summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/traps.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* x86/speculation/mds: Revert CPU buffer clear on double fault exitAndy Lutomirski2019-05-161-8/+0
| | | | | | | | | | | | | | | | | | | | The double fault ESPFIX path doesn't return to user mode at all -- it returns back to the kernel by simulating a #GP fault. prepare_exit_to_usermode() will run on the way out of general_protection before running user code. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jon Masters <jcm@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Fixes: 04dcbdb80578 ("x86/speculation/mds: Clear CPU buffers on exit to user") Link: http://lkml.kernel.org/r/ac97612445c0a44ee10374f6ea79c222fe22a5c4.1557865329.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Merge branch 'x86-mds-for-linus' of ↵Linus Torvalds2019-05-141-0/+8
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 MDS mitigations from Thomas Gleixner: "Microarchitectural Data Sampling (MDS) is a hardware vulnerability which allows unprivileged speculative access to data which is available in various CPU internal buffers. This new set of misfeatures has the following CVEs assigned: CVE-2018-12126 MSBDS Microarchitectural Store Buffer Data Sampling CVE-2018-12130 MFBDS Microarchitectural Fill Buffer Data Sampling CVE-2018-12127 MLPDS Microarchitectural Load Port Data Sampling CVE-2019-11091 MDSUM Microarchitectural Data Sampling Uncacheable Memory MDS attacks target microarchitectural buffers which speculatively forward data under certain conditions. Disclosure gadgets can expose this data via cache side channels. Contrary to other speculation based vulnerabilities the MDS vulnerability does not allow the attacker to control the memory target address. As a consequence the attacks are purely sampling based, but as demonstrated with the TLBleed attack samples can be postprocessed successfully. The mitigation is to flush the microarchitectural buffers on return to user space and before entering a VM. It's bolted on the VERW instruction and requires a microcode update. As some of the attacks exploit data structures shared between hyperthreads, full protection requires to disable hyperthreading. The kernel does not do that by default to avoid breaking unattended updates. The mitigation set comes with documentation for administrators and a deeper technical view" * 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits) x86/speculation/mds: Fix documentation typo Documentation: Correct the possible MDS sysfs values x86/mds: Add MDSUM variant to the MDS documentation x86/speculation/mds: Add 'mitigations=' support for MDS x86/speculation/mds: Print SMT vulnerable on MSBDS with mitigations off x86/speculation/mds: Fix comment x86/speculation/mds: Add SMT warning message x86/speculation: Move arch_smt_update() call to after mitigation decisions x86/speculation/mds: Add mds=full,nosmt cmdline option Documentation: Add MDS vulnerability documentation Documentation: Move L1TF to separate directory x86/speculation/mds: Add mitigation mode VMWERV x86/speculation/mds: Add sysfs reporting for MDS x86/speculation/mds: Add mitigation control for MDS x86/speculation/mds: Conditionally clear CPU buffers on idle entry x86/kvm/vmx: Add MDS protection when L1D Flush is not active x86/speculation/mds: Clear CPU buffers on exit to user x86/speculation/mds: Add mds_clear_cpu_buffers() x86/kvm: Expose X86_FEATURE_MD_CLEAR to guests x86/speculation/mds: Add BUG_MSBDS_ONLY ...
| * x86/speculation/mds: Clear CPU buffers on exit to userThomas Gleixner2019-03-061-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a static key which controls the invocation of the CPU buffer clear mechanism on exit to user space and add the call into prepare_exit_to_usermode() and do_nmi() right before actually returning. Add documentation which kernel to user space transition this covers and explain why some corner cases are not mitigated. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com>
* | x86/fpu: Use a feature number instead of mask in two more helpersSebastian Andrzej Siewior2019-04-101-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | After changing the argument of __raw_xsave_addr() from a mask to number Dave suggested to check if it makes sense to do the same for get_xsave_addr(). As it turns out it does. Only get_xsave_addr() needs the mask to check if the requested feature is part of what is supported/saved and then uses the number again. The shift operation is cheaper compared to fls64() (find last bit set). Also, the feature number uses less opcode space compared to the mask. :) Make the get_xsave_addr() argument a xfeature number instead of a mask and fix up its callers. Furthermore, use xfeature_nr and xfeature_mask consistently. This results in the following changes to the kvm code: feature -> xfeature_mask index -> xfeature_nr Suggested-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: kvm ML <kvm@vger.kernel.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Rik van Riel <riel@surriel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Siarhei Liakh <Siarhei.Liakh@concurrent-rt.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190403164156.19645-12-bigeasy@linutronix.de
* | Merge branch 'x86-fpu-for-linus' of ↵Linus Torvalds2019-03-081-3/+2
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fpu updates from Ingo Molnar: "Three changes: - preparatory patch for AVX state tracking that computing-cluster folks would like to use for user-space batching - but we are not happy about the related ABI yet so this is only the kernel tracking side - a cleanup for CR0 handling in do_device_not_available() - plus we removed a workaround for an ancient binutils version" * 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/fpu: Track AVX-512 usage of tasks x86/fpu: Get rid of CONFIG_AS_FXSAVEQ x86/traps: Have read_cr0() only once in the #NM handler
