| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In __emulate_1op_rax_rdx, we use "+a" and "+d" which are input/output
constraints, and *then* use "a" and "d" as input constraints. This is
incorrect, but happens to work on some versions of gcc.
However, it breaks gcc with -O0 and icc, and may break on future
versions of gcc.
Reported-and-tested-by: Melanie Blower <melanie.blower@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/r/B3584E72CFEBED439A3ECA9BCE67A4EF1B17AF90@FMSMSX107.amr.corp.intel.com
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Marcelo Tosatti <mtosatti@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The commit [ad756a16: KVM: VMX: Implement PCID/INVPCID for guests with
EPT] introduced the unconditional access to SECONDARY_VM_EXEC_CONTROL,
and this triggers kernel warnings like below on old CPUs:
vmwrite error: reg 401e value a0568000 (err 12)
Pid: 13649, comm: qemu-kvm Not tainted 3.7.0-rc4-test2+ #154
Call Trace:
[<ffffffffa0558d86>] vmwrite_error+0x27/0x29 [kvm_intel]
[<ffffffffa054e8cb>] vmcs_writel+0x1b/0x20 [kvm_intel]
[<ffffffffa054f114>] vmx_cpuid_update+0x74/0x170 [kvm_intel]
[<ffffffffa03629b6>] kvm_vcpu_ioctl_set_cpuid2+0x76/0x90 [kvm]
[<ffffffffa0341c67>] kvm_arch_vcpu_ioctl+0xc37/0xed0 [kvm]
[<ffffffff81143f7c>] ? __vunmap+0x9c/0x110
[<ffffffffa0551489>] ? vmx_vcpu_load+0x39/0x1a0 [kvm_intel]
[<ffffffffa0340ee2>] ? kvm_arch_vcpu_load+0x52/0x1a0 [kvm]
[<ffffffffa032dcd4>] ? vcpu_load+0x74/0xd0 [kvm]
[<ffffffffa032deb0>] kvm_vcpu_ioctl+0x110/0x5e0 [kvm]
[<ffffffffa032e93d>] ? kvm_dev_ioctl+0x4d/0x4a0 [kvm]
[<ffffffff8117dc6f>] do_vfs_ioctl+0x8f/0x530
[<ffffffff81139d76>] ? remove_vma+0x56/0x60
[<ffffffff8113b708>] ? do_munmap+0x328/0x400
[<ffffffff81187c8c>] ? fget_light+0x4c/0x100
[<ffffffff8117e1a1>] sys_ioctl+0x91/0xb0
[<ffffffff815a942d>] system_call_fastpath+0x1a/0x1f
This patch adds a check for the availability of secondary exec
control to avoid these warnings.
Cc: <stable@vger.kernel.org> [v3.6+]
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On hosts without the XSAVE support unprivileged local user can trigger
oops similar to the one below by setting X86_CR4_OSXSAVE bit in guest
cr4 register using KVM_SET_SREGS ioctl and later issuing KVM_RUN
ioctl.
invalid opcode: 0000 [#2] SMP
Modules linked in: tun ip6table_filter ip6_tables ebtable_nat ebtables
...
Pid: 24935, comm: zoog_kvm_monito Tainted: G D 3.2.0-3-686-pae
EIP: 0060:[<f8b9550c>] EFLAGS: 00210246 CPU: 0
EIP is at kvm_arch_vcpu_ioctl_run+0x92a/0xd13 [kvm]
EAX: 00000001 EBX: 000f387e ECX: 00000000 EDX: 00000000
ESI: 00000000 EDI: 00000000 EBP: ef5a0060 ESP: d7c63e70
DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068
Process zoog_kvm_monito (pid: 24935, ti=d7c62000 task=ed84a0c0
task.ti=d7c62000)
Stack:
00000001 f70a1200 f8b940a9 ef5a0060 00000000 00200202 f8769009 00000000
ef5a0060 000f387e eda5c020 8722f9c8 00015bae 00000000 ed84a0c0 ed84a0c0
c12bf02d 0000ae80 ef7f8740 fffffffb f359b740 ef5a0060 f8b85dc1 0000ae80
Call Trace:
[<f8b940a9>] ? kvm_arch_vcpu_ioctl_set_sregs+0x2fe/0x308 [kvm]
...
