| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
Find all ENDBR instructions which are never referenced and stick them
in a section such that the kernel can poison them, sealing the
functions from ever being an indirect call target.
This removes about 1-in-4 ENDBR instructions.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20220308154319.763643193@infradead.org
|
|
|
|
|
|
|
|
| |
No moar users, kill it dead.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20211110101326.201590122@infradead.org
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of writing complete alternatives, simply provide a list of all
the retpoline thunk calls. Then the kernel is free to do with them as
it pleases. Simpler code all-round.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211026120309.850007165@infradead.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit
b4e0409a36f4 ("x86: check vmlinux limits, 64-bit")
added a check that the size of the 64-bit kernel is less than
KERNEL_IMAGE_SIZE.
The check uses (_end - _text), but this is not enough. The initial
PMD used in startup_64() (level2_kernel_pgt) can only map upto
KERNEL_IMAGE_SIZE from __START_KERNEL_map, not from _text, and the
modules area (MODULES_VADDR) starts at KERNEL_IMAGE_SIZE.
The correct check is what is currently done for 32-bit, since
LOAD_OFFSET is defined appropriately for the two architectures. Just
check (_end - LOAD_OFFSET) against KERNEL_IMAGE_SIZE unconditionally.
Note that on 32-bit, the limit is not strict: KERNEL_IMAGE_SIZE is not
really used by the main kernel. The higher the kernel is located, the
less the space available for the vmalloc area. However, it is used by
KASLR in the compressed stub to limit the maximum address of the kernel
to a safe value.
Clean up various comments to clarify that despite the name,
KERNEL_IMAGE_SIZE is not a limit on the size of the kernel image, but a
limit on the maximum virtual address that the image can occupy.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201029161903.2553528-1-nivedita@alum.mit.edu
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull static call support from Ingo Molnar:
"This introduces static_call(), which is the idea of static_branch()
applied to indirect function calls. Remove a data load (indirection)
by modifying the text.
They give the flexibility of function pointers, but with better
performance. (This is especially important for cases where retpolines
would otherwise be used, as retpolines can be pretty slow.)
API overview:
DECLARE_STATIC_CALL(name, func);
DEFINE_STATIC_CALL(name, func);
DEFINE_STATIC_CALL_NULL(name, typename);
static_call(name)(args...);
static_call_cond(name)(args...);
static_call_update(name, func);
x86 is supported via text patching, otherwise basic indirect calls are
used, with function pointers.
There's a second variant using inline code patching, inspired by
jump-labels, implemented on x86 as well.
The new APIs are utilized in the x86 perf code, a heavy user of
function pointers, where static calls speed up the PMU handler by
4.2% (!).
The generic implementation is not really excercised on other
architectures, outside of the trivial test_static_call_init()
self-test"
* tag 'core-static_call-2020-10-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
static_call: Fix return type of static_call_init
tracepoint: Fix out of sync data passing by static caller
tracepoint: Fix overly long tracepoint names
x86/perf, static_call: Optimize x86_pmu methods
tracepoint: Optimize using static_call()
static_call: Allow early init
static_call: Add some validation
static_call: Handle tail-calls
static_call: Add static_call_cond()
x86/alternatives: Teach text_poke_bp() to emulate RET
static_call: Add simple self-test for static calls
x86/static_call: Add inline static call implementation for x86-64
x86/static_call: Add out-of-line static call implementation
static_call: Avoid kprobes on inline static_call()s
static_call: Add inline static call infrastructure
static_call: Add basic static call infrastructure
compiler.h: Make __ADDRESSABLE() symbol truly unique
jump_label,module: Fix module lifetime for __jump_label_mod_text_reserved()
module: Properly propagate MODULE_STATE_COMING failure
module: Fix up module_notifier return values
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Add the inline static call implementation for x86-64. The generated code
is identical to the out-of-line case, except we move the trampoline into
it's own section.
Objtool uses the trampoline naming convention to detect all the call
sites. It then annotates those call sites in the .static_call_sites
section.
During boot (and module init), the call sites are patched to call
directly into the destination function. The temporary trampoline is
then no longer used.
[peterz: merged trampolines, put trampoline in section]
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20200818135804.864271425@infradead.org
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In preparation for warning on orphan sections, enforce other
expected-to-be-zero-sized sections (since discarding them might hide
problems with them suddenly gaining unexpected entries).
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200821194310.3089815-25-keescook@chromium.org
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The .got.plt section should always be zero (or filled only with the
linker-generated lazy dispatch entry). Enforce this with an assert and
mark the section as INFO. This is more sensitive than just blindly
discarding the section.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200821194310.3089815-24-keescook@chromium.org
|
|/
|
|
|
|
|
|
|
|
|
| |
The .comment section doesn't belong in STABS_DEBUG. Split it out into a
new macro named ELF_DETAILS. This will gain other non-debug sections
that need to be accounted for when linking with --orphan-handling=warn.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-arch@vger.kernel.org
Link: https://lore.kernel.org/r/20200821194310.3089815-5-keescook@chromium.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On x86-32 the idt_table with 256 entries needs only 2048 bytes. It is
page-aligned, but the end of the .bss..page_aligned section is not
guaranteed to be page-aligned.
As a result, objects from other .bss sections may end up on the same 4k
page as the idt_table, and will accidentially get mapped read-only during
boot, causing unexpected page-faults when the kernel writes to them.
This could be worked around by making the objects in the page aligned
sections page sized, but that's wrong.