| * | x86/traps: Have read_cr0() only once in the #NM handlerBorislav Petkov2019-01-221-3/+2
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ... instead of twice in the code. In any case, CR0 ends up being read once anyway: 1. The CONFIG_MATH_EMULATION case does so and exits. 2. The normal case does it once too. However, read it on function entry instead to make the code even simpler to follow. No functional changes. Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Andy Lutomirski <luto@kernel.org> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: x86@kernel.org Link: https://lkml.kernel.org/r/20190117120728.3811-1-bp@alien8.de
* / x86/kprobes: Prohibit probing on functions before kprobe_int3_handler()Masami Hiramatsu2019-02-131-0/+1
|/ | | | | | | | | | | | | | | | | | | | | | | Prohibit probing on the functions called before kprobe_int3_handler() in do_int3(). More specifically, ftrace_int3_handler(), poke_int3_handler(), and ist_enter(). And since rcu_nmi_enter() is called by ist_enter(), it also should be marked as NOKPROBE_SYMBOL. Since those are handled before kprobe_int3_handler(), probing those functions can cause a breakpoint recursion and crash the kernel. Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrea Righi <righi.andrea@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/154998793571.31052.11301258949601150994.stgit@devbox Signed-off-by: Ingo Molnar <mingo@kernel.org>
* x86/traps: Use format string with panic() callRasmus Villemoes2018-10-291-1/+1
| | | | | | | | | | | | | | | | | | | | Building with -Wformat-nonliteral gives: arch/x86/kernel/traps.c:334:2: warning: format not a string literal and no format arguments [-Wformat-nonliteral] panic(message); handle_stack_overflow() can only be called from two places (kernel/traps.c and via inline asm in mm/fault.c), in both cases with a string not containing format specifiers, so we might as well silence this warning using "%s" as a format string. Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20181026222004.14193-1-linux@rasmusvillemoes.dk Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Merge branch 'siginfo-linus' of ↵Linus Torvalds2018-10-241-105/+71
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull siginfo updates from Eric Biederman: "I have been slowly sorting out siginfo and this is the culmination of that work. The primary result is in several ways the signal infrastructure has been made less error prone. The code has been updated so that manually specifying SEND_SIG_FORCED is never necessary. The conversion to the new siginfo sending functions is now complete, which makes it difficult to send a signal without filling in the proper siginfo fields. At the tail end of the patchset comes the optimization of decreasing the size of struct siginfo in the kernel from 128 bytes to about 48 bytes on 64bit. The fundamental observation that enables this is by definition none of the known ways to use struct siginfo uses the extra bytes. This comes at the cost of a small user space observable difference. For the rare case of siginfo being injected into the kernel only what can be copied into kernel_siginfo is delivered to the destination, the rest of the bytes are set to 0. For cases where the signal and the si_code are known this is safe, because we know those bytes are not used. For cases where the signal and si_code combination is unknown the bits that won't fit into struct kernel_siginfo are tested to verify they are zero, and the send fails if they are not. I made an extensive search through userspace code and I could not find anything that would break because of the above change. If it turns out I did break something it will take just the revert of a single change to restore kernel_siginfo to the same size as userspace siginfo. Testing did reveal dependencies on preferring the signo passed to sigqueueinfo over si->signo, so bit the bullet and added the complexity necessary to handle that case. Testing also revealed bad things can happen if a negative signal number is passed into the system calls. Something no sane application will do but something a malicious program or a fuzzer might do. So I have fixed the code that performs the bounds checks to ensure negative signal numbers are handled" * 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (80 commits) signal: Guard against negative signal numbers in copy_siginfo_from_user32 signal: Guard against negative signal numbers in copy_siginfo_from_user signal: In sigqueueinfo prefer sig not si_signo signal: Use a smaller struct siginfo in the kernel signal: Distinguish between kernel_siginfo and siginfo signal: Introduce copy_siginfo_from_user and use it's return value signal: Remove the need for __ARCH_SI_PREABLE_SIZE and SI_PAD_SIZE signal: Fail sigqueueinfo if si_signo != sig signal/sparc: Move EMT_TAGOVF into the generic siginfo.h signal/unicore32: Use force_sig_fault where appropriate signal/unicore32: Generate siginfo in ucs32_notify_die signal/unicore32: Use send_sig_fault where appropriate signal/arc: Use force_sig_fault where appropriate signal/arc: Push siginfo generation into unhandled_exception signal/ia64: Use force_sig_fault where appropriate signal/ia64: Use the force_sig(SIGSEGV,...) in ia64_rt_sigreturn signal/ia64: Use the generic force_sigsegv in setup_frame signal/arm/kvm: Use send_sig_mceerr signal/arm: Use send_sig_fault where appropriate signal/arm: Use force_sig_fault where appropriate ...
