it explicitly includes that header file. Signed-off-by: David S. Miller <davem@davemloft.net>
* vfs: make word-at-a-time accesses handle a non-existing pageLinus Torvalds2012-05-031-0/+33
| | | | | | | | | | | | | | | | | | | | | It turns out that there are more cases than CONFIG_DEBUG_PAGEALLOC that can have holes in the kernel address space: it seems to happen easily with Xen, and it looks like the AMD gart64 code will also punch holes dynamically. Actually hitting that case is still very unlikely, so just do the access, and take an exception and fix it up for the very unlikely case of it being a page-crosser with no next page. And hey, this abstraction might even help other architectures that have other issues with unaligned word accesses than the possible missing next page. IOW, this could do the byte order magic too. Peter Anvin fixed a thinko in the shifting for the exception case. Reported-and-tested-by: Jana Saout <jana@saout.de> Cc: Peter Anvin <hpa@zytor.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Make the "word-at-a-time" helper functions more commonly usableLinus Torvalds2012-04-061-0/+46
I have a new optimized x86 "strncpy_from_user()" that will use these same helper functions for all the same reasons the name lookup code uses them. This is preparation for that. This moves them into an architecture-specific header file. It's architecture-specific for two reasons: - some of the functions are likely to want architecture-specific implementations. Even if the current code happens to be "generic" in the sense that it should work on any little-endian machine, it's likely that the "multiply by a big constant and shift" implementation is less than optimal for an architecture that has a guaranteed fast bit count instruction, for example. - I expect that if architectures like sparc want to start playing around with this, we'll need to abstract out a few more details (in particular the actual unaligned accesses). So we're likely to have more architecture-specific stuff if non-x86 architectures start using this. (and if it turns out that non-x86 architectures don't start using this, then having it in an architecture-specific header is still the right thing to do, of course) Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>