| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/scottwood/linux into next
Freescale updates from Scott:
"Highlights include more 8xx optimizations, device tree updates,
and MVME7100 support."
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The asm-offsets mechanism generates signed numbers, even if the
input value is explicitly unsigned. This causes a problem with
older binutils (e.g. 2.23), which sign-extend a negative number
when @h is applied. Thus, this instruction:
cmpli cr0, r11, VIRT_IMMR_BASE@h
resulted in this:
Error: operand out of range (0xfffffff0 is not between 0x00000000 and
0x0000ffff)
By casting to a larger type, we can force the output to be expressed
as a positive number.
Signed-off-by: Scott Wood <oss@buserror.net>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
CONFIG_PIN_TLB maps IMMR area and the first 24 Mbytes of memory.
In some circunstances it might be more interesting to not map
IMMR but map 32 Mbytes of memory instead.
Therefore we add config option CONFIG_PIN_TLB_IMMR to select if
IMMR shall be pinned or not, hence whether we pin 24 or 32 Mbytes of RAM
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
On recent kernels, with some debug options like for instance
CONFIG_LOCKDEP, the BSS requires more than 8M memory, allthough
the kernel code fits in the first 8M.
Today, it is necessary to activate CONFIG_PIN_TLB to get more than 8M
at startup, allthough pinning TLB is not necessary for that.
We could have inconditionaly mapped 16 or 24M bytes at startup
but some old hardware only have 8M and mapping non-existing RAM
would be an issue due to speculative accesses.
With the preceding patch however, the TLB entries are populated on
demand. By setting up the TLB miss handler to handle up to 24M until
the handler is patched for the entire memory space, it is possible
to allow access up to more memory without mapping non-existing RAM.
It is therefore not needed anymore to map memory data at all
at startup. It will be handled by the TLB miss handