| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/kgene/linux-samsung into fixes
Merge "Samsung defconfig, actually exynos_defconig updates for v3.18" from
Kukjin Kim:
- enable USB gadget support
- enable Maxim77802 support
- enable Maxim77693 and I2C GPIO drivers
- enable Atmel maXTouch support
- enable SBS battery support
- enable Control Groups support
* tag 'samsung-defconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/kgene/linux-samsung:
ARM: exynos_defconfig: enable USB gadget support
ARM: exynos_defconfig: Enable Maxim 77693 and I2C GPIO drivers
ARM: exynos_defconfig: Enable SBS battery support
ARM: exynos_defconfig: Enable Control Groups support
ARM: exynos_defconfig: Enable Atmel maXTouch support
ARM: exynos_defconfig: Enable MAX77802
Signed-off-by: Olof Johansson <olof@lixom.net>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Enable USB gadget support without support for any specific gadgets to
more easily catch cases where a devices dts doesn't specify the usb
controllers dr_mode while it should.
Signed-off-by: Sjoerd Simons <sjoerd.simons@collabora.co.uk>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The Exynos System-on-Chips have ~7 distinctive I2C IO ports (exact
number depends on chip). However some integrated circuits on board, also
using I2C protocol for communication, can be connected to the SoC by
other GPIO. Enabling the I2C GPIO driver allows using such additional
integrated circuits.
An example of such chip using I2C and connected over GPIO to SoC is
Maxim 77693 MUIC on Trats2 board. The regulator driver of Maxim
77693 offers charger and safeout LDO (necessary for USB OTG).
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Many Exynos5 boards (e.g: Snow, Peach Pit and Pi) have
a SBS-compliant gas gauge battery. Enable to built it
so the needed support is available for these boards.
Suggested-by: Doug Anderson <dianders@chromium.org>
Signed-off-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk>
Reviewed-by: Doug Anderson <dianders@chromium.org>
Reviewed-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
systemd needs control groups support to be enabled in the
kernel so let's enable it by default since is quite likely
that a user-space with systemd will be used.
Signed-off-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Many Exynos based Chromebooks have an Atmel trackpad so enable
support for it by default will make easier for users.
Signed-off-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Enabled MAX77802 pmic for exynos systems.
One config USB_ANNOUNCE_NEW_DEVICES to display device
information on connect.
Another config for I2C_CHARDEV to see i2c device nodes.
Signed-off-by: Vivek Gautam <gautam.vivek@samsung.com>
Signed-off-by: Javier Martinez Canillas <javier.martinez@collabora.co.uk>
Reviewed-by: Doug Anderson <dianders@chromium.org>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/kgene/linux-samsung into fixes
Merge "Samsung fixes for v3.18" from Kukjin Kim:
- fix ifdef around cpu_*_do_[suspend, resume] ops to check
CONFIG_ARM_CPU_SUSPEND and not CONFIG_PM_SLEEP
- fix exynos_defconfig build with PM_SLEEP=n and ARM_EXYNOS_CPUIDLE=n
- fix enabling Samsung PM debug functionality due to recently merged
patches and previous merge conflicts
- fix pull-up setting in sd4_width8 pin group for exynos4x12
* tag 'samsung-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/kgene/linux-samsung:
ARM: mm: Fix ifdef around cpu_*_do_[suspend, resume] ops
ARM: EXYNOS: Fix build with PM_SLEEP=n and ARM_EXYNOS_CPUIDLE=n
ARM: SAMSUNG: Restore Samsung PM Debug functionality
ARM: dts: Fix pull setting in sd4_width8 pin group for exynos4x12
Signed-off-by: Olof Johansson <olof@lixom.net>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Ifdef around cpu_\name\()_do_suspend and cpu_\name\()_do_resume
ops in proc-macros.S should check for CONFIG_ARM_CPU_SUSPEND and
not CONFIG_PM_SLEEP. Fix it.