Explicit sections which store only page aligned objects have an implicit
guarantee that the object is alone in the page in which it is placed. That
works for all objects except the last one. That's inconsistent.
Enforcing page sized objects for these sections would wreckage memory
sanitizers, because the object becomes artificially larger than it should
be and out of bound access becomes legit.
Align the end of the .bss..page_aligned and .data..page_aligned section on
page-size so all objects places in these sections are guaranteed to have
their own page.
[ tglx: Amended changelog ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200721093448.10417-1-joro@8bytes.org
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 entry updates from Thomas Gleixner:
"The x86 entry, exception and interrupt code rework
This all started about 6 month ago with the attempt to move the Posix
CPU timer heavy lifting out of the timer interrupt code and just have
lockless quick checks in that code path. Trivial 5 patches.
This unearthed an inconsistency in the KVM handling of task work and
the review requested to move all of this into generic code so other
architectures can share.
Valid request and solved with another 25 patches but those unearthed
inconsistencies vs. RCU and instrumentation.
Digging into this made it obvious that there are quite some
inconsistencies vs. instrumentation in general. The int3 text poke
handling in particular was completely unprotected and with the batched
update of trace events even more likely to expose to endless int3
recursion.
In parallel the RCU implications of instrumenting fragile entry code
came up in several discussions.
The conclusion of the x86 maintainer team was to go all the way and
make the protection against any form of instrumentation of fragile and
dangerous code pathes enforcable and verifiable by tooling.
A first batch of preparatory work hit mainline with commit
d5f744f9a2ac ("Pull x86 entry code updates from Thomas Gleixner")
That (almost) full solution introduced a new code section
'.noinstr.text' into which all code which needs to be protected from
instrumentation of all sorts goes into. Any call into instrumentable
code out of this section has to be annotated. objtool has support to
validate this.
Kprobes now excludes this section fully which also prevents BPF from
fiddling with it and all 'noinstr' annotated functions also keep
ftrace off. The section, kprobes and objtool changes are already
merged.
The major changes coming with this are:
- Preparatory cleanups
- Annotating of relevant functions to move them into the
noinstr.text section or enforcing inlining by marking them
__always_inline so the compiler cannot misplace or instrument
them.
- Splitting and simplifying the idtentry macro maze so that it is
now clearly separated into simple exception entries and the more
interesting ones which use interrupt stacks and have the paranoid
handling vs. CR3 and GS.
- Move quite some of the low level ASM functionality into C code:
- enter_from and exit to user space handling. The ASM code now
calls into C after doing the really necessary ASM handling and
the return path goes back out without bells and whistels in
ASM.
- exception entry/exit got the equivivalent treatment
- move all IRQ tracepoints from ASM to C so they can be placed as
appropriate which is especially important for the int3
recursion issue.
- Consolidate the declaration and definition of entry points between
32 and 64 bit. They share a common header and macros now.
- Remove the extra device interrupt entry maze and just use the
regular exception entry code.
- All ASM entry points except NMI are now generated from the shared
header file and the corresponding macros in the 32 and 64 bit
entry ASM.
- The C code entry points are consolidated as well with the help of
DEFINE_IDTENTRY*() macros. This allows to ensure at one central
point that all corresponding entry points share the same
semantics. The actual function body for most entry points is in an
instrumentable and sane state.
There are special macros for the more sensitive entry points, e.g.
INT3 and of course the nasty paranoid #NMI, #MCE, #DB and #DF.
They allow to put the whole entry instrumentation and RCU handling
into safe places instead of the previous pray that it is correct
approach.
- The INT3 text poke handling is now completely isolated and the
recursion issue banned. Aside of the entry rework this required
other isolation work, e.g. the ability to force inline bsearch.
- Prevent #DB on fragile entry code, entry relevant memory and
disable it on NMI, #MC entry, which allowed to get rid of the
nested #DB IST stack shifting hackery.
- A few other cleanups and enhancements which have been made
possible through this and already merged changes, e.g.
consolidating and further restricting the IDT code so the IDT
table becomes RO after init which removes yet another popular
attack vector
- About 680 lines of ASM maze are gone.
There are a few open issues:
- An escape out of the noinstr section in the MCE handler which needs
some more thought but under the aspect that MCE is a complete
trainwreck by design and the propability to survive it is low, this
was not high on the priority list.
- Paravirtualization
When PV is enabled then objtool complains about a bunch of indirect
calls out of the noinstr section. There are a few straight forward
ways to fix this, but the other issues vs. general correctness were
more pressing than parawitz.
- KVM
KVM is inconsistent as well. Patches have been posted, but they
have not yet been commented on or picked up by the KVM folks.
- IDLE
Pretty much the same problems can be found in the low level idle
code especially the parts where RCU stopped watching. This was
beyond the scope of the more obvious and exposable problems and is
on the todo list.
The lesson learned from this brain melting exercise to morph the
evolved code base into something which can be validated and understood
is that once again the violation of the most important engineering
principle "correctness first" has caused quite a few people to spend
valuable time on problems which could have been avoided in the first
place. The "features first" tinkering mindset really has to stop.