| * signal/x86: Use force_sig_fault where appropriateEric W. Biederman2018-09-211-9/+5
| | | | | | | | | | Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * signal/x86/traps: Simplify trap generationEric W. Biederman2018-09-211-61/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Update the DO_ERROR macro to take si_code and si_addr values for a siginfo, removing the need for the fill_trap_info function. Update do_trap to also take the sicode and si_addr values for a sigininfo and modify the code to call force_sig when a sicode is not passed in and to call force_sig_fault when all of the information is present. Making this a more obvious, simpler and less error prone construction. Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * signal/x86/traps: Use force_sig instead of open coding it.Eric W. Biederman2018-09-211-1/+1
| | | | | | | | | | | | | | | | | | | | The function "force_sig(sig, tsk)" is equivalent to " force_sig_info(sig, SEND_SIG_PRIV, tsk)". Using the siginfo variants can be error prone so use the simpler old fashioned force_sig variant, and with luck the force_sig_info variant can go away. Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * signal/x86/traps: Use force_sig_bnderrEric W. Biederman2018-09-211-10/+9
| | | | | | | | | | | | | | | | | | | | | | Instead of generating the siginfo in x86 specific code use the new helper function force_sig_bnderr to separate the concerns of collecting the information and generating a proper siginfo. Making the code easier to understand and maintain. Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * signal/x86/traps: Move more code into do_trap_no_signal so it can be reusedEric W. Biederman2018-09-211-16/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The function do_trap_no_signal embodies almost all of the work of the function do_trap. The exceptions are setting of thread.error_code and thread.trap_nr in the case when the signal will be sent, and reporting which signal will be sent with show_signal. Filling in struct siginfo and then calling do_trap is problematic as filling in struct siginfo is an fiddly process that can through inattention has resulted in fields not initialized and the wrong fields being filled in. To avoid this error prone situation I am replacing force_sig_info with a set of functions that take as arguments the information needed to send a specific kind of signal. The function do_trap is called in the context of several different kinds of signals today. Having a solid do_trap_no_signal that can be reused allows call sites that send different kinds of signals to reuse all of the code in do_trap_no_signal. Modify do_trap_no_signal to have a single exit there signals where be sent (aka returning -1) to allow more of the signal sending path to be moved to from do_trap to do_trap_no_signal. Move setting thread.trap_nr and thread.error_code into do_trap_no_signal so the code does not need to be duplicated. Make the type of the string that is passed into do_trap_no_signal to const. The only user of that str is die and it already takes a const string, so this just makes it explicit that the string won't change. All of this prepares the way for using do_trap_no_signal outside of do_trap. Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * signal/x86/traps: Factor out show_signalEric W. Biederman2018-09-191-18/+19
| | | | | | | | | | | | | | | | | | The code for conditionally printing unhanded signals is duplicated twice in arch/x86/kernel/traps.c. Factor it out into it's own subroutine called show_signal to make the code clearer and easier to maintain. Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * signal/x86: Move mpx siginfo generation into do_boundsEric W. Biederman2018-09-191-5/+14
| | | | | | | | | | | | | | | | This separates the logic of generating the signal from the logic of gathering the information about the bounds violation. Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
* | Merge branch 'x86-pti-for-linus' of ↵Linus Torvalds2018-10-231-0/+4
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 pti updates from Ingo Molnar: "The main changes: - Make the IBPB barrier more strict and add STIBP support (Jiri Kosina) - Micro-optimize and clean up the entry code (Andy Lutomirski) - ... plus misc other fixes" * 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/speculation: Propagate information about RSB filling mitigation to sysfs x86/speculation: Enable cross-hyperthread spectre v2 STIBP mitigation x86/speculation: Apply IBPB more strictly to avoid cross-process data leak x86/speculation: Add RETPOLINE_AMD support to the inline asm CALL_NOSPEC variant x86/CPU: Fix unused variable warning when !CONFIG_IA32_EMULATION x86/pti/64: Remove the SYSCALL64 entry trampoline x86/entry/64: Use the TSS sp2 slot for SYSCALL/SYSRET scratch space x86/entry/64: Document idtentry
| * | x86/entry/64: Document idtentryAndy Lutomirski2018-09-081-0/+4
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The idtentry macro is complicated and magical. Document what it does to help future readers and to allow future patches to adjust the code and docs at the same time. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/6e56c3ad94879e41afe345750bc28ccc0e820ea8.1536015544.git.luto@kernel.org
* | x86/fault: Plumb error code and fault address through to fault handlersJann Horn2018-09-031-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is preparation for looking at trap number and fault address in the handlers for uaccess errors. No functional change. Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: kernel-hardening@lists.openwall.com Cc: linux-kernel@vger.kernel.org Cc: dvyukov@google.com Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: "Naveen N. Rao" <naveen.n.rao@linux.vnet.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Cc: Borislav Petkov <bp@alien8.de> Link: https://lkml.kernel.org/r/20180828201421.157735-6-jannh@google.com
* | x86/kprobes: Inline kprobe_exceptions_notify() into do_general_protection()Jann Horn2018-09-031-0/+10
|/ | | | | | | | | | | | | | | | | | | | | | The opaque plumbing of #GP from do_general_protection() through notify_die() into kprobe_exceptions_notify() makes it hard to understand what's going on. Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Kees Cook <keescook@chromium.org> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Cc: kernel-hardening@lists.openwall.com Cc: dvyukov@google.com Cc: "Naveen N. Rao" <naveen.n.rao@linux.vnet.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: linux-fsdevel@vger.kernel.org Cc: Borislav Petkov <bp@alien8.de> Link: https://lkml.kernel.org/r/20180828201421.157735-3-jannh@google.com
* Merge branch 'linus' into x86/urgentThomas Gleixner2018-06-221-0/+3
|\ | | | | | | Required to queue a dependent fix.
