| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use ERR_PTR_USR() when returning -EFAULT from kvm_get_attr_addr(), sparse
complains about implicitly casting the kernel pointer from ERR_PTR() into
a __user pointer.
>> arch/x86/kvm/x86.c:4342:31: sparse: sparse: incorrect type in return expression
(different address spaces) @@ expected void [noderef] __user * @@ got void * @@
arch/x86/kvm/x86.c:4342:31: sparse: expected void [noderef] __user *
arch/x86/kvm/x86.c:4342:31: sparse: got void *
>> arch/x86/kvm/x86.c:4342:31: sparse: sparse: incorrect type in return expression
(different address spaces) @@ expected void [noderef] __user * @@ got void * @@
arch/x86/kvm/x86.c:4342:31: sparse: expected void [noderef] __user *
arch/x86/kvm/x86.c:4342:31: sparse: got void *
No functional change intended.
Fixes: 56f289a8d23a ("KVM: x86: Add a helper to retrieve userspace address from kvm_device_attr")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220202005157.2545816-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CPUID.(EAX=7,ECX=0):EBX.FDP_EXCPTN_ONLY[bit 6] and
CPUID.(EAX=7,ECX=0):EBX.ZERO_FCS_FDS[bit 13] are "defeature"
bits. Unlike most of the other CPUID feature bits, these bits are
clear if the features are present and set if the features are not
present. These bits should be reported in KVM_GET_SUPPORTED_CPUID,
because if these bits are set on hardware, they cannot be cleared in
the guest CPUID. Doing so would claim guest support for a feature that
the hardware doesn't support and that can't be efficiently emulated.
Of course, any software (e.g WIN87EM.DLL) expecting these features to
be present likely predates these CPUID feature bits and therefore
doesn't know to check for them anyway.
Aaron Lewis added the corresponding X86_FEATURE macros in
commit cbb99c0f5887 ("x86/cpufeatures: Add FDP_EXCPTN_ONLY and
ZERO_FCS_FDS"), with the intention of reporting these bits in
KVM_GET_SUPPORTED_CPUID, but I was unable to find a proposed patch on
the kvm list.
Opportunistically reordered the CPUID_7_0_EBX capability bits from
least to most significant.
Cc: Aaron Lewis <aaronlewis@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220204001348.2844660-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For consistency and clarity, migrate x86 over to the generic helpers for
guest timing and lockdep/RCU/tracing management, and remove the
x86-specific helpers.
Prior to this patch, the guest timing was entered in
kvm_guest_enter_irqoff() (called by svm_vcpu_enter_exit() and
svm_vcpu_enter_exit()), and was exited by the call to
vtime_account_guest_exit() within vcpu_enter_guest().
To minimize duplication and to more clearly balance entry and exit, both
entry and exit of guest timing are placed in vcpu_enter_guest(), using
the new guest_timing_{enter,exit}_irqoff() helpers. When context
tracking is used a small amount of additional time will be accounted
towards guests; tick-based accounting is unnaffected as IRQs are
disabled at this point and not enabled until after the return from the
guest.
This also corrects (benign) mis-balanced context tracking accounting
introduced in commits:
ae95f566b3d22ade ("KVM: X86: TSCDEADLINE MSR emulation fastpath")
26efe2fd92e50822 ("KVM: VMX: Handle preemption timer fastpath")
Where KVM can enter a guest multiple times, calling vtime_guest_enter()
without a corresponding call to vtime_account_guest_exit(), and with
vtime_account_system() called when vtime_account_guest() should be used.
As account_system_time() checks PF_VCPU and calls account_guest_time(),
this doesn't result in any functional problem, but is unnecessarily
confusing.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <20220201132926.3301912-4-mark.rutland@arm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Handle non-APICv interrupt delivery in vendor code, even though it means
VMX and SVM will temporarily have duplicate code. SVM's AVIC has a race
condition that requires KVM to fall back to legacy interrupt injection
_after_ the interrupt has been logged in the vIRR, i.e. to fix the race,
SVM will need to open code the full flow anyways[*]. Refactor the code
so that the SVM bug without introducing other issues, e.g. SVM would
return "success" and thus invoke trace_kvm_apicv_accept_irq() even when
delivery through the AVIC failed, and to opportunistically prepare for
using KVM_X86_OP to fill each vendor's kvm_x86_ops struct, which will
rely on the vendor function matching the kvm_x86_op pointer name.