With that I want to say thanks to everyone involved in contributing to
this effort. Special thanks go to the following people (alphabetical
order): Alexandre Chartre, Andy Lutomirski, Borislav Petkov, Brian
Gerst, Frederic Weisbecker, Josh Poimboeuf, Juergen Gross, Lai
Jiangshan, Macro Elver, Paolo Bonzin,i Paul McKenney, Peter Zijlstra,
Vitaly Kuznetsov, and Will Deacon"
* tag 'x86-entry-2020-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (142 commits)
x86/entry: Force rcu_irq_enter() when in idle task
x86/entry: Make NMI use IDTENTRY_RAW
x86/entry: Treat BUG/WARN as NMI-like entries
x86/entry: Unbreak __irqentry_text_start/end magic
x86/entry: __always_inline CR2 for noinstr
lockdep: __always_inline more for noinstr
x86/entry: Re-order #DB handler to avoid *SAN instrumentation
x86/entry: __always_inline arch_atomic_* for noinstr
x86/entry: __always_inline irqflags for noinstr
x86/entry: __always_inline debugreg for noinstr
x86/idt: Consolidate idt functionality
x86/idt: Cleanup trap_init()
x86/idt: Use proper constants for table size
x86/idt: Add comments about early #PF handling
x86/idt: Mark init only functions __init
x86/entry: Rename trace_hardirqs_off_prepare()
x86/entry: Clarify irq_{enter,exit}_rcu()
x86/entry: Remove DBn stacks
x86/entry: Remove debug IDT frobbing
x86/entry: Optimize local_db_save() for virt
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The entry rework moved interrupt entry code from the irqentry to the
noinstr section which made the irqentry section empty.
This breaks boundary checks which rely on the __irqentry_text_start/end
markers to find out whether a function in a stack trace is
interrupt/exception entry code. This affects the function graph tracer and
filter_irq_stacks().
As the IDT entry points are all sequentialy emitted this is rather simple
to unbreak by injecting __irqentry_text_start/end as global labels.
To make this work correctly:
- Remove the IRQENTRY_TEXT section from the x86 linker script
- Define __irqentry so it breaks the build if it's used
- Adjust the entry mirroring in PTI
- Remove the redundant kprobes and unwinder bound checks
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
'jiffies' and 'jiffies_64' are meant to alias (two different symbols that
share the same address). Most architectures make the symbols alias to the
same address via a linker script assignment in their
arch/<arch>/kernel/vmlinux.lds.S:
jiffies = jiffies_64;
which is effectively a definition of jiffies.
jiffies and jiffies_64 are both forward declared for all architectures in
include/linux/jiffies.h. jiffies_64 is defined in kernel/time/timer.c.
x86_64 was peculiar in that it wasn't doing the above linker script
assignment, but rather was:
1. defining jiffies in arch/x86/kernel/time.c instead via the linker script.
2. overriding the symbol jiffies_64 from kernel/time/timer.c in
arch/x86/kernel/vmlinux.lds.s via 'jiffies_64 = jiffies;'.
As Fangrui notes:
In LLD, symbol assignments in linker scripts override definitions in
object files. GNU ld appears to have the same behavior. It would
probably make sense for LLD to error "duplicate symbol" but GNU ld
is unlikely to adopt for compatibility reasons.
This results in an ODR violation (UB), which seems to have survived
thus far. Where it becomes harmful is when;
1. -fno-semantic-interposition is used:
As Fangrui notes:
Clang after LLVM commit 5b22bcc2b70d
("[X86][ELF] Prefer to lower MC_GlobalAddress operands to .Lfoo$local")
defaults to -fno-semantic-interposition similar semantics which help
-fpic/-fPIC code avoid GOT/PLT when the referenced symbol is defined
within the same translation unit. Unlike GCC
-fno-semantic-interposition, Clang emits such relocations referencing
local symbols for non-pic code as well.
This causes references to jiffies to refer to '.Ljiffies$local' when
jiffies is defined in the same translation unit. Likewise, references to
jiffies_64 become references to '.Ljiffies_64$local' in translation units
that define jiffies_64. Because these differ from the names used in the
linker script, they will not be rewritten to alias one another.
2. Full LTO
Full LTO effectively treats all source files as one translation
unit, causing these local references to be produced everywhere. When
the linker processes the linker script, there are no longer any
references to jiffies_64' anywhere to replace with 'jiffies'. And
thus '.Ljiffies$local' and '.Ljiffies_64$local' no longer alias
at all.
In the process of porting patches enabling Full LTO from arm64 to x86_64,
spooky bugs have been observed where the kernel appeared to boot, but init
doesn't get scheduled.
Avoid the ODR violation by matching other architectures and define jiffies
only by linker script. For -fno-semantic-interposition + Full LTO, there
is no longer a global definition of jiffies for the compiler to produce a
local symbol which the linker script won't ensure aliases to jiffies_64.
Fixes: 40747ffa5aa8 ("asmlinkage: Make jiffies visible")
Reported-by: Nathan Chancellor <natechancellor@gmail.com>
Reported-by: Alistair Delva <adelva@google.com>
Debugged-by: Nick Desaulniers <ndesaulniers@google.com>
Debugged-by: Sami Tolvanen <samitolvanen@google.com>
Suggested-by: Fangrui Song <maskray@google.com>
Signed-off-by: Bob Haarman <inglorion@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # build+boot on
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: stable@vger.kernel.org
Link: https://github.com/ClangBuiltLinux/linux/issues/852
Link: https://lkml.kernel.org/r/20200602193100.229287-1-inglorion@google.com
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 build updates from Ingo Molnar:
"A handful of updates: two linker script cleanups and a stock
defconfig+allmodconfig bootability fix"
* 'x86-build-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vdso: Discard .note.gnu.property sections in vDSO
x86, vmlinux.lds: Add RUNTIME_DISCARD_EXIT to generic DISCARDS
x86/Kconfig: Make CMDLINE_OVERRIDE depend on non-empty CMDLINE
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In the x86 kernel, .exit.text and .exit.data sections are discarded at
runtime, not by the linker. Add RUNTIME_DISCARD_EXIT to generic DISCARDS
and define it in the x86 kernel linker script to keep them.