[<c12bfb44>] ? syscall_call+0x7/0xb
Code: 89 e8 e8 14 ee ff ff ba 00 00 04 00 89 e8 e8 98 48 ff ff 85 c0 74
1e 83 7d 48 00 75 18 8b 85 08 07 00 00 31 c9 8b 95 0c 07 00 00 <0f> 01
d1 c7 45 48 01 00 00 00 c7 45 1c 01 00 00 00 0f ae f0 89
EIP: [<f8b9550c>] kvm_arch_vcpu_ioctl_run+0x92a/0xd13 [kvm] SS:ESP
0068:d7c63e70
QEMU first retrieves the supported features via KVM_GET_SUPPORTED_CPUID
and then sets them later. So guest's X86_FEATURE_XSAVE should be masked
out on hosts without X86_FEATURE_XSAVE, making kvm_set_cr4 with
X86_CR4_OSXSAVE fail. Userspaces that allow specifying guest cpuid with
X86_FEATURE_XSAVE even on hosts that do not support it, might be
susceptible to this attack from inside the guest as well.
Allow setting X86_CR4_OSXSAVE bit only if host has XSAVE support.
Signed-off-by: Petr Matousek <pmatouse@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
After commit b3356bf0dbb349 (KVM: emulator: optimize "rep ins" handling),
the pieces of io data can be collected and write them to the guest memory
or MMIO together
Unfortunately, kvm splits the mmio access into 8 bytes and store them to
vcpu->mmio_fragments. If the guest uses "rep ins" to move large data, it
will cause vcpu->mmio_fragments overflow
The bug can be exposed by isapc (-M isapc):
[23154.818733] general protection fault: 0000 [#1] SMP DEBUG_PAGEALLOC
[ ......]
[23154.858083] Call Trace:
[23154.859874] [<ffffffffa04f0e17>] kvm_get_cr8+0x1d/0x28 [kvm]
[23154.861677] [<ffffffffa04fa6d4>] kvm_arch_vcpu_ioctl_run+0xcda/0xe45 [kvm]
[23154.863604] [<ffffffffa04f5a1a>] ? kvm_arch_vcpu_load+0x17b/0x180 [kvm]
Actually, we can use one mmio_fragment to store a large mmio access then
split it when we pass the mmio-exit-info to userspace. After that, we only
need two entries to store mmio info for the cross-mmio pages access
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
|
|
|
|
|
|
| |
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Reviewed-by: Chegu Vinod <chegu_vinod@hp.com>
Tested-by: Chegu Vinod <chegu_vinod@hp.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|
|
|
|
|
|
|
|
|
| |
We can not directly call kvm_release_pfn_clean to release the pfn
since we can meet noslot pfn which is used to cache mmio info into
spte
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Avi Kivity <avi@redhat.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull KVM updates from Avi Kivity:
"Highlights of the changes for this release include support for vfio
level triggered interrupts, improved big real mode support on older
Intels, a streamlines guest page table walker, guest APIC speedups,
PIO optimizations, better overcommit handling, and read-only memory."
* tag 'kvm-3.7-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (138 commits)
KVM: s390: Fix vcpu_load handling in interrupt code
KVM: x86: Fix guest debug across vcpu INIT reset
KVM: Add resampling irqfds for level triggered interrupts
KVM: optimize apic interrupt delivery
KVM: MMU: Eliminate pointless temporary 'ac'
KVM: MMU: Avoid access/dirty update loop if all is well
KVM: MMU: Eliminate eperm temporary
KVM: MMU: Optimize is_last_gpte()
KVM: MMU: Simplify walk_addr_generic() loop
KVM: MMU: Optimize pte permission checks
KVM: MMU: Update accessed and dirty bits after guest pagetable walk
KVM: MMU: Move gpte_access() out of paging_tmpl.h
KVM: MMU: Optimize gpte_access() slightly
KVM: MMU: Push clean gpte write protection out of gpte_access()
KVM: clarify kvmclock documentation
KVM: make processes waiting on vcpu mutex killable
KVM: SVM: Make use of asm.h
KVM: VMX: Make use of asm.h
KVM: VMX: Make lto-friendly
KVM: x86: lapic: Clean up find_highest_vector() and count_vectors()
...