No functional change intended.
[*] https://lore.kernel.org/all/20211213104634.199141-4-mlevitsk@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220128005208.4008533-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Hyper-V TLFS explicitly forbids VMREAD and VMWRITE instructions when
Enlightened VMCS interface is in use:
"Any VMREAD or VMWRITE instructions while an enlightened VMCS is
active is unsupported and can result in unexpected behavior.""
Windows 11 + WSL2 seems to ignore this, attempts to VMREAD VMCS field
0x4404 ("VM-exit interruption information") are observed. Failing
these attempts with nested_vmx_failInvalid() makes such guests
unbootable.
Microsoft confirms this is a Hyper-V bug and claims that it'll get fixed
eventually but for the time being we need a workaround. (Temporary) allow
VMREAD to get data from the currently loaded Enlightened VMCS.
Note: VMWRITE instructions remain forbidden, it is not clear how to
handle them properly and hopefully won't ever be needed.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220112170134.1904308-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In preparation to allowing reads from Enlightened VMCS from
handle_vmread(), implement evmcs_field_offset() to get the correct
read offset. get_evmcs_offset(), which is being used by KVM-on-Hyper-V,
is almost what's needed but a few things need to be adjusted. First,
WARN_ON() is unacceptable for handle_vmread() as any field can (in
theory) be supplied by the guest and not all fields are defined in
eVMCS v1. Second, we need to handle 'holes' in eVMCS (missing fields).
It also sounds like a good idea to WARN_ON() if such fields are ever
accessed by KVM-on-Hyper-V.
Implement dedicated evmcs_field_offset() helper.
No functional change intended.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220112170134.1904308-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
vmcs_to_field_offset{,_table} may sound misleading as VMCS is an opaque
blob which is not supposed to be accessed directly. In fact,
vmcs_to_field_offset{,_table} are related to KVM defined VMCS12 structure.
Rename vmcs_field_to_offset() to get_vmcs12_field_offset() for clarity.
No functional change intended.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220112170134.1904308-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Enlightened VMCS v1 doesn't have VMX_PREEMPTION_TIMER_VALUE field,
PIN_BASED_VMX_PREEMPTION_TIMER is also filtered out already so it makes
sense to filter out VM_EXIT_SAVE_VMX_PREEMPTION_TIMER too.
Note, none of the currently existing Windows/Hyper-V versions are known
to enable 'save VMX-preemption timer value' when eVMCS is in use, the
change is aimed at making the filtering future proof.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220112170134.1904308-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Similar to MSR_IA32_VMX_EXIT_CTLS/MSR_IA32_VMX_TRUE_EXIT_CTLS,
MSR_IA32_VMX_ENTRY_CTLS/MSR_IA32_VMX_TRUE_ENTRY_CTLS pair,
MSR_IA32_VMX_TRUE_PINBASED_CTLS needs to be filtered the same way
MSR_IA32_VMX_PINBASED_CTLS is currently filtered as guests may solely rely
on 'true' MSR data.
Note, none of the currently existing Windows/Hyper-V versions are known
to stumble upon the unfiltered MSR_IA32_VMX_TRUE_PINBASED_CTLS, the change
is aimed at making the filtering future proof.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220112170134.1904308-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Because KVM_GET_SUPPORTED_CPUID is meant to be passed (by simple-minded
VMMs) to KVM_SET_CPUID2, it cannot include any dynamic xsave states that
have not been enabled. Probing those, for example so that they can be
passed to ARCH_REQ_XCOMP_GUEST_PERM, requires a new ioctl or arch_prctl.
The latter is in fact worse, even though that is what the rest of the
API uses, because it would require supported_xcr0 to be moved from the
KVM module to the kernel just for this use. In addition, the value
would be nonsensical (or an error would have to be returned) until
the KVM module is loaded in.
Therefore, to limit the growth of system ioctls, add a /dev/kvm
variant of KVM_{GET,HAS}_DEVICE_ATTR, and implement it in x86
with just one group (0) and attribute (KVM_X86_XCOMP_GUEST_SUPP).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a helper to handle converting the u64 userspace address embedded in
struct kvm_device_attr into a userspace pointer, it's all too easy to
forget the intermediate "unsigned long" cast as well as the truncation
check.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
XCR0 is reset to 1 by RESET but not INIT and IA32_XSS is zeroed by
both RESET and INIT. The kvm_set_msr_common()'s handling of MSR_IA32_XSS
also needs to update kvm_update_cpuid_runtime(). In the above cases, the
size in bytes of the XSAVE area containing all states enabled by XCR0 or
(XCRO | IA32_XSS) needs to be updated.