The sections are added before the DISCARD directive so document here
only the situation explicitly as this change doesn't have any effect on
the generated kernel. Also, other architectures like ARM64 will use it
too so generalize the approach with the RUNTIME_DISCARD_EXIT define.
[ bp: Massage and extend commit message. ]
Signed-off-by: H.J. Lu <hjl.tools@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20200326193021.255002-1-hjl.tools@gmail.com
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that .eh_frame sections for the files in setup.elf and realmode.elf
are not generated anymore, the linker scripts don't need the special
output section name /DISCARD/ any more.
Remove the one in the main kernel linker script as well, since there are
no .eh_frame sections already, and fix up a comment referencing .eh_frame.
Update the comment in asm/dwarf2.h referring to .eh_frame so it continues
to make sense, as well as being more specific.
[ bp: Touch up commit message. ]
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Link: https://lkml.kernel.org/r/20200224232129.597160-3-nivedita@alum.mit.edu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
VDSO support for time namespaces needs to set up a page with the same
layout as VVAR. That timens page will be placed on position of VVAR page
inside namespace. That page has vdso_data->seq set to 1 to enforce
the slow path and vdso_data->clock_mode set to VCLOCK_TIMENS to enforce
the time namespace handling path.
To prepare the time namespace page the kernel needs to know the vdso_data
offset. Provide arch_get_vdso_data() helper for locating vdso_data on VVAR
page.
Co-developed-by: Andrei Vagin <avagin@openvz.org>
Signed-off-by: Andrei Vagin <avagin@openvz.org>
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20191112012724.250792-22-dima@arista.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of using 0x90 (NOP) to fill bytes between functions, which makes
it easier to sloppily target functions in function pointer overwrite
attacks, fill with 0xCC (INT3) to force a trap. Also drop the space
between "=" and the value to better match the binutils documentation
https://sourceware.org/binutils/docs/ld/Output-Section-Fill.html#Output-Section-Fill
Example "objdump -d" before:
...
ffffffff810001e0 <start_cpu0>:
ffffffff810001e0: 48 8b 25 e1 b1 51 01 mov 0x151b1e1(%rip),%rsp # ffffffff8251b3c8 <initial_stack>
ffffffff810001e7: e9 d5 fe ff ff jmpq ffffffff810000c1 <secondary_startup_64+0x91>
ffffffff810001ec: 90 nop
ffffffff810001ed: 90 nop
ffffffff810001ee: 90 nop
ffffffff810001ef: 90 nop
ffffffff810001f0 <__startup_64>:
...
After:
...
ffffffff810001e0 <start_cpu0>:
ffffffff810001e0: 48 8b 25 41 79 53 01 mov 0x1537941(%rip),%rsp # ffffffff82537b28 <initial_stack>
ffffffff810001e7: e9 d5 fe ff ff jmpq ffffffff810000c1 <secondary_startup_64+0x91>
ffffffff810001ec: cc int3
ffffffff810001ed: cc int3
ffffffff810001ee: cc int3
ffffffff810001ef: cc int3
ffffffff810001f0 <__startup_64>:
...
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Ross Zwisler <zwisler@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-30-keescook@chromium.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The exception table was needlessly marked executable. In preparation
for execute-only memory, move the table into the RO_DATA segment via
the new macro that can be used by any architectures that want to make
a similar consolidation.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Ross Zwisler <zwisler@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-17-keescook@chromium.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Various calculations are using the end of the exception table (which
does not need to be executable) as the end of the text segment. Instead,
in preparation for moving the exception table into RO_DATA, move _etext
after the exception table and update the calculations.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Ross Zwisler <zwisler@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-16-keescook@chromium.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The .notes section should be non-executable read-only data. As such,
move it to the RO_DATA macro instead of being per-architecture defined.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # s390
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-11-keescook@chromium.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In preparation for moving NOTES into RO_DATA, make the Program Header
assignment restoration be part of the NOTES macro itself.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # s390
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-10-keescook@chromium.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In preparation for moving NOTES into RO_DATA, provide a mechanism for
architectures that want to emit a PT_NOTE Program Header to do so.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # s390
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Will Deacon <will@kernel.org>
Cc: x86-ml <x86@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: https://lkml.kernel.org/r/20191029211351.13243-9-keescook@chromium.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In a linker script, if one places a section in one or more segments using
":PHDR", then the linker will place all subsequent allocatable sections,
which do not specify ":PHDR", into the same segments. In order to have
the NOTES section in both PT_LOAD (":text") and PT_NOTE (":note"), both
segments are marked, and the only way to undo this to keep subsequent
sections out of PT_NOTE is to mark the following section with just the
single desired PT_LOAD (":text").
In preparation for having a common NOTES macro, perform the segment
assignment using a dummy section (as done by other architectures).
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-alpha@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191029211351.13243-8-keescook@chromium.org
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"A collection of assorted fixes:
- Fix for the pinned cr0/4 fallout which escaped all testing efforts
because the kvm-intel module was never loaded when the kernel was
compiled with CONFIG_PARAVIRT=n. The cr0/4 accessors are moved out
of line and static key is now solely used in the core code and
therefore can stay in the RO after init section. So the kvm-intel
and other modules do not longer reference the (read only) static
key which the module loader tried to update.