[ Please note that cpu_v7_do_[suspend,resume] code in proc-v7.S
already correctly checks for CONFIG_ARM_CPU_SUSPEND, same is
true for functions for other architectures. ]
This fix is needed for decoupling suspend/resume and advanced
cpuidle support on Exynos platform (next patch fixes build for
config with CONFIG_PM_SLEEP=n and CONFIG_ARM_EXYNOS_CPUIDLE=y).
If this fix is not present then the following OOPS happens on
the first attempt to go into advanced cpuidle mode (AFTR):
[ 22.244143] Unable to handle kernel NULL pointer dereference at virtual address 00000000
[ 22.250759] pgd = c0004000
[ 22.253445] [00000000] *pgd=00000000
[ 22.257012] Internal error: Oops: 80000007 [#1] PREEMPT SMP ARM
[ 22.262906] Modules linked in:
[ 22.265949] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 3.16.0-next-20140811-dirty #730
[ 22.273757] task: c05dce68 ti: c05d2000 task.ti: c05d2000
[ 22.279139] PC is at 0x0
[ 22.281661] LR is at __cpu_suspend_save+0x4c/0xa8
[ 22.286344] pc : [<00000000>] lr : [<c00125e0>] psr: a0000093
[ 22.286344] sp : c05d3ef4 ip : c05da414 fp : 00000001
[ 22.297799] r10: c05da414 r9 : c0609cb0 r8 : 0000000f
[ 22.303008] r7 : c05da444 r6 : 00000038 r5 : ea802c00 r4 : c05d3f14
[ 22.309517] r3 : 00000000 r2 : c05d3f4c r1 : 00000038 r0 : c05d3f20
[ 22.316029] Flags: NzCv IRQs off FIQs on Mode SVC_32 ISA ARM Segment kernel
[ 22.323406] Control: 10c5387d Table: 69d5404a DAC: 00000015
[ 22.329135] Process swapper/0 (pid: 0, stack limit = 0xc05d2240)
[ 22.335124] Stack: (0xc05d3ef4 to 0xc05d4000)
[ 22.339466] 3ee0: ea802c00 00000038 c05d3f4c
[ 22.347626] 3f00: 00000000 00000007 c00123bc 00000000 c001d468 6a888000 c05d3f4c 80000000
[ 22.355785] 3f20: 00000007 c003d3a0 0000193d eaf9dde4 eaf9dde4 c02ef0c8 c000969c fffffffe
[ 22.363944] 3f40: 00000000 c0037b54 eaf9dbb8 e9d1a380 00000000 c001d468 c0609cb0 00000000
[ 22.372103] 3f60: c0609cb0 c061649e 00000001 c001250c eaf9dbb8 00000001 c0609cb0 c001d618
[ 22.380262] 3f80: c001d5d0 c02ef56c 2d9d2e1e 00000005 eaf9dbb8 c02edcc4 2d9d2e1e 00000005
[ 22.388421] 3fa0: c040446c c05da4ec c040446c eaf9dbb8 c05cfbb0 c004c580 c05dce68 c05b3ae8
[ 22.396580] 3fc0: 00000000 c058bb24 ffffffff ffffffff c058b5e4 00000000 00000000 c05b3ae8
[ 22.404740] 3fe0: c0616994 c05da47c c05b3ae4 c05ddeec 4000406a 40008074 00000000 00000000
[ 22.412909] [<c00125e0>] (__cpu_suspend_save) from [<c00123bc>] (__cpu_suspend+0x5c/0x70)
[ 22.421074] [<c00123bc>] (__cpu_suspend) from [<c05d3f4c>] (init_thread_union+0x1f4c/0x2000)
[ 22.429479] Code: bad PC value
[ 22.432518] ---[ end trace fb90ebf4217d0ad9 ]---
[ 22.437116] Kernel panic - not syncing: Attempted to kill the idle task!