For simplicity and consistency, existing helpers are used to write values
and call kvm_update_cpuid_runtime(), and it's not exactly a fast path.
Fixes: a554d207dc46 ("KVM: X86: Processor States following Reset or INIT")
Cc: stable@vger.kernel.org
Signed-off-by: Like Xu <likexu@tencent.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220126172226.2298529-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Do a runtime CPUID update for a vCPU if MSR_IA32_XSS is written, as the
size in bytes of the XSAVE area is affected by the states enabled in XSS.
Fixes: 203000993de5 ("kvm: vmx: add MSR logic for XSAVES")
Cc: stable@vger.kernel.org
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: split out as a separate patch, adjust Fixes tag]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220126172226.2298529-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
It has been corrected from SDM version 075 that MSR_IA32_XSS is reset to
zero on Power up and Reset but keeps unchanged on INIT.
Fixes: a554d207dc46 ("KVM: X86: Processor States following Reset or INIT")
Cc: stable@vger.kernel.org
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220126172226.2298529-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Free the "struct kvm_cpuid_entry2" array on successful post-KVM_RUN
KVM_SET_CPUID{,2} to fix a memory leak, the callers of kvm_set_cpuid()
free the array only on failure.
BUG: memory leak
unreferenced object 0xffff88810963a800 (size 2048):
comm "syz-executor025", pid 3610, jiffies 4294944928 (age 8.080s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 0d 00 00 00 ................
47 65 6e 75 6e 74 65 6c 69 6e 65 49 00 00 00 00 GenuntelineI....
backtrace:
[<ffffffff814948ee>] kmalloc_node include/linux/slab.h:604 [inline]
[<ffffffff814948ee>] kvmalloc_node+0x3e/0x100 mm/util.c:580
[<ffffffff814950f2>] kvmalloc include/linux/slab.h:732 [inline]
[<ffffffff814950f2>] vmemdup_user+0x22/0x100 mm/util.c:199
[<ffffffff8109f5ff>] kvm_vcpu_ioctl_set_cpuid2+0x8f/0xf0 arch/x86/kvm/cpuid.c:423
[<ffffffff810711b9>] kvm_arch_vcpu_ioctl+0xb99/0x1e60 arch/x86/kvm/x86.c:5251
[<ffffffff8103e92d>] kvm_vcpu_ioctl+0x4ad/0x950 arch/x86/kvm/../../../virt/kvm/kvm_main.c:4066
[<ffffffff815afacc>] vfs_ioctl fs/ioctl.c:51 [inline]
[<ffffffff815afacc>] __do_sys_ioctl fs/ioctl.c:874 [inline]
[<ffffffff815afacc>] __se_sys_ioctl fs/ioctl.c:860 [inline]
[<ffffffff815afacc>] __x64_sys_ioctl+0xfc/0x140 fs/ioctl.c:860
[<ffffffff844a3335>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff844a3335>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
[<ffffffff84600068>] entry_SYSCALL_64_after_hwframe+0x44/0xae
Fixes: c6617c61e8fe ("KVM: x86: Partially allow KVM_SET_CPUID{,2} after KVM_RUN")
Cc: stable@vger.kernel.org
Reported-by: syzbot+be576ad7655690586eec@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220125210445.2053429-1-seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
WARN if KVM attempts to allocate a shadow VMCS for vmcs02. KVM emulates
VMCS shadowing but doesn't virtualize it, i.e. KVM should never allocate
a "real" shadow VMCS for L2.
The previous code WARNed but continued anyway with the allocation,
presumably in an attempt to avoid NULL pointer dereference.
However, alloc_vmcs (and hence alloc_shadow_vmcs) can fail, and
indeed the sole caller does:
if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
goto out_shadow_vmcs;
which makes it not a useful attempt.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220125220527.2093146-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
kvm_cpuid_check_equal() checks for the (full) equality of the supplied
CPUID data so .flags need to be checked too.