- Prevent an infinite loop in arch_stack_walk_user() by breaking out
of the loop once the return address is detected to be 0.
- Prevent the int3_emulate_call() selftest from corrupting the stack
when KASAN is enabled. KASASN clobbers more registers than covered
by the emulated call implementation. Convert the int3_magic()
selftest to a ASM function so the compiler cannot KASANify it.
- Unbreak the build with old GCC versions and with the Gold linker by
reverting the 'Move of _etext to the actual end of .text'. In both
cases the build fails with 'Invalid absolute R_X86_64_32S
relocation: _etext'
- Initialize the context lock for init_mm, which was never an issue
until the alternatives code started to use a temporary mm for
patching.
- Fix a build warning vs. the LOWMEM_PAGES constant where clang
complains rightfully about a signed integer overflow in the shift
operation by converting the operand to an ULL.
- Adjust the misnamed ENDPROC() of common_spurious in the 32bit entry
code"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/stacktrace: Prevent infinite loop in arch_stack_walk_user()
x86/asm: Move native_write_cr0/4() out of line
x86/pgtable/32: Fix LOWMEM_PAGES constant
x86/alternatives: Fix int3_emulate_call() selftest stack corruption
x86/entry/32: Fix ENDPROC of common_spurious
Revert "x86/build: Move _etext to actual end of .text"
x86/ldt: Initialize the context lock for init_mm
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This reverts commit 392bef709659abea614abfe53cf228e7a59876a4.
Per the discussion here:
https://lkml.kernel.org/r/201906201042.3BF5CD6@keescook
the above referenced commit breaks kernel compilation with old GCC
toolchains as well as current versions of the Gold linker.
Revert it to fix the regression and to keep the ability to compile the
kernel with these tools.
Signed-off-by: Ross Zwisler <zwisler@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Guenter Roeck <groeck@chromium.org>
Cc: <stable@vger.kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Johannes Hirte <johannes.hirte@datenkhaos.de>
Cc: Klaus Kusche <klaus.kusche@computerix.info>
Cc: samitolvanen@google.com
Cc: Guenter Roeck <groeck@google.com>
Link: https://lkml.kernel.org/r/20190701155208.211815-1-zwisler@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In order for the kernel to be encrypted "in place" during boot, a workarea
outside of the kernel must be used. This SME workarea used during early
encryption of the kernel is situated on a 2MB boundary after the end of
the kernel text, data, etc. sections (_end).
This works well during initial boot of a compressed kernel because of
the relocation used for decompression of the kernel. But when performing
a kexec boot, there's a chance that the SME workarea may not be mapped
by the kexec pagetables or that some of the other data used by kexec
could exist in this range.
Create a section for SME in vmlinux.lds.S. Position it after "_end", which
is after "__end_of_kernel_reserve", so that the memory will be reclaimed
during boot and since this area is all zeroes, it compresses well. This
new section will be part of the kernel image, so kexec will account for it
in pagetable mappings and placement of data after the kernel.
Here's an example of a kernel size without and with the SME section:
without:
vmlinux: 36,501,616
bzImage: 6,497,344
100000000-47f37ffff : System RAM
1e4000000-1e47677d4 : Kernel code (0x7677d4)
1e47677d5-1e4e2e0bf : Kernel data (0x6c68ea)
1e5074000-1e5372fff : Kernel bss (0x2fefff)
with:
vmlinux: 44,419,408
bzImage: 6,503,136
880000000-c7ff7ffff : System RAM
8cf000000-8cf7677d4 : Kernel code (0x7677d4)
8cf7677d5-8cfe2e0bf : Kernel data (0x6c68ea)
8d0074000-8d0372fff : Kernel bss (0x2fefff)
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Lianbo Jiang <lijiang@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael Ávila de Espíndola" <rafael@espindo.la>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/3c483262eb4077b1654b2052bd14a8d011bffde3.1560969363.git.thomas.lendacky@amd.com
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The memory occupied by the kernel is reserved using memblock_reserve()
in setup_arch(). Currently, the area is from symbols _text to __bss_stop.
Everything after __bss_stop must be specifically reserved otherwise it
is discarded. This is not clearly documented.
Add a new symbol, __end_of_kernel_reserve, that more readily identifies
what is reserved, along with comments that indicate what is reserved,
what is discarded and what needs to be done to prevent a section from
being discarded.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Lianbo Jiang <lijiang@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Robert Richter <rrichter@marvell.com>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Sinan Kaya <okaya@codeaurora.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/7db7da45b435f8477f25e66f292631ff766a844c.1560969363.git.thomas.lendacky@amd.com
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Ingo Molnar:
"The changes in here are:
- text_poke() fixes and an extensive set of executability lockdowns,
to (hopefully) eliminate the last residual circumstances under
which we are using W|X mappings even temporarily on x86 kernels.
This required a broad range of surgery in text patching facilities,
module loading, trampoline handling and other bits.
- tweak page fault messages to be more informative and more
structured.
- remove DISCONTIGMEM support on x86-32 and make SPARSEMEM the
default.