[ 22.443800] Rebooting in 5 seconds..
This patch has been tested on Exynos4210 based Origen board.
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Acked-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Fix building of exynos_defconfig with disabled CONFIG_PM_SLEEP by
adding checking whether Exynos cpuidle support is enabled before
accessing exynos_enter_aftr.
The build error message:
arch/arm/mach-exynos/built-in.o:(.data+0x74): undefined reference to `exynos_enter_aftr'
make: *** [vmlinux] Error 1
This patch has been tested on Exynos4210 based Origen board.
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Acked-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Due to recently merged patches and previous merge conflicts, the Samsung
PM Debug functionality no longer can be enabled. This patch fixes
incorrect dependency of SAMSUNG_PM_DEBUG on an integer symbol and adds
missing header inclusion.
Signed-off-by: Tomasz Figa <t.figa@samsung.com>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
|
| |/
| |
| |
| |
| |
| |
| |
| |
| | |
The group has the samsung,pin-pud property set to 4, which is not a
correct value. This patch fixes this by replacing it with 3, which is
the correct value for pull-up.
Signed-off-by: Tomasz Figa <t.figa@samsung.com>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap into fixes
Merge "Two omap fixes for v3.18 merge window" from Tony Lindgren:
Two omap fixes for issues noticed during the merge window:
- We need to enable ARM errata 430973 for omap3
- The smc91x on some early n900 boards need to be disabled
for now until the dependencies to specific a bootloader
version are fixed
* tag 'fixes-for-v3.18-merge-window' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap:
ARM: dts: Disable smc91x on n900 until bootloader dependency is removed
ARM: omap2plus_defconfig: Enable ARM erratum 430973 for omap3
Signed-off-by: Olof Johansson <olof@lixom.net>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
I added smc91x support but turns out we currently do not set the
smc91x timings in gpmc.c but rely on the bootloader timings. This
produces the following error unless the smc91x GPMC timings are
initialized by the bootloader:
Unhandled fault: external abort on non-linefetch (0x1008) at 0xd080630e
...
[<c04067fc>] (smc_drv_probe) from [<c038e9c4>] (platform_drv_probe+0x2c/0x5c)
[<c038e9c4>] (platform_drv_probe) from [<c038d450>] (driver_probe_device+0x104/0x22c)
[<c038d450>] (driver_probe_device) from [<c038d60c>] (__driver_attach+0x94/0x98)
[<c038d60c>] (__driver_attach) from [<c038bc3c>] (bus_for_each_dev+0x54/0x88)
[<c038bc3c>] (bus_for_each_dev) from [<c038cc3c>] (bus_add_driver+0xd8/0x1d8)
[<c038cc3c>] (bus_add_driver) from [<c038dd74>] (driver_register+0x78/0xf4)
[<c038dd74>] (driver_register) from [<c0008924>] (do_one_initcall+0x80/0x1c0)
[<c0008924>] (do_one_initcall) from [<c0852d9c>] (kernel_init_freeable+0x1b8/0x28c)
[<c0852d9c>] (kernel_init_freeable) from [<c05ce86c>] (kernel_init+0x8/0xec)
[<c05ce86c>] (kernel_init) from [<c000e728>] (ret_from_fork+0x14/0x2c)
Let's fix the issue by disabling the smc91x module for now until we
have sorted out the issues in gpmc.c.
Reported-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Kevin Hilman <khilman@linaro.org>
Signed-off-by: Tony Lindgren <tony@atomide.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Somehow we don't have this set in omap2plus_defconfig. Without this
apps can segfault randomly on omap3. I can reproduce this easily
on am37xx-evm by doing apt-get update over NFSroot.
Tested-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Commit 97a13e5289ba ('net: phy: mdio-sun4i: don't select REGULATOR') removed
the select of REGULATOR, which means that it now has to be explicitly
enabled in the defconfig or things won't work very well.