| * signal: Ensure every siginfo we send has all bits initializedEric W. Biederman2018-04-251-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Call clear_siginfo to ensure every stack allocated siginfo is properly initialized before being passed to the signal sending functions. Note: It is not safe to depend on C initializers to initialize struct siginfo on the stack because C is allowed to skip holes when initializing a structure. The initialization of struct siginfo in tracehook_report_syscall_exit was moved from the helper user_single_step_siginfo into tracehook_report_syscall_exit itself, to make it clear that the local variable siginfo gets fully initialized. In a few cases the scope of struct siginfo has been reduced to make it clear that siginfo siginfo is not used on other paths in the function in which it is declared. Instances of using memset to initialize siginfo have been replaced with calls clear_siginfo for clarity. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
* | x86: Call fixup_exception() before notify_die() in math_error()Siarhei Liakh2018-06-201-6/+8
|/ | | | | | | | | | | | | | | | | | | | fpu__drop() has an explicit fwait which under some conditions can trigger a fixable FPU exception while in kernel. Thus, we should attempt to fixup the exception first, and only call notify_die() if the fixup failed just like in do_general_protection(). The original call sequence incorrectly triggers KDB entry on debug kernels under particular FPU-intensive workloads. Andy noted, that this makes the whole conditional irq enable thing even more inconsistent, but fixing that it outside the scope of this. Signed-off-by: Siarhei Liakh <siarhei.liakh@concurrent-rt.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Andy Lutomirski <luto@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Borislav Petkov" <bpetkov@suse.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/DM5PR11MB201156F1CAB2592B07C79A03B17D0@DM5PR11MB2011.namprd11.prod.outlook.com
* x86/entry/64: Don't use IST entry for #BP stackAndy Lutomirski2018-03-231-7/+8
| | | | | | | | | | | | | | | There's nothing IST-worthy about #BP/int3. We don't allow kprobes in the small handful of places in the kernel that run at CPL0 with an invalid stack, and 32-bit kernels have used normal interrupt gates for #BP forever. Furthermore, we don't allow kprobes in places that have usergs while in kernel mode, so "paranoid" is also unnecessary. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org
* x86/debug: Use UD2 for WARN()Peter Zijlstra2018-02-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | Since the Intel SDM added an ModR/M byte to UD0 and binutils followed that specification, we now cannot disassemble our kernel anymore. This now means Intel and AMD disagree on the encoding of UD0. And instead of playing games with additional bytes that are valid ModR/M and single byte instructions (0xd6 for instance), simply use UD2 for both WARN() and BUG(). Requested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180208194406.GD25181@hirez.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Merge branch 'x86/urgent' of ↵Linus Torvalds2017-12-311-1/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Thomas Gleixner: "A couple of fixlets for x86: - Fix the ESPFIX double fault handling for 5-level pagetables - Fix the commandline parsing for 'apic=' on 32bit systems and update documentation - Make zombie stack traces reliable - Fix kexec with stack canary - Fix the delivery mode for APICs which was missed when the x86 vector management was converted to single target delivery. Caused a regression due to the broken hardware which ignores affinity settings in lowest prio delivery mode. - Unbreak modules when AMD memory encryption is enabled - Remove an unused parameter of prepare_switch_to" * 'x86/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/apic: Switch all APICs to Fixed delivery mode x86/apic: Update the 'apic=' description of setting APIC driver x86/apic: Avoid wrong warning when parsing 'apic=' in X86-32 case x86-32: Fix kexec with stack canary (CONFIG_CC_STACKPROTECTOR) x86: Remove unused parameter of prepare_switch_to x86/stacktrace: Make zombie stack traces reliable x86/mm: Unbreak modules that use the DMA API x86/build: Make isoimage work on Debian x86/espfix/64: Fix espfix double-fault handling on 5-level systems
| * x86/espfix/64: Fix espfix double-fault handling on 5-level systemsAndy Lutomirski2017-12-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Using PGDIR_SHIFT to identify espfix64 addresses on 5-level systems was wrong, and it resulted in panics due to unhandled double faults. Use P4D_SHIFT instead, which is correct on 4-level and 5-level machines. This fixes a panic when running x86 selftests on 5-level machines. Signed-off-by: Andy Lutomirski <luto@kernel.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Kees Cook <keescook@chromium.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Fixes: 1d33b219563f ("x86/espfix: Add support for 5-level paging") Link: http://lkml.kernel.org/r/24c898b4f44fdf8c22d93703850fb384ef87cfdc.1513035461.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