- reduce KASLR granularity on 5-level paging kernels from 512 GB to
1 GB.
- misc other changes and updates"
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/mm: Initialize PGD cache during mm initialization
x86/alternatives: Add comment about module removal races
x86/kprobes: Use vmalloc special flag
x86/ftrace: Use vmalloc special flag
bpf: Use vmalloc special flag
modules: Use vmalloc special flag
mm/vmalloc: Add flag for freeing of special permsissions
mm/hibernation: Make hibernation handle unmapped pages
x86/mm/cpa: Add set_direct_map_*() functions
x86/alternatives: Remove the return value of text_poke_*()
x86/jump-label: Remove support for custom text poker
x86/modules: Avoid breaking W^X while loading modules
x86/kprobes: Set instruction page as executable
x86/ftrace: Set trampoline pages as executable
x86/kgdb: Avoid redundant comparison of patched code
x86/alternatives: Use temporary mm for text poking
x86/alternatives: Initialize temporary mm for patching
fork: Provide a function for copying init_mm
uprobes: Initialize uprobes earlier
x86/mm: Save debug registers when loading a temporary mm
...
|
| |\
| | |
| | |
| | | |
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
When building x86 with Clang LTO and CFI, CFI jump regions are
automatically added to the end of the .text section late in linking. As a
result, the _etext position was being labelled before the appended jump
regions, causing confusion about where the boundaries of the executable
region actually are in the running kernel, and broke at least the fault
injection code. This moves the _etext mark to outside (and immediately
after) the .text area, as it already the case on other architectures
(e.g. arm64, arm).
Reported-and-tested-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190423183827.GA4012@beast
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|\ \ \
| |_|/
|/| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 irq updates from Ingo Molnar:
"Here are the main changes in this tree:
- Introduce x86-64 IRQ/exception/debug stack guard pages to detect
stack overflows immediately and deterministically.
- Clean up over a decade worth of cruft accumulated.
The outcome of this should be more clear-cut faults/crashes when any
of the low level x86 CPU stacks overflow, instead of silent memory
corruption and sporadic failures much later on"
* 'x86-irq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
x86/irq: Fix outdated comments
x86/irq/64: Remove stack overflow debug code
x86/irq/64: Remap the IRQ stack with guard pages
x86/irq/64: Split the IRQ stack into its own pages
x86/irq/64: Init hardirq_stack_ptr during CPU hotplug
x86/irq/32: Handle irq stack allocation failure proper
x86/irq/32: Invoke irq_ctx_init() from init_IRQ()
x86/irq/64: Rename irq_stack_ptr to hardirq_stack_ptr
x86/irq/32: Rename hard/softirq_stack to hard/softirq_stack_ptr
x86/irq/32: Make irq stack a character array
x86/irq/32: Define IRQ_STACK_SIZE
x86/dumpstack/64: Speedup in_exception_stack()
x86/exceptions: Split debug IST stack
x86/exceptions: Enable IST guard pages
x86/exceptions: Disconnect IST index and stack order
x86/cpu: Remove orig_ist array
x86/cpu: Prepare TSS.IST setup for guard pages
x86/dumpstack/64: Use cpu_entry_area instead of orig_ist
x86/irq/64: Use cpu entry area instead of orig_ist
x86/traps: Use cpu_entry_area instead of orig_ist
...
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Currently, the IRQ stack is hardcoded as the first page of the percpu
area, and the stack canary lives on the IRQ stack. The former gets in
the way of adding an IRQ stack guard page, and the latter is a potential
weakness in the stack canary mechanism.
Split the IRQ stack into its own private percpu pages.
[ tglx: Make 64 and 32 bit share struct irq_stack ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Feng Tang <feng.tang@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jordan Borgner <mail@jordan-borgner.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Maran Wilson <maran.wilson@oracle.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: "Rafael Ávila de Espíndola" <rafael@espindo.la>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20190414160146.267376656@linutronix.de
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With CONFIG_LD_DEAD_CODE_DATA_ELIMINATION=y, we compile the kernel with
-fdata-sections, which also splits the .bss section.
The new section, with a new .bss.* name, which pattern gets missed by the
main x86 linker script which only expects the '.bss' name. This results
in the discarding of the second part and a too small, truncated .bss
section and an unhappy, non-working kernel.
Use the common BSS_MAIN macro in the linker script to properly capture
and merge all the generated BSS sections.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190415164956.124067-1-samitolvanen@google.com
[ Extended the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The various x86 linker scripts use the three-argument linker script
command variant OUTPUT_FORMAT(DEFAULT, BIG, LITTLE) which specifies
three object file formats when the -EL and -EB linker command line
options are used. When -EB is specified, OUTPUT_FORMAT issues the BIG
object file format, when -EL, LITTLE, respectively, and when neither is
specified, DEFAULT.
However, those -E[LB] options are not used by arch/x86/ so switch to the
simple OUTPUT_FORMAT(BFDNAME) macro variant.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20190109181531.27513-1-bp@alien8.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Accessing per-CPU variables is done by finding the offset of the
variable in the per-CPU block and adding it to the address of the
respective CPU's block.
Section 3.10.8 of ld.bfd's documentation states:
For expressions involving numbers, relative addresses and absolute
addresses, ld follows these rules to evaluate terms:
Other binary operations, that is, between two relative addresses
not in the same section, or between a relative address and an
absolute address, first convert any non-absolute term to an
absolute address before applying the operator."
Note that LLVM's linker does not adhere to the GNU ld's implementation
and as such requires implicitly-absolute terms to be explicitly marked
as absolute in the linker script. If not, it fails currently with:
ld.lld: error: ./arch/x86/kernel/vmlinux.lds:153: at least one side of the expression must be absolute
ld.lld: error: ./arch/x86/kernel/vmlinux.lds:154: at least one side of the expression must be absolute
Makefile:1040: recipe for target 'vmlinux' failed
This is not a functional change for ld.bfd which converts the term to an
absolute symbol anyways as specified above.