In particular, this fixes a problem with SD/MMC not probing on my A31-based
board.
Cc: Beniamino Galvani <b.galvani@gmail.com>
Signed-off-by: Olof Johansson <olof@lixom.net>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
Pull percpu consistent-ops changes from Tejun Heo:
"Way back, before the current percpu allocator was implemented, static
and dynamic percpu memory areas were allocated and handled separately
and had their own accessors. The distinction has been gone for many
years now; however, the now duplicate two sets of accessors remained
with the pointer based ones - this_cpu_*() - evolving various other
operations over time. During the process, we also accumulated other
inconsistent operations.
This pull request contains Christoph's patches to clean up the
duplicate accessor situation. __get_cpu_var() uses are replaced with
with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr().
Unfortunately, the former sometimes is tricky thanks to C being a bit
messy with the distinction between lvalues and pointers, which led to
a rather ugly solution for cpumask_var_t involving the introduction of
this_cpu_cpumask_var_ptr().
This converts most of the uses but not all. Christoph will follow up
with the remaining conversions in this merge window and hopefully
remove the obsolete accessors"
* 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits)
irqchip: Properly fetch the per cpu offset
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix
ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write.
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
Revert "powerpc: Replace __get_cpu_var uses"
percpu: Remove __this_cpu_ptr
clocksource: Replace __this_cpu_ptr with raw_cpu_ptr
sparc: Replace __get_cpu_var uses
avr32: Replace __get_cpu_var with __this_cpu_write
blackfin: Replace __get_cpu_var uses
tile: Use this_cpu_ptr() for hardware counters
tile: Replace __get_cpu_var uses
powerpc: Replace __get_cpu_var uses
alpha: Replace __get_cpu_var
ia64: Replace __get_cpu_var uses
s390: cio driver &__get_cpu_var replacements
s390: Replace __get_cpu_var uses
mips: Replace __get_cpu_var uses
MIPS: Replace __get_cpu_var uses in FPU emulator.
arm: Replace __this_cpu_ptr with raw_cpu_ptr
...
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
A commit in linux-next was causing boot to fail and bisection
identified the patch 4ba2968420fa ("percpu: Resolve ambiguities in
__get_cpu_var/cpumask_var_"). One of the changes in that patch looks
very suspicious. Reverting the full patch fixes boot as does this
fixlet.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
__this_cpu_write.
There must be an explit statement to modify the percpu variable after
the conversion of the sn_nodpda macro to use this_cpu_read.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Compile-tested-by: Guenter Roeck <linux@roeck-us.net>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
__get_cpu_var can paper over differences in the definitions of
cpumask_var_t and either use the address of the cpumask variable
directly or perform a fetch of the address of the struct cpumask
allocated elsewhere. This is important particularly when using per cpu
cpumask_var_t declarations because in one case we have an offset into
a per cpu area to handle and in the other case we need to fetch a
pointer from the offset.
This patch introduces a new macro
this_cpu_cpumask_var_ptr()
that is defined where cpumask_var_t is defined and performs the proper
actions. All use cases where __get_cpu_var is used with cpumask_var_t
are converted to the use of this_cpu_cpumask_var_ptr().
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This reverts commit 5828f666c069af74e00db21559f1535103c9f79a due to
build failure after merging with pending powerpc changes.
Link: http://lkml.kernel.org/g/20140827142243.6277eaff@canb.auug.org.au
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: sparclinux@vger.kernel.org
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Replace the single use of __get_cpu_var in avr32 with
__this_cpu_write.
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Acked-by: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
CC: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | | |
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
tj: Folded a fix patch.
http://lkml.kernel.org/g/alpine.DEB.2.11.1408172143020.9652@gentwo.org
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: Paul Mackerras <paulus@samba.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
CC: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Acked-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: linux-ia64@vger.kernel.org
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
this_cpu_inc(y)
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
CC: linux390@de.ibm.com
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The use of __this_cpu_inc() requires a fundamental integer type, so
change the type of all the counters to unsigned long, which is the
same width they were before, but not wrapped in local_t.