* | Merge branch 'x86-pti-for-linus' of ↵Linus Torvalds2017-12-231-2/+4
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 PTI preparatory patches from Thomas Gleixner: "Todays Advent calendar window contains twentyfour easy to digest patches. The original plan was to have twenty three matching the date, but a late fixup made that moot. - Move the cpu_entry_area mapping out of the fixmap into a separate address space. That's necessary because the fixmap becomes too big with NRCPUS=8192 and this caused already subtle and hard to diagnose failures. The top most patch is fresh from today and cures a brain slip of that tall grumpy german greybeard, who ignored the intricacies of 32bit wraparounds. - Limit the number of CPUs on 32bit to 64. That's insane big already, but at least it's small enough to prevent address space issues with the cpu_entry_area map, which have been observed and debugged with the fixmap code - A few TLB flush fixes in various places plus documentation which of the TLB functions should be used for what. - Rename the SYSENTER stack to CPU_ENTRY_AREA stack as it is used for more than sysenter now and keeping the name makes backtraces confusing. - Prevent LDT inheritance on exec() by moving it to arch_dup_mmap(), which is only invoked on fork(). - Make vysycall more robust. - A few fixes and cleanups of the debug_pagetables code. Check PAGE_PRESENT instead of checking the PTE for 0 and a cleanup of the C89 initialization of the address hint array which already was out of sync with the index enums. - Move the ESPFIX init to a different place to prepare for PTI. - Several code moves with no functional change to make PTI integration simpler and header files less convoluted. - Documentation fixes and clarifications" * 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits) x86/cpu_entry_area: Prevent wraparound in setup_cpu_entry_area_ptes() on 32bit init: Invoke init_espfix_bsp() from mm_init() x86/cpu_entry_area: Move it out of the fixmap x86/cpu_entry_area: Move it to a separate unit x86/mm: Create asm/invpcid.h x86/mm: Put MMU to hardware ASID translation in one place x86/mm: Remove hard-coded ASID limit checks x86/mm: Move the CR3 construction functions to tlbflush.h x86/mm: Add comments to clarify which TLB-flush functions are supposed to flush what x86/mm: Remove superfluous barriers x86/mm: Use __flush_tlb_one() for kernel memory x86/microcode: Dont abuse the TLB-flush interface x86/uv: Use the right TLB-flush API x86/entry: Rename SYSENTER_stack to CPU_ENTRY_AREA_entry_stack x86/doc: Remove obvious weirdnesses from the x86 MM layout documentation x86/mm/64: Improve the memory map documentation x86/ldt: Prevent LDT inheritance on exec x86/ldt: Rework locking arch, mm: Allow arch_dup_mmap() to fail x86/vsyscall/64: Warn and fail vsyscall emulation in NATIVE mode ...
| * | x86/cpu_entry_area: Move it out of the fixmapThomas Gleixner2017-12-221-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Put the cpu_entry_area into a separate P4D entry. The fixmap gets too big and 0-day already hit a case where the fixmap PTEs were cleared by cleanup_highmap(). Aside of that the fixmap API is a pain as it's all backwards. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | x86/cpu_entry_area: Move it to a separate unitThomas Gleixner2017-12-221-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Separate the cpu_entry_area code out of cpu/common.c and the fixmap. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org>
* | | Merge branch 'WIP.x86-pti.entry-for-linus' of ↵Linus Torvalds2017-12-181-27/+42
|\| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 syscall entry code changes for PTI from Ingo Molnar: "The main changes here are Andy Lutomirski's changes to switch the x86-64 entry code to use the 'per CPU entry trampoline stack'. This, besides helping fix KASLR leaks (the pending Page Table Isolation (PTI) work), also robustifies the x86 entry code" * 'WIP.x86-pti.entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits) x86/cpufeatures: Make CPU bugs sticky x86/paravirt: Provide a way to check for hypervisors x86/paravirt: Dont patch flush_tlb_single x86/entry/64: Make cpu_entry_area.tss read-only x86/entry: Clean up the SYSENTER_stack code x86/entry/64: Remove the SYSENTER stack canary x86/entry/64: Move the IST stacks into struct cpu_entry_area x86/entry/64: Create a per-CPU SYSCALL entry trampoline x86/entry/64: Return to userspace from the trampoline stack x86/entry/64: Use a per-CPU trampoline stack for IDT entries x86/espfix/64: Stop assuming that pt_regs is on the entry stack x86/entry/64: Separate cpu_current_top_of_stack from TSS.sp0 x86/entry: Remap the TSS into the CPU entry area x86/entry: Move SYSENTER_stack to the beginning of struct tss_struct x86/dumpstack: Handle stack overflow on all stacks x86/entry: Fix assumptions that the HW TSS is at the beginning of cpu_tss x86/kasan/64: Teach KASAN about the cpu_entry_area x86/mm/fixmap: Generalize the GDT fixmap mechanism, introduce struct cpu_entry_area x86/entry/gdt: Put per-CPU GDT remaps in ascending order x86/dumpstack: Add get_stack_info() support for the SYSENTER stack ...