Based on a previous submission by Tri Vo <trong@android.com>.
Reported-by: Dmitry Golovin <dima@golovin.in>
Signed-off-by: Rafael Ávila de Espíndola <rafael@espindo.la>
[ Update commit message per Boris' and Michael's suggestions. ]
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
[ Massage commit message more, fix typos. ]
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Dmitry Golovin <dima@golovin.in>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Cao Jin <caoj.fnst@cn.fujitsu.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tri Vo <trong@android.com>
Cc: dima@golovin.in
Cc: morbo@google.com
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20181219190145.252035-1-ndesaulniers@google.com
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 pti updates from Ingo Molnar:
"The main changes:
- Make the IBPB barrier more strict and add STIBP support (Jiri
Kosina)
- Micro-optimize and clean up the entry code (Andy Lutomirski)
- ... plus misc other fixes"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Propagate information about RSB filling mitigation to sysfs
x86/speculation: Enable cross-hyperthread spectre v2 STIBP mitigation
x86/speculation: Apply IBPB more strictly to avoid cross-process data leak
x86/speculation: Add RETPOLINE_AMD support to the inline asm CALL_NOSPEC variant
x86/CPU: Fix unused variable warning when !CONFIG_IA32_EMULATION
x86/pti/64: Remove the SYSCALL64 entry trampoline
x86/entry/64: Use the TSS sp2 slot for SYSCALL/SYSRET scratch space
x86/entry/64: Document idtentry
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The SYSCALL64 trampoline has a couple of nice properties:
- The usual sequence of SWAPGS followed by two GS-relative accesses to
set up RSP is somewhat slow because the GS-relative accesses need
to wait for SWAPGS to finish. The trampoline approach allows
RIP-relative accesses to set up RSP, which avoids the stall.
- The trampoline avoids any percpu access before CR3 is set up,
which means that no percpu memory needs to be mapped in the user
page tables. This prevents using Meltdown to read any percpu memory
outside the cpu_entry_area and prevents using timing leaks
to directly locate the percpu areas.
The downsides of using a trampoline may outweigh the upsides, however.
It adds an extra non-contiguous I$ cache line to system calls, and it
forces an indirect jump to transfer control back to the normal kernel
text after CR3 is set up. The latter is because x86 lacks a 64-bit
direct jump instruction that could jump from the trampoline to the entry
text. With retpolines enabled, the indirect jump is extremely slow.
Change the code to map the percpu TSS into the user page tables to allow
the non-trampoline SYSCALL64 path to work under PTI. This does not add a
new direct information leak, since the TSS is readable by Meltdown from the
cpu_entry_area alias regardless. It does allow a timing attack to locate
the percpu area, but KASLR is more or less a lost cause against local
attack on CPUs vulnerable to Meltdown regardless. As far as I'm concerned,
on current hardware, KASLR is only useful to mitigate remote attacks that
try to attack the kernel without first gaining RCE against a vulnerable
user process.
On Skylake, with CONFIG_RETPOLINE=y and KPTI on, this reduces syscall
overhead from ~237ns to ~228ns.
There is a possible alternative approach: Move the trampoline within 2G of
the entry text and make a separate copy for each CPU. This would allow a
direct jump to rejoin the normal entry path. There are pro's and con's for
this approach:
+ It avoids a pipeline stall
- It executes from an extra page and read from another extra page during
the syscall. The latter is because it needs to use a relative
addressing mode to find sp1 -- it's the same *cacheline*, but accessed
using an alias, so it's an extra TLB entry.
- Slightly more memory. This would be one page per CPU for a simple
implementation and 64-ish bytes per CPU or one page per node for a more
complex implementation.
- More code complexity.
The current approach is chosen for simplicity and because the alternative
does not provide a significant benefit, which makes it worth.
[ tglx: Added the alternative discussion to the changelog ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/8c7c6e483612c3e4e10ca89495dc160b1aa66878.1536015544.git.luto@kernel.org
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
kvmclock defines few static variables which are shared with the
hypervisor during the kvmclock initialization.
When SEV is active, memory is encrypted with a guest-specific key, and
if the guest OS wants to share the memory region with the hypervisor
then it must clear the C-bit before sharing it.
Currently, we use kernel_physical_mapping_init() to split large pages
before clearing the C-bit on shared pages. But it fails when called from
the kvmclock initialization (mainly because the memblock allocator is
not ready that early during boot).
Add a __bss_decrypted section attribute which can be used when defining
such shared variable. The so-defined variables will be placed in the
.bss..decrypted section. This section will be mapped with C=0 early
during boot.
The .bss..decrypted section has a big chunk of memory that may be unused
when memory encryption is not active, free it when memory encryption is
not active.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Radim Krčmář<rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Link: https://lkml.kernel.org/r/1536932759-12905-2-git-send-email-brijesh.singh@amd.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The pti_clone_kernel_text() function references __end_rodata_hpage_align,
which is only present on x86-64. This makes sense as the end of the rodata
section is not huge-page aligned on 32 bit.
Nevertheless a symbol is required for the function that points at the right
address for both 32 and 64 bit. Introduce __end_rodata_aligned for that
purpose and use it in pti_clone_kernel_text().