Signed-off-by: David Daney <david.daney@cavium.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
__this_cpu_ptr is being phased out. So replace with raw_cpu_ptr.
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Use __this_cpu_read instead.
Cc: Hedi Berriche <hedi@sgi.com>
Cc: Mike Travis <travis@sgi.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| | |/
| |/|
| | |
| | |
| | |
| | |
| | |
| | | |
Replace __get_cpu_var uses for address calculation with this_cpu_ptr().
Acked-by: James Hogan <james.hogan@imgtec.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.linaro.org/people/mike.turquette/linux
Pull clock tree updates from Mike Turquette:
"The clk tree changes for 3.18 are dominated by clock drivers. Mostly
fixes and enhancements to existing drivers as well as new drivers.
This tag contains a bit more arch code than I usually take due to some
OMAP2+ changes. Additionally it contains the restart notifier
handlers which are merged as a dependency into several trees.
The PXA changes are the only messy part. Due to having a stable tree
I had to revert one patch and follow up with one more fix near the tip
of this tag. Some dead code is introduced but it will soon become
live code after 3.18-rc1 is released as the rest of the PXA family is
converted over to the common clock framework.
Another trend in this tag is that multiple vendors have started to
push the complexity of changing their CPU frequency into the clock
driver, whereas this used to be done in CPUfreq drivers.
Changes to the clk core include a generic gpio-clock type and a
clk_set_phase() function added to the top-level clk.h api. Due to
some confusion on the fbdev mailing list the kernel boot parameters
documentation was updated to further explain the clk_ignore_unused
parameter, which is often required by users of the simplefb driver.
Finally some fixes to the locking around the clock debugfs stuff was
done to prevent deadlocks when interacting with other subsystems."
* tag 'clk-for-linus-3.18' of git://git.linaro.org/people/mike.turquette/linux: (99 commits)
clk: pxa clocks build system fix
Revert "arm: pxa: Transition pxa27x to clk framework"
clk: samsung: register restart handlers for s3c2412 and s3c2443
clk: rockchip: add restart handler
clk: rockchip: rk3288: i2s_frac adds flag to set parent's rate
doc/kernel-parameters.txt: clarify clk_ignore_unused
arm: pxa: Transition pxa27x to clk framework
dts: add devicetree bindings for pxa27x clocks
clk: add pxa27x clock drivers
arm: pxa: add clock pll selection bits
clk: dts: document pxa clock binding
clk: add pxa clocks infrastructure
clk: gpio-gate: Ensure gpiod_ APIs are prototyped
clk: ti: dra7-atl-clock: Mark the device as pm_runtime_irq_safe
clk: ti: LLVMLinux: Move __init outside of type definition
clk: ti: consider the fact that of_clk_get() might return an error
clk: ti: dra7-atl-clock: fix a memory leak
clk: ti: change clock init to use generic of_clk_init
clk: hix5hd2: add I2C clocks
clk: hix5hd2: add watchdog0 clocks
...
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This reverts commit 9ff25d7b58d8a4374886843ed3ed21f1ef17bf16.
Originally reported on the kernel-build-reports mailing list[0]. The
problem is caused by kernel configs that select both pxa25x and pxa27x
such as cm_x2xx_defconfig and palmz72_defconfig. The short term solution
is to revert the patch introducing the failure. Longer term, all the PXA
chips will be converted to the common clock framework allowing support
for various PXA chips to build into a single image.
Reverting just this one patch does introduce some dead code into the
kernel, but that is offset by making it easier to convert the remaining
PXA platforms to the clock framework.