| * | x86/entry/64: Make cpu_entry_area.tss read-onlyAndy Lutomirski2017-12-171-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The TSS is a fairly juicy target for exploits, and, now that the TSS is in the cpu_entry_area, it's no longer protected by kASLR. Make it read-only on x86_64. On x86_32, it can't be RO because it's written by the CPU during task switches, and we use a task gate for double faults. I'd also be nervous about errata if we tried to make it RO even on configurations without double fault handling. [ tglx: AMD confirmed that there is no problem on 64-bit with TSS RO. So it's probably safe to assume that it's a non issue, though Intel might have been creative in that area. Still waiting for confirmation. ] Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bpetkov@suse.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Link: https://lkml.kernel.org/r/20171204150606.733700132@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | x86/entry/64: Remove the SYSENTER stack canaryAndy Lutomirski2017-12-171-7/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that the SYSENTER stack has a guard page, there's no need for a canary to detect overflow after the fact. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Link: https://lkml.kernel.org/r/20171204150606.572577316@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | x86/entry/64: Move the IST stacks into struct cpu_entry_areaAndy Lutomirski2017-12-171-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The IST stacks are needed when an IST exception occurs and are accessed before any kernel code at all runs. Move them into struct cpu_entry_area. The IST stacks are unlike the rest of cpu_entry_area: they're used even for entries from kernel mode. This means that they should be set up before we load the final IDT. Move cpu_entry_area setup to trap_init() for the boot CPU and set it up for all possible CPUs at once in native_smp_prepare_cpus(). Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Link: https://lkml.kernel.org/r/20171204150606.480598743@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | x86/entry/64: Use a per-CPU trampoline stack for IDT entriesAndy Lutomirski2017-12-171-10/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Historically, IDT entries from usermode have always gone directly to the running task's kernel stack. Rearrange it so that we enter on a per-CPU trampoline stack and then manually switch to the task's stack. This touches a couple of extra cachelines, but it gives us a chance to run some code before we touch the kernel stack. The asm isn't exactly beautiful, but I think that fully refactoring it can wait. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Link: https://lkml.kernel.org/r/20171204150606.225330557@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | x86/espfix/64: Stop assuming that pt_regs is on the entry stackAndy Lutomirski2017-12-171-9/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When we start using an entry trampoline, a #GP from userspace will be delivered on the entry stack, not on the task stack. Fix the espfix64 #DF fixup to set up #GP according to TSS.SP0, rather than assuming that pt_regs + 1 == SP0. This won't change anything without an entry stack, but it will make the code continue to work when an entry stack is added. While we're at it, improve the comments to explain what's actually going on. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Link: https://lkml.kernel.org/r/20171204150606.130778051@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | x86/entry/64: Allocate and enable the SYSENTER stackAndy Lutomirski2017-12-171-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This will simplify future changes that want scratch variables early in the SYSENTER handler -- they'll be able to spill registers to the stack. It also lets us get rid of a SWAPGS_UNSAFE_STACK user. This does not depend on CONFIG_IA32_EMULATION=y because we'll want the stack space even without IA32 emulation. As far as I can tell, the reason that this wasn't done from day 1 is that we use IST for #DB and #BP, which is IMO rather nasty and causes a lot more problems than it solves. But, since #DB uses IST, we don't actually need a real stack for SYSENTER (because SYSENTER with TF set will invoke #DB on the IST stack rather than the SYSENTER stack). I want to remove IST usage from these vectors some day, and this patch is a prerequisite for that as well. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Laight <David.Laight@aculab.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eduardo Valentin <eduval@amazon.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: aliguori@amazon.com Cc: daniel.gruss@iaik.tugraz.at Cc: hughd@google.com Cc: keescook@google.com Link: https://lkml.kernel.org/r/20171204150605.312726423@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | Merge commit 'upstream-x86-entry' into WIP.x86/mmIngo Molnar2017-12-171-2/+1
| |\ \ | | | | | | | | | | | | | | | | | | | | Pull in a minimal set of v4.15 entry code changes, for a base for the MM isolation patches. Signed-off-by: Ingo Molnar <mingo@kernel.org>
* | | | kmemcheck: remove annotationsLevin, Alexander (Sasha Levin)2017-11-161-5/+0
| |_|/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "kmemcheck: kill kmemcheck", v2. As discussed at LSF/MM, kill kmemcheck. KASan is a replacement that is able to work without the limitation of kmemcheck (single CPU, slow). KASan is already upstream. We are also not aware of any users of kmemcheck (or users who don't consider KASan as a suitable replacement). The only objection was that since KASAN wasn't supported by all GCC versions provided by distros at that time we should hold off for 2 years, and try again. Now that 2 years have passed, and all distros provide gcc that supports KASAN, kill kmemcheck again for the very same reasons. This patch (of 4): Remove kmemcheck annotations, and calls to kmemcheck from the kernel. [alexander.levin@verizon.com: correctly remove kmemcheck call from dma_map_sg_attrs] Link: http://lkml.kernel.org/r/20171012192151.26531-1-alexander.levin@verizon.com Link: http://lkml.kernel.org/r/20171007030159.22241-2-alexander.levin@verizon.com Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Cc: Alexander Potapenko <glider@google.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Tim Hansen <devtimhansen@gmail.com> Cc: Vegard Nossum <vegardno@ifi.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | Merge branch 'x86-apic-for-linus' of ↵Linus Torvalds2017-11-141-1/+1