Reported-by: Sean Christopherson <seanjc@google.com>
Fixes: c6617c61e8fe ("KVM: x86: Partially allow KVM_SET_CPUID{,2} after KVM_RUN")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220126131804.2839410-1-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Forcibly leave nested virtualization operation if userspace toggles SMM
state via KVM_SET_VCPU_EVENTS or KVM_SYNC_X86_EVENTS. If userspace
forces the vCPU out of SMM while it's post-VMXON and then injects an SMI,
vmx_enter_smm() will overwrite vmx->nested.smm.vmxon and end up with both
vmxon=false and smm.vmxon=false, but all other nVMX state allocated.
Don't attempt to gracefully handle the transition as (a) most transitions
are nonsencial, e.g. forcing SMM while L2 is running, (b) there isn't
sufficient information to handle all transitions, e.g. SVM wants access
to the SMRAM save state, and (c) KVM_SET_VCPU_EVENTS must precede
KVM_SET_NESTED_STATE during state restore as the latter disallows putting
the vCPU into L2 if SMM is active, and disallows tagging the vCPU as
being post-VMXON in SMM if SMM is not active.
Abuse of KVM_SET_VCPU_EVENTS manifests as a WARN and memory leak in nVMX
due to failure to free vmcs01's shadow VMCS, but the bug goes far beyond
just a memory leak, e.g. toggling SMM on while L2 is active puts the vCPU
in an architecturally impossible state.
WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline]
WARNING: CPU: 0 PID: 3606 at free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656
Modules linked in:
CPU: 1 PID: 3606 Comm: syz-executor725 Not tainted 5.17.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:free_loaded_vmcs arch/x86/kvm/vmx/vmx.c:2665 [inline]
RIP: 0010:free_loaded_vmcs+0x158/0x1a0 arch/x86/kvm/vmx/vmx.c:2656
Code: <0f> 0b eb b3 e8 8f 4d 9f 00 e9 f7 fe ff ff 48 89 df e8 92 4d 9f 00
Call Trace:
<TASK>
kvm_arch_vcpu_destroy+0x72/0x2f0 arch/x86/kvm/x86.c:11123
kvm_vcpu_destroy arch/x86/kvm/../../../virt/kvm/kvm_main.c:441 [inline]
kvm_destroy_vcpus+0x11f/0x290 arch/x86/kvm/../../../virt/kvm/kvm_main.c:460
kvm_free_vcpus arch/x86/kvm/x86.c:11564 [inline]
kvm_arch_destroy_vm+0x2e8/0x470 arch/x86/kvm/x86.c:11676
kvm_destroy_vm arch/x86/kvm/../../../virt/kvm/kvm_main.c:1217 [inline]
kvm_put_kvm+0x4fa/0xb00 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1250
kvm_vm_release+0x3f/0x50 arch/x86/kvm/../../../virt/kvm/kvm_main.c:1273
__fput+0x286/0x9f0 fs/file_table.c:311
task_work_run+0xdd/0x1a0 kernel/task_work.c:164
exit_task_work include/linux/task_work.h:32 [inline]
do_exit+0xb29/0x2a30 kernel/exit.c:806
do_group_exit+0xd2/0x2f0 kernel/exit.c:935
get_signal+0x4b0/0x28c0 kernel/signal.c:2862
arch_do_signal_or_restart+0x2a9/0x1c40 arch/x86/kernel/signal.c:868
handle_signal_work kernel/entry/common.c:148 [inline]
exit_to_user_mode_loop kernel/entry/common.c:172 [inline]
exit_to_user_mode_prepare+0x17d/0x290 kernel/entry/common.c:207
__syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline]
syscall_exit_to_user_mode+0x19/0x60 kernel/entry/common.c:300
do_syscall_64+0x42/0xb0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
Cc: stable@vger.kernel.org
Reported-by: syzbot+8112db3ab20e70d50c31@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220125220358.2091737-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 3fa5e8fd0a0e4 ("KVM: SVM: delay svm_vcpu_init_msrpm after
svm->vmcb is initialized") re-arranged svm_vcpu_init_msrpm() call in
svm_create_vcpu(), thus making the comment about vmcb being NULL
obsolete. Drop it.
While on it, drop superfluous vmcb_is_clean() check: vmcb_mark_dirty()
is a bit flip, an extra check is unlikely to bring any performance gain.
Drop now-unneeded vmcb_is_clean() helper as well.