[0] http://lists.linaro.org/pipermail/kernel-build-reports/2014-October/005576.html
Signed-off-by: Mike Turquette <mturquette@linaro.org>
|
| |\ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/mmind/linux-rockchip into clk-next
Allow parent rate changes for i2s on rk3288
and rockchip as well as s3c24xx restart handlers.
|
| | |\ \ \
| | | | | |
| | | | | |
| | | | | | |
Immutable branch with restart handler patches for v3.18
|
| |\ \ \ \ \ |
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Transition the PXA27x CPUs to the clock framework.
This transition still enables legacy platforms to run without device
tree as before, ie relying on platform data encoded in board specific
files.
Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr>
Signed-off-by: Mike Turquette <mturquette@linaro.org>
|
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
Add the clock tree description for the PXA27x based boards.
Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr>
Signed-off-by: Mike Turquette <mturquette@linaro.org>
|
| | | |_|/ /
| | |/| | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Add missing bits for CCCR and CCSR :
- CPLL and PPLL selection, either full speed or 13MHz
- CPSR masks
Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr>
Signed-off-by: Mike Turquette <mturquette@linaro.org>
|
| |\ \ \ \ \
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tfiga/samsung-clk into clk-next
Samsung clock patches for v3.18
1) non-critical fixes (without the need to push to stable)
fa0111be4ff3 clk: samsung: exynos4: remove duplicate div_core2 divider clock instantiation
b511593d7165 clk: samsung: exynos4: fix g3d clocks
c14254300131 clk: samsung: exynos4: add missing smmu_g2d clock and update comments
22842d244af3 clk: samsung: exynos5260: fix typo in clock name
e82ba578ccde clk: samsung: exynos3250: fix width field of mout_mmc0/1
59037b92f440 clk: samsung: exynos3250: fix width and shift of div_spi0_isp clock
5ce37f266650 clk: samsung: exynos3250: fix mout_cam_blk parent list
2) Clock driver extensions
07ccf02ba5c3 dt-bindings: clk: samsung: Document the DMC domain of Exynos3250 CMU
d0e73eaf1925 ARM: dts: exynos3250: Add CMU node for DMC domain clocks
e3c3f19bc618 clk: samsung: exynos3250: Register DMC clk provider
4676f0aab9dc clk: samsung: exynos4: add support for MOUT_HDMI and MOUT_MIXER clocks
|
| | | |/ / /
| | |/| | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Add CMU (Clock Management Unit) node for DMC (Dynamic Memory Controller)
domain clocks on Exynos3250.
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Signed-off-by: Tomasz Figa <tomasz.figa@gmail.com>
|
| |\ \ \ \ \
| | | | | | |
| | | | | | |
| | | | | | | |
clk-next
|
| | | |/ / /
| | |/| | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Previously, the TI clock driver initialized all the clocks hierarchically
under each separate clock provider node. Now, each clock that requires
IO access will instead check their parent node to find out which IO range
to use.
This patch allows the TI clock driver to use a few new features provided
by the generic of_clk_init, and also allows registration of clock nodes
outside the clock hierarchy (for example, any external clocks.)
Signed-off-by: Tero Kristo <t-kristo@ti.com>
Cc: Mike Turquette <mturquette@linaro.org>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Ujfalusi <peter.ujfalusi@ti.com>
Cc: Jyri Sarha <jsarha@ti.com>
Cc: Stefan Assmann <sassmann@kpanic.de>
Acked-by: Tony Lindgren <tony@atomide.com>
|
| |\ \ \ \ \
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/mripard/linux into clk-next
Allwinner Clocks Additions for 3.18
The most important part of this serie is the addition of the phase API to
handle the MMC clocks in the Allwinner SoCs.
Apart from that, the A23 gained a new mbus driver, and there's a fix for a
incorrect divider table on the APB0 clock.
|
| | |/ / / /
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Now that we have a compatible of its own for the mbus clock, switch to it.
Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com>
Acked-by: Hans de Goede <hdegoede@redhat.com>
|