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavel Machek <pavel@ucw.cz>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1531906876-13451-28-git-send-email-joro@8bytes.org
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
VMLINUX_SYMBOL() is no-op unless CONFIG_HAVE_UNDERSCORE_SYMBOL_PREFIX
is defined. It has ever been selected only by BLACKFIN and METAG.
VMLINUX_SYMBOL() is unneeded for x86-specific code.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch <linux-arch@vger.kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/1525852174-29022-1-git-send-email-yamada.masahiro@socionext.com
|
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Disable the kprobe probing of the entry trampoline:
.entry_trampoline is a code area that is used to ensure page table
isolation between userspace and kernelspace.
At the beginning of the execution of the trampoline, we load the
kernel's CR3 register. This has the effect of enabling the translation
of the kernel virtual addresses to physical addresses. Before this
happens most kernel addresses can not be translated because the running
process' CR3 is still used.
If a kprobe is placed on the trampoline code before that change of the
CR3 register happens the kernel crashes because int3 handling pages are
not accessible.
To fix this, add the .entry_trampoline section to the kprobe blacklist
to prohibit the probing of code before all the kernel pages are
accessible.
Signed-off-by: Francis Deslauriers <francis.deslauriers@efficios.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: mathieu.desnoyers@efficios.com
Cc: mhiramat@kernel.org
Link: http://lkml.kernel.org/r/1520565492-4637-2-git-send-email-francis.deslauriers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ALIGN(8) is superfluous since macro TEXT_TEXT already has one.
bonus cleanups:
- indentation fix
- spaces -> tab.
Signed-off-by: Cao jin <caoj.fnst@cn.fujitsu.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180208063857.15197-1-caoj.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce start/end markers of __x86_indirect_thunk_* functions.
To make it easy, consolidate .text.__x86.indirect_thunk.* sections
to one .text.__x86.indirect_thunk section and put it in the
end of kernel text section and adds __indirect_thunk_start/end
so that other subsystem (e.g. kprobes) can identify it.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linux-foundation.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/151629206178.10241.6828804696410044771.stgit@devbox
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The (irq)entry text must be visible in the user space page tables. To allow
simple PMD based sharing, make the entry text PMD aligned.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Handling SYSCALL is tricky: the SYSCALL handler is entered with every
single register (except FLAGS), including RSP, live. It somehow needs
to set RSP to point to a valid stack, which means it needs to save the
user RSP somewhere and find its own stack pointer. The canonical way
to do this is with SWAPGS, which lets us access percpu data using the
%gs prefix.
With PAGE_TABLE_ISOLATION-like pagetable switching, this is
problematic. Without a scratch register, switching CR3 is impossible, so
%gs-based percpu memory would need to be mapped in the user pagetables.
Doing that without information leaks is difficult or impossible.
Instead, use a different sneaky trick. Map a copy of the first part
of the SYSCALL asm at a different address for each CPU. Now RIP
varies depending on the CPU, so we can use RIP-relative memory access
to access percpu memory. By putting the relevant information (one
scratch slot and the stack address) at a constant offset relative to
RIP, we can make SYSCALL work without relying on %gs.
A nice thing about this approach is that we can easily switch it on
and off if we want pagetable switching to be configurable.
The compat variant of SYSCALL doesn't have this problem in the first
place -- there are plenty of scratch registers, since we don't care
about preserving r8-r15. This patch therefore doesn't touch SYSCALL32
at all.
This patch actually seems to be a small speedup. With this patch,
SYSCALL touches an extra cache line and an extra virtual page, but
the pipeline no longer stalls waiting for SWAPGS. It seems that, at
least in a tight loop, the latter outweights the former.
Thanks to David Laight for an optimization tip.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bpetkov@suse.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.403607157@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add the new ORC unwinder which is enabled by CONFIG_ORC_UNWINDER=y.
It plugs into the existing x86 unwinder framework.
It relies on objtool to generate the needed .orc_unwind and
.orc_unwind_ip sections.
For more details on why ORC is used instead of DWARF, see
Documentation/x86/orc-unwinder.txt - but the short version is
that it's a simplified, fundamentally more robust debugninfo
data structure, which also allows up to two orders of magnitude
faster lookups than the DWARF unwinder - which matters to
profiling workloads like perf.
Thanks to Andy Lutomirski for the performance improvement ideas:
splitting the ORC unwind table into two parallel arrays and creating a
fast lookup table to search a subset of the unwind table.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Link: http://lkml.kernel.org/r/0a6cbfb40f8da99b7a45a1a8302dc6aef16ec812.1500938583.git.jpoimboe@redhat.com
[ Extended the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The kbuild test robot reported this build failure on a number
of architectures:
> make.cross ARCH=arm
> lib/lib.a(bug.o): In function `find_bug':
> >> lib/bug.c:135: undefined reference to `__start___bug_table'
> >> lib/bug.c:135: undefined reference to `__stop___bug_table'
Caused by:
19d436268dde ("debug: Add _ONCE() logic to report_bug()")
Which moved the BUG_TABLE from RO_DATA_SECTION() to RW_DATA_SECTION(),
but a number of architectures don't use RW_DATA_SECTION(), so they
ended up with no __bug_table[] ...
Ideally all those would use RW_DATA_SECTION() in their linker scripts,
but that's for another day.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kbuild test robot <fengguang.wu@intel.com>
Cc: kbuild-all@01.org
Cc: tipbuild@zytor.com
Link: http://lkml.kernel.org/r/20170330154927.o6qmgfp4bdhrajbm@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|