Fixes: 3fa5e8fd0a0e4 ("KVM: SVM: delay svm_vcpu_init_msrpm after svm->vmcb is initialized")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211220152139.418372-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit c4327f15dfc7 ("KVM: SVM: hyper-v: Enlightened MSR-Bitmap support")
introduced enlightened MSR-Bitmap support for KVM-on-Hyper-V but it didn't
actually enable the support. Similar to enlightened NPT TLB flush and
direct TLB flush features, the guest (KVM) has to tell L0 (Hyper-V) that
it's using the feature by setting the appropriate feature fit in VMCB
control area (sw reserved fields).
Fixes: c4327f15dfc7 ("KVM: SVM: hyper-v: Enlightened MSR-Bitmap support")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211220152139.418372-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Inject a #GP instead of synthesizing triple fault to try to avoid killing
the guest if emulation of an SEV guest fails due to encountering the SMAP
erratum. The injected #GP may still be fatal to the guest, e.g. if the
userspace process is providing critical functionality, but KVM should
make every attempt to keep the guest alive.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Message-Id: <20220120010719.711476-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Resume the guest instead of synthesizing a triple fault shutdown if the
instruction bytes buffer is empty due to the #NPF being on the code fetch
itself or on a page table access. The SMAP errata applies if and only if
the code fetch was successful and ucode's subsequent data read from the
code page encountered a SMAP violation. In practice, the guest is likely
hosed either way, but crashing the guest on a code fetch to emulated MMIO
is technically wrong according to the behavior described in the APM.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Message-Id: <20220120010719.711476-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Inject #UD if KVM attempts emulation for an SEV guests without an insn
buffer and instruction decoding is required. The previous behavior of
allowing emulation if there is no insn buffer is undesirable as doing so
means KVM is reading guest private memory and thus decoding cyphertext,
i.e. is emulating garbage. The check was previously necessary as the
emulation type was not provided, i.e. SVM needed to allow emulation to
handle completion of emulation after exiting to userspace to handle I/O.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Message-Id: <20220120010719.711476-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
WARN if KVM attempts to emulate in response to #UD or #GP for SEV guests,
i.e. if KVM intercepts #UD or #GP, as emulation on any fault except #NPF
is impossible since KVM cannot read guest private memory to get the code
stream, and the CPU's DecodeAssists feature only provides the instruction
bytes on #NPF.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Message-Id: <20220120010719.711476-7-seanjc@google.com>
[Warn on EMULTYPE_TRAP_UD_FORCED according to Liam Merwick's review. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Pass the emulation type to kvm_x86_ops.can_emulate_insutrction() so that
a future commit can harden KVM's SEV support to WARN on emulation
scenarios that should never happen.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Message-Id: <20220120010719.711476-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a sanity check on DECODEASSIST being support if SEV is supported, as
KVM cannot read guest private memory and thus relies on the CPU to
provide the instruction byte stream on #NPF for emulation. The intent of
the check is to document the dependency, it should never fail in practice
as producing hardware that supports SEV but not DECODEASSISTS would be
non-sensical.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Message-Id: <20220120010719.711476-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Never intercept #GP for SEV guests as reading SEV guest private memory
will return cyphertext, i.e. emulating on #GP can't work as intended.
Cc: stable@vger.kernel.org
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Message-Id: <20220120010719.711476-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Revert a completely broken check on an "invalid" RIP in SVM's workaround
for the DecodeAssists SMAP errata. kvm_vcpu_gfn_to_memslot() obviously
expects a gfn, i.e. operates in the guest physical address space, whereas
RIP is a virtual (not even linear) address. The "fix" worked for the
problematic KVM selftest because the test identity mapped RIP.
Fully revert the hack instead of trying to translate RIP to a GPA, as the
non-SEV case is now handled earlier, and KVM cannot access guest page
tables to translate RIP.
This reverts commit e72436bc3a5206f95bb384e741154166ddb3202e.
Fixes: e72436bc3a52 ("KVM: SVM: avoid infinite loop on NPF from bad address")
Reported-by: Liam Merwick <liam.merwick@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Message-Id: <20220120010719.711476-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Always signal that emulation is possible for !SEV guests regardless of
whether or not the CPU provided a valid instruction byte stream. KVM can
read all guest state (memory and registers) for !SEV guests, i.e. can
fetch the code stream from memory even if the CPU failed to do so because
of the SMAP errata.
Fixes: 05d5a4863525 ("KVM: SVM: Workaround errata#1096 (insn_len maybe zero on SMAP violation)")
Cc: stable@vger.kernel.org
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Liam Merwick <liam.merwick@oracle.com>
Message-Id: <20220120010719.711476-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The bug occurs on #GP triggered by VMware backdoor when eax value is
unaligned. eax alignment check should not be applied to non-SVM
instructions because it leads to incorrect omission of the instructions
emulation.