Conflicts:
arch/s390/include/asm/processor.h
arch/x86/kvm/i8259.c
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If we reset a vcpu on INIT, we so far overwrote dr7 as provided by
KVM_SET_GUEST_DEBUG, and we also cleared switch_db_regs unconditionally.
Fix this by saving the dr7 used for guest debugging and calculating the
effective register value as well as switch_db_regs on any potential
change. This will change to focus of the set_guest_debug vendor op to
update_dp_bp_intercept.
Found while trying to stop on start_secondary.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
To emulate level triggered interrupts, add a resample option to
KVM_IRQFD. When specified, a new resamplefd is provided that notifies
the user when the irqchip has been resampled by the VM. This may, for
instance, indicate an EOI. Also in this mode, posting of an interrupt
through an irqfd only asserts the interrupt. On resampling, the
interrupt is automatically de-asserted prior to user notification.
This enables level triggered interrupts to be posted and re-enabled
from vfio with no userspace intervention.
All resampling irqfds can make use of a single irq source ID, so we
reserve a new one for this interface.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Most interrupt are delivered to only one vcpu. Use pre-build tables to
find interrupt destination instead of looping through all vcpus. In case
of logical mode loop only through vcpus in a logical cluster irq is sent
to.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
'ac' essentially reconstructs the 'access' variable we already
have, except for the PFERR_PRESENT_MASK and PFERR_RSVD_MASK. As
these are not used by callees, just use 'access' directly.
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Keep track of accessed/dirty bits; if they are all set, do not
enter the accessed/dirty update loop.
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| | |
'eperm' is no longer used in the walker loop, so we can eliminate it.
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Instead of branchy code depending on level, gpte.ps, and mmu configuration,
prepare everything in a bitmap during mode changes and look it up during
runtime.
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The page table walk is coded as an infinite loop, with a special
case on the last pte.
Code it as an ordinary loop with a termination condition on the last
pte (large page or walk length exhausted), and put the last pte handling
code after the loop where it belongs.
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
walk_addr_generic() permission checks are a maze of branchy code, which is
performed four times per lookup. It depends on the type of access, efer.nxe,
cr0.wp, cr4.smep, and in the near future, cr4.smap.
Optimize this away by precalculating all variants and storing them in a
bitmap. The bitmap is recalculated when rarely-changing variables change
(cr0, cr4) and is indexed by the often-changing variables (page fault error
code, pte access permissions).
The permission check is moved to the end of the loop, otherwise an SMEP
fault could be reported as a false positive, when PDE.U=1 but PTE.U=0.
Noted by Xiao Guangrong.
The result is short, branch-free code.
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
While unspecified, the behaviour of Intel processors is to first
perform the page table walk, then, if the walk was successful, to
atomically update the accessed and dirty bits of walked paging elements.
While we are not required to follow this exactly, doing so will allow us
to perform the access permissions check after the walk is complete, rather
than after each walk step.
(the tricky case is SMEP: a zero in any pte's U bit makes the referenced
page a supervisor page, so we can't fault on a one bit during the walk
itself).
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We no longer rely on paging_tmpl.h defines; so we can move the function
to mmu.c.
Rely on zero extension to 64 bits to get the correct nx behaviour.
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If nx is disabled, then is gpte[63] is set we will hit a reserved
bit set fault before checking permissions; so we can ignore the
setting of efer.nxe.
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
gpte_access() computes the access permissions of a guest pte and also
write-protects clean gptes. This is wrong when we are servicing a
write fault (since we'll be setting the dirty bit momentarily) but
correct when instantiating a speculative spte, or when servicing a
read fault (since we'll want to trap a following write in order to
set the dirty bit).
It doesn't seem to hurt in practice, but in order to make the code
readable, push the write protection out of gpte_access() and into
a new protect_clean_gpte() which is called explicitly when needed.
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
vcpu mutex can be held for unlimited time so
taking it with mutex_lock on an ioctl is wrong:
one process could be passed a vcpu fd and
call this ioctl on the vcpu used by another process,
it will then be unkillable until the owner exits.
Call mutex_lock_killable instead and return status.