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 APIC updates from Thomas Gleixner: "This update provides a major overhaul of the APIC initialization and vector allocation code: - Unification of the APIC and interrupt mode setup which was scattered all over the place and was hard to follow. This also distangles the timer setup from the APIC initialization which brings a clear separation of functionality. Great detective work from Dou Lyiang! - Refactoring of the x86 vector allocation mechanism. The existing code was based on nested loops and rather convoluted APIC callbacks which had a horrible worst case behaviour and tried to serve all different use cases in one go. This led to quite odd hacks when supporting the new managed interupt facility for multiqueue devices and made it more or less impossible to deal with the vector space exhaustion which was a major roadblock for server hibernation. Aside of that the code dealing with cpu hotplug and the system vectors was disconnected from the actual vector management and allocation code, which made it hard to follow and maintain. Utilizing the new bitmap matrix allocator core mechanism, the new allocator and management code consolidates the handling of system vectors, legacy vectors, cpu hotplug mechanisms and the actual allocation which needs to be aware of system and legacy vectors and hotplug constraints into a single consistent entity. This has one visible change: The support for multi CPU targets of interrupts, which is only available on a certain subset of CPUs/APIC variants has been removed in favour of single interrupt targets. A proper analysis of the multi CPU target feature revealed that there is no real advantage as the vast majority of interrupts end up on the CPU with the lowest APIC id in the set of target CPUs anyway. That change was agreed on by the relevant folks and allowed to simplify the implementation significantly and to replace rather fragile constructs like the vector cleanup IPI with straight forward and solid code. Furthermore this allowed to cleanly separate the allocation details for legacy, normal and managed interrupts: * Legacy interrupts are not longer wasting 16 vectors unconditionally * Managed interrupts have now a guaranteed vector reservation, but the actual vector assignment happens when the interrupt is requested. It's guaranteed not to fail. * Normal interrupts no longer allocate vectors unconditionally when the interrupt is set up (IO/APIC init or MSI(X) enable). The mechanism has been switched to a best effort reservation mode. The actual allocation happens when the interrupt is requested. Contrary to managed interrupts the request can fail due to vector space exhaustion, but drivers must handle a fail of request_irq() anyway. When the interrupt is freed, the vector is handed back as well. This solves a long standing problem with large unconditional vector allocations for a certain class of enterprise devices which prevented server hibernation due to vector space exhaustion when the unused allocated vectors had to be migrated to CPU0 while unplugging all non boot CPUs. The code has been equipped with trace points and detailed debugfs information to aid analysis of the vector space" * 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits) x86/vector/msi: Select CONFIG_GENERIC_IRQ_RESERVATION_MODE PCI/MSI: Set MSI_FLAG_MUST_REACTIVATE in core code genirq: Add config option for reservation mode x86/vector: Use correct per cpu variable in free_moved_vector() x86/apic/vector: Ignore set_affinity call for inactive interrupts x86/apic: Fix spelling mistake: "symmectic" -> "symmetric" x86/apic: Use dead_cpu instead of current CPU when cleaning up ACPI/init: Invoke early ACPI initialization earlier x86/vector: Respect affinity mask in irq descriptor x86/irq: Simplify hotplug vector accounting x86/vector: Switch IOAPIC to global reservation mode x86/vector/msi: Switch to global reservation mode x86/vector: Handle managed interrupts proper x86/io_apic: Reevaluate vector configuration on activate() iommu/amd: Reevaluate vector configuration on activate() iommu/vt-d: Reevaluate vector configuration on activate() x86/apic/msi: Force reactivation of interrupts at startup time x86/vector: Untangle internal state from irq_cfg x86/vector: Compile SMP only code conditionally x86/apic: Remove unused callbacks ...
| * \ \ Merge branch 'irq/urgent' into x86/apicThomas Gleixner2017-10-121-1/+1
| |\ \ \ | | | | | | | | | | | | | | | Pick up core changes which affect the vector rework.
| * | | | x86/vector: Rename used_vectors to system_vectorsThomas Gleixner2017-09-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | used_vectors is a nisnomer as it only has the system vectors which are excluded from the regular vector allocation marked. It's not what the name suggests storage for the actually used vectors. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Juergen Gross <jgross@suse.com> Tested-by: Yu Chen <yu.c.chen@intel.com> Acked-by: Juergen Gross <jgross@suse.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Alok Kataria <akataria@vmware.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rui Zhang <rui.zhang@intel.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Len Brown <lenb@kernel.org> Link: https://lkml.kernel.org/r/20170913213154.150209009@linutronix.de
* | | | | Merge branch 'x86-asm-for-linus' of ↵Linus Torvalds2017-11-131-2/+7
|\ \ \ \ \ | |_|_|/ / |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 core updates from Ingo Molnar: "Note that in this cycle most of the x86 topics interacted at a level that caused them to be merged into tip:x86/asm - but this should be a temporary phenomenon, hopefully we'll back to the usual patterns in the next merge window. The main changes in this cycle were: Hardware enablement: - Add support for the Intel UMIP (User Mode Instruction Prevention) CPU feature. This is a security feature that disables certain instructions such as SGDT, SLDT, SIDT, SMSW and STR. (Ricardo Neri) [ Note that this is disabled by default for now, there are some smaller enhancements in the pipeline that I'll follow up with in the next 1-2 days, which allows this to be enabled by default.] - Add support for the AMD SEV (Secure Encrypted Virtualization) CPU feature, on top of SME (Secure Memory Encryption) support that was added in v4.14. (Tom Lendacky, Brijesh Singh) - Enable new SSE/AVX/AVX512 CPU features: AVX512_VBMI2, GFNI, VAES, VPCLMULQDQ, AVX512_VNNI, AVX512_BITALG. (Gayatri Kammela) Other changes: - A big series of entry code simplifications and enhancements (Andy Lutomirski) - Make the ORC unwinder default on x86 and various objtool enhancements. (Josh Poimboeuf) - 5-level paging enhancements (Kirill A. Shutemov) - Micro-optimize the entry code a bit (Borislav Petkov) - Improve the handling of interdependent CPU features in the early FPU init code (Andi Kleen) - Build system enhancements (Changbin Du, Masahiro Yamada) - ... plus misc enhancements, fixes and cleanups" * 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (118 commits) x86/build: Make the boot image generation less verbose selftests/x86: Add tests for the STR and SLDT instructions selftests/x86: Add tests for User-Mode Instruction Prevention x86/traps: Fix up general protection faults caused by UMIP x86/umip: Enable User-Mode Instruction Prevention at runtime x86/umip: Force a page fault when unable to copy emulated result to user x86/umip: Add emulation code for UMIP instructions x86/cpufeature: Add User-Mode Instruction Prevention definitions x86/insn-eval: Add support to resolve 16-bit address encodings x86/insn-eval: Handle 32-bit address encodings in virtual-8086 mode x86/insn-eval: Add wrapper function for 32 and 64-bit addresses x86/insn-eval: Add support to resolve 32-bit address encodings x86/insn-eval: Compute linear address in several utility functions resource: Fix resource_size.cocci warnings X86/KVM: Clear encryption attribute when SEV is active X86/KVM: Decrypt shared per-cpu variables when SEV is active percpu: Introduce DEFINE_PER_CPU_DECRYPTED x86: Add support for changing memory encryption attribute in early boot x86/io: Unroll string I/O when SEV is active x86/boot: Add early boot support when running with SEV active ...