Apply the alignment check only to SVM instructions to fix.
Fixes: d1cba6c92237 ("KVM: x86: nSVM: test eax for 4K alignment for GP errata workaround")
Signed-off-by: Denis Valeev <lemniscattaden@gmail.com>
Message-Id: <Yexlhaoe1Fscm59u@q>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With the help of xstate_get_guest_group_perm(), KVM can exclude unpermitted
xfeatures in cpuid.0xd.0.eax, in which case the corresponding xfeatures
sizes should also be matched to the permitted xfeatures.
To fix this inconsistency, the permitted_xcr0 and permitted_xss are defined
consistently, which implies 'supported' plus certain permissions for this
task, and it also fixes cpuid.0xd.1.ebx and later leaf-by-leaf queries.
Fixes: 445ecdf79be0 ("kvm: x86: Exclude unpermitted xfeatures at KVM_GET_SUPPORTED_CPUID")
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220125115223.33707-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The below warning is splatting during guest reboot.
------------[ cut here ]------------
WARNING: CPU: 0 PID: 1931 at arch/x86/kvm/x86.c:10322 kvm_arch_vcpu_ioctl_run+0x874/0x880 [kvm]
CPU: 0 PID: 1931 Comm: qemu-system-x86 Tainted: G I 5.17.0-rc1+ #5
RIP: 0010:kvm_arch_vcpu_ioctl_run+0x874/0x880 [kvm]
Call Trace:
<TASK>
kvm_vcpu_ioctl+0x279/0x710 [kvm]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7fd39797350b
This can be triggered by not exposing tsc-deadline mode and doing a reboot in
the guest. The lapic_shutdown() function which is called in sys_reboot path
will not disarm the flying timer, it just masks LVTT. lapic_shutdown() clears
APIC state w/ LVT_MASKED and timer-mode bit is 0, this can trigger timer-mode
switch between tsc-deadline and oneshot/periodic, which can result in preemption
timer be cancelled in apic_update_lvtt(). However, We can't depend on this when
not exposing tsc-deadline mode and oneshot/periodic modes emulated by preemption
timer. Qemu will synchronise states around reset, let's cancel preemption timer
under KVM_SET_LAPIC.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1643102220-35667-1-git-send-email-wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
| |
The maximum size of a VMCS (or VMXON region) is 4096. By definition,
these are order 0 allocations.
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220125004359.147600-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Make kvm_vcpu_reload_apic_access_page() static
as it is no longer invoked directly by vmx
and it is also no longer exported.
No functional change intended.
Signed-off-by: Quanfa Fu <quanfafu@gmail.com>
Message-Id: <20211219091446.174584-1-quanfafu@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Set vmcs.GUEST_PENDING_DBG_EXCEPTIONS.BS, a.k.a. the pending single-step
breakpoint flag, when re-injecting a #DB with RFLAGS.TF=1, and STI or
MOVSS blocking is active. Setting the flag is necessary to make VM-Entry
consistency checks happy, as VMX has an invariant that if RFLAGS.TF is
set and STI/MOVSS blocking is true, then the previous instruction must
have been STI or MOV/POP, and therefore a single-step #DB must be pending
since the RFLAGS.TF cannot have been set by the previous instruction,
i.e. the one instruction delay after setting RFLAGS.TF must have already
expired.
Normally, the CPU sets vmcs.GUEST_PENDING_DBG_EXCEPTIONS.BS appropriately
when recording guest state as part of a VM-Exit, but #DB VM-Exits
intentionally do not treat the #DB as "guest state" as interception of
the #DB effectively makes the #DB host-owned, thus KVM needs to manually
set PENDING_DBG.BS when forwarding/re-injecting the #DB to the guest.
Note, although this bug can be triggered by guest userspace, doing so
requires IOPL=3, and guest userspace running with IOPL=3 has full access
to all I/O ports (from the guest's perspective) and can crash/reboot the
guest any number of ways. IOPL=3 is required because STI blocking kicks
in if and only if RFLAGS.IF is toggled 0=>1, and if CPL>IOPL, STI either
takes a #GP or modifies RFLAGS.VIF, not RFLAGS.IF.