Note: mutex_lock_interruptible would be even nicer,
but I am not sure all users are prepared to handle EINTR
from these ioctls. They might misinterpret it as an error.
Cleanup paths expect a vcpu that can't be used by
any userspace so this will always succeed - catch bugs
by calling BUG_ON.
Catch callers that don't check return state by adding
__must_check.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Use macros for bitness-insensitive register names, instead of
rolling our own.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Use macros for bitness-insensitive register names, instead of
rolling our own.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
LTO (link-time optimization) doesn't like local labels to be referred to
from a different function, since the two functions may be built in separate
compilation units. Use an external variable instead.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
find_highest_vector() and count_vectors():
- Instead of using magic values, define and use proper macros.
find_highest_vector():
- Remove likely() which is there only for historical reasons and not
doing correct branch predictions anymore. Using such heuristics
to optimize this function is not worth it now. Let CPUs predict
things instead.
- Stop checking word[0] separately. This was only needed for doing
likely() optimization.
- Use for loop, not while, to iterate over the register array to make
the code clearer.
Note that we actually confirmed that the likely() did wrong predictions
by inserting debug code.
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Checking the return of kvm_mmu_get_page is unnecessary since it is
guaranteed by memory cache
Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
KVM lapic timer and tsc deadline timer based on hrtimer,
setting a leftmost node to rb tree and then do hrtimer reprogram.
If hrtimer not configured as high resolution, hrtimer_enqueue_reprogram
do nothing and then make kvm lapic timer and tsc deadline timer fail.
Signed-off-by: Liu, Jinsong <jinsong.liu@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
interrupt_bitmap is KVM_NR_INTERRUPTS bits in size,
so just use that instead of hard-coded constants
and math.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Optimize "rep ins" by allowing emulator to write back more than one
datum at a time. Introduce new operand type OP_MEM_STR which tells
writeback() that dst contains pointer to an array that should be written
back as opposite to just one data element.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Remove unneeded segment argument. Address structure already has correct
segment which was put there during decode.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| | |
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Current code assumes that IO exit was due to instruction emulation
and handles execution back to emulator directly. This patch adds new
userspace IO exit completion callback that can be set by any other code
that caused IO exit to userspace.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Other arches do not need this.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
v2: fix incorrect deletion of mmio sptes on gpa move (noticed by Takuya)
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Introducing kvm_arch_flush_shadow_memslot, to invalidate the
translations of a single memory slot.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We never modify direct_access_msrs[], msrpm_ranges[],
svm_exit_handlers[] or x86_intercept_map[] at runtime.
Mark them r/o.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Cc: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
We use vmcs_field_to_offset_table[], kvm_vmx_segment_fields[] and
kvm_vmx_exit_handlers[] as lookup tables only -- make them r/o.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| | |
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| | |
We never change those, make them r/o.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| | |
We never change emulate_ops[] at runtime so it should be r/o.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| | |
The opcode tables never change at runtime, therefor mark them const.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
As the the compiler ensures that the memory operand is always aligned
to a 16 byte memory location, use the aligned variant of MOVDQ for
read_sse_reg() and write_sse_reg().
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Some fields can be constified and/or made static to reduce code and data
size.
Numbers for a 32 bit build:
text data bss dec hex filename
before: 3351 80 0 3431 d67 cpuid.o
after: 3391 0 0 3391 d3f cpuid.o
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
kvm_pic_reset() is not used anywhere. Move reset logic from
pic_ioport_write() there.
Signed-off-by: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| |
| |
| |
| | |
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We will enter the guest with G and D cleared; as real hardware ignores D in
real mode, and G is taken care of by the limit test, we allow more code to
run in vm86 mode.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| |
| |
| |
| |
| | |
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
While this is undocumented, real processors do not reload the segment
limit and access rights when loading a segment register in real mode.
Real programs rely on it so we need to comply with this behaviour.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
emulate_invalid_guest_state=1
emulate_invalid_guest_state=1 doesn't mean we don't munge the segments in the
vmcs; we do. So we need to return the real ones (maintained by vmx_set_segment).
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| |
| |
| |
| |
| |
| |
| | |
We want the segment selector, nor segment number.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| |
| |
| |
| |
| |
| |
| | |
Segment limits are verified in real mode, not just protected mode.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|