| * | | | x86/traps: Fix up general protection faults caused by UMIPRicardo Neri2017-11-081-0/+6
| | |_|/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If the User-Mode Instruction Prevention CPU feature is available and enabled, a general protection fault will be issued if the instructions sgdt, sldt, sidt, str or smsw are executed from user-mode context (CPL > 0). If the fault was caused by any of the instructions protected by UMIP, fixup_umip_exception() will emulate dummy results for these instructions as follows: in virtual-8086 and protected modes, sgdt, sidt and smsw are emulated; str and sldt are not emulated. No emulation is done for user-space long mode processes. If emulation is successful, the emulated result is passed to the user space program and no SIGSEGV signal is emitted. Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Andy Lutomirski <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Chen Yucong <slaoub@gmail.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Huang Rui <ray.huang@amd.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ravi V. Shankar <ravi.v.shankar@intel.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Tony Luck <tony.luck@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: ricardo.neri@intel.com Link: http://lkml.kernel.org/r/1509935277-22138-11-git-send-email-ricardo.neri-calderon@linux.intel.com [ Added curly braces. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * | | x86/traps: Use a new on_thread_stack() helper to clean up an assertionAndy Lutomirski2017-11-021-2/+1
| | |/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Let's keep the stack-related logic together rather than open-coding a comparison in an assertion in the traps code. Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/856b15bee1f55017b8f79d3758b0d51c48a08cf8.1509609304.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
* / | x86/debug: Handle warnings before the notifier chain, to fix KGDB crashAlexander Shishkin2017-11-101-3/+7
|/ / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit: 9a93848fe787 ("x86/debug: Implement __WARN() using UD0") turned warnings into UD0, but the fixup code only runs after the notify_die() chain. This is a problem, in particular, with kgdb, which kicks in as if it was a BUG(). Fix this by running the fixup code before the notifier chain in the invalid op handler path. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Tested-by: Ilya Dryomov <idryomov@gmail.com> Acked-by: Daniel Thompson <daniel.thompson@linaro.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Jason Wessel <jason.wessel@windriver.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Weinberger <richard.weinberger@gmail.com> Cc: <stable@vger.kernel.org> # v4.12+ Link: http://lkml.kernel.org/r/20170724100428.19173-1-alexander.shishkin@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* / x86/asm: Use register variable to get stack pointer valueAndrey Ryabinin2017-09-291-1/+1
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently we use current_stack_pointer() function to get the value of the stack pointer register. Since commit: f5caf621ee35 ("x86/asm: Fix inline asm call constraints for Clang") ... we have a stack register variable declared. It can be used instead of current_stack_pointer() function which allows to optimize away some excessive "mov %rsp, %<dst>" instructions: -mov %rsp,%rdx -sub %rdx,%rax -cmp $0x3fff,%rax -ja ffffffff810722fd <ist_begin_non_atomic+0x2d> +sub %rsp,%rax +cmp $0x3fff,%rax +ja ffffffff810722fa <ist_begin_non_atomic+0x2a> Remove current_stack_pointer(), rename __asm_call_sp to current_stack_pointer and use it instead of the removed function. Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170929141537.29167-1-aryabinin@virtuozzo.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* x86/idt: Move regular trap init to tablesThomas Gleixner2017-08-291-40/+1
| | | | | | | | | | | | | | | | | Initialize the regular traps with a table. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20170828064959.182128165@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
* x86/idt: Move IST stack based traps to table initThomas Gleixner2017-08-291-8/+1
| | | | | | | | | | | | | | | | | Initialize the IST based traps via a table. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20170828064959.091328949@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
* x86/idt: Move debug stack init to table basedThomas Gleixner2017-08-291-5/+1
| | | | | | | | | | | | | | | | | Add the debug_idt init table and make use of it. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Link: http://lkml.kernel.org/r/20170828064959.006502252@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>