MOVSS blocking can be initiated by userspace, but can be coincident with
a #DB if and only if DR7.GD=1 (General Detect enabled) and a MOV DR is
executed in the MOVSS shadow. MOV DR #GPs at CPL>0, thus MOVSS blocking
is problematic only for CPL0 (and only if the guest is crazy enough to
access a DR in a MOVSS shadow). All other sources of #DBs are either
suppressed by MOVSS blocking (single-step, code fetch, data, and I/O),
are mutually exclusive with MOVSS blocking (T-bit task switch), or are
already handled by KVM (ICEBP, a.k.a. INT1).
This bug was originally found by running tests[1] created for XSA-308[2].
Note that Xen's userspace test emits ICEBP in the MOVSS shadow, which is
presumably why the Xen bug was deemed to be an exploitable DOS from guest
userspace. KVM already handles ICEBP by skipping the ICEBP instruction
and thus clears MOVSS blocking as a side effect of its "emulation".
[1] http://xenbits.xenproject.org/docs/xtf/xsa-308_2main_8c_source.html
[2] https://xenbits.xen.org/xsa/advisory-308.html
Reported-by: David Woodhouse <dwmw2@infradead.org>
Reported-by: Alexander Graf <graf@amazon.de>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220120000624.655815-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Full equality check of CPUID data on update (kvm_cpuid_check_equal()) may
fail for SGX enabled CPUs as CPUID.(EAX=0x12,ECX=1) is currently being
mangled in kvm_vcpu_after_set_cpuid(). Move it to
__kvm_update_cpuid_runtime() and split off cpuid_get_supported_xcr0()
helper as 'vcpu->arch.guest_supported_xcr0' update needs (logically)
to stay in kvm_vcpu_after_set_cpuid().
Cc: stable@vger.kernel.org
Fixes: feb627e8d6f6 ("KVM: x86: Forbid KVM_SET_CPUID{,2} after KVM_RUN")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220124103606.2630588-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 14243b387137 ("KVM: x86/xen: Add KVM_IRQ_ROUTING_XEN_EVTCHN and
event channel delivery") adds superfluous .fixup usage after the whole
.fixup section was removed in commit e5eefda5aa51 ("x86: Remove .fixup
section").
Fixes: 14243b387137 ("KVM: x86/xen: Add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery")
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220123124219.GH20638@worktop.programming.kicks-ass.net>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Zero vmcs.HOST_IA32_SYSENTER_ESP when initializing *constant* host state
if and only if SYSENTER cannot be used, i.e. the kernel is a 64-bit
kernel and is not emulating 32-bit syscalls. As the name suggests,
vmx_set_constant_host_state() is intended for state that is *constant*.
When SYSENTER is used, SYSENTER_ESP isn't constant because stacks are
per-CPU, and the VMCS must be updated whenever the vCPU is migrated to a
new CPU. The logic in vmx_vcpu_load_vmcs() doesn't differentiate between
"never loaded" and "loaded on a different CPU", i.e. setting SYSENTER_ESP
on VMCS load also handles setting correct host state when the VMCS is
first loaded.
Because a VMCS must be loaded before it is initialized during vCPU RESET,
zeroing the field in vmx_set_constant_host_state() obliterates the value
that was written when the VMCS was loaded. If the vCPU is run before it
is migrated, the subsequent VM-Exit will zero out MSR_IA32_SYSENTER_ESP,
leading to a #DF on the next 32-bit syscall.
double fault: 0000 [#1] SMP
CPU: 0 PID: 990 Comm: stable Not tainted 5.16.0+ #97
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
EIP: entry_SYSENTER_32+0x0/0xe7
Code: <9c> 50 eb 17 0f 20 d8 a9 00 10 00 00 74 0d 25 ff ef ff ff 0f 22 d8
EAX: 000000a2 EBX: a8d1300c ECX: a8d13014 EDX: 00000000
ESI: a8f87000 EDI: a8d13014 EBP: a8d12fc0 ESP: 00000000
DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068 EFLAGS: 00210093
CR0: 80050033 CR2: fffffffc CR3: 02c3b000 CR4: 00152e90
Fixes: 6ab8a4053f71 ("KVM: VMX: Avoid to rdmsrl(MSR_IA32_SYSENTER_ESP)")
Cc: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220122015211.1468758-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Nullify svm_x86_ops.vcpu_(un)blocking if AVIC/APICv is disabled as the
hooks are necessary only to clear the vCPU's IsRunning entry in the
Physical APIC and to update IRTE entries if the VM has a pass-through
device attached.
Opportunistically rename the helpers to clarify their AVIC relationship.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move svm_hardware_setup() below svm_x86_ops so that KVM can modify ops
during setup, e.g. the vcpu_(un)blocking hooks can be nullified if AVIC
is disabled or unsupported.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Drop avic_set_running() in favor of calling avic_vcpu_{load,put}()
directly, and modify the block+put path to use preempt_disable/enable()
instead of get/put_cpu(), as it doesn't actually care about the current
pCPU associated with the vCPU. Opportunistically add lockdep assertions
as being preempted in avic_vcpu_put() would lead to consuming stale data,
even though doing so _in the current code base_ would not be fatal.
Add a much needed comment explaining why svm_vcpu_blocking() needs to
unload the AVIC and update the IRTE _before_ the vCPU starts blocking.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
When waking vCPUs in the posted interrupt wakeup handling, do exactly
that and no more. There is no need to kick the vCPU as the wakeup
handler just needs to get the vCPU task running, and if it's in the guest
then it's definitely running.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move the fallback "wake_up" path into the helper to trigger posted
interrupt helper now that the nested and non-nested paths are identical.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Refactor the posted interrupt helper to take the desired notification
vector instead of a bool so that the callers are self-documenting.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Replace the full "kick" with just the "wake" in the fallback path when
triggering a virtual interrupt via a posted interrupt fails because the
guest is not IN_GUEST_MODE. If the guest transitions into guest mode
between the check and the kick, then it's guaranteed to see the pending
interrupt as KVM syncs the PIR to IRR (and onto GUEST_RVI) after setting
IN_GUEST_MODE. Kicking the guest in this case is nothing more than an
unnecessary VM-Exit (and host IRQ).
Opportunistically update comments to explain the various ordering rules
and barriers at play.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Don't bother updating the Physical APIC table or IRTE when loading a vCPU
that is blocking, i.e. won't be marked IsRun{ning}=1, as the pCPU is
queried if and only if IsRunning is '1'. If the vCPU was migrated, the
new pCPU will be picked up when avic_vcpu_load() is called by
svm_vcpu_unblocking().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-15-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use kvm_vcpu_is_blocking() to determine whether or not the vCPU should be
marked running during avic_vcpu_load(). Drop avic_is_running, which
really should have been named "vcpu_is_not_blocking", as it tracked if
the vCPU was blocking, not if it was actually running, e.g. it was set
during svm_create_vcpu() when the vCPU was obviously not running.
This is technically a teeny tiny functional change, as the vCPU will be
marked IsRunning=1 on being reloaded if the vCPU is preempted between
svm_vcpu_blocking() and prepare_to_rcuwait(). But that's a benign change
as the vCPU will be marked IsRunning=0 when KVM voluntarily schedules out
the vCPU.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove handling of KVM_REQ_APICV_UPDATE from svm_vcpu_unblocking(), it's
no longer needed as it was made obsolete by commit df7e4827c549 ("KVM:
SVM: call avic_vcpu_load/avic_vcpu_put when enabling/disabling AVIC").
Prior to that commit, the manual check was necessary to ensure the AVIC
stuff was updated by avic_set_running() when a request to enable APICv
became pending while the vCPU was blocking, as the request handling
itself would not do the update. But, as evidenced by the commit, that
logic was flawed and subject to various races.
Now that svm_refresh_apicv_exec_ctrl() does avic_vcpu_load/put() in
response to an APICv status change, drop the manual check in the
unblocking path.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Drop the avic_vcpu_is_running() check when waking vCPUs in response to a
VM-Exit due to incomplete IPI delivery. The check isn't wrong per se, but
it's not 100% accurate in the sense that it doesn't guarantee that the vCPU
was one of the vCPUs that didn't receive the IPI.
The check isn't required for correctness as blocking == !running in this
context.
From a performance perspective, waking a live task is not expensive as the
only moderately costly operation is a locked operation to temporarily
disable preemption. And if that is indeed a performance issue,
kvm_vcpu_is_blocking() would be a better check than poking into the AVIC.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211208015236.1616697-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Signal the AVIC doorbell iff the vCPU is running in the guest. If the vCPU
is not IN_GUEST_MODE, it's guaranteed to pick up any pending IRQs on the
next VMRUN, which unconditionally processes the vIRR.
Add comments to document the logic.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211208015236.1616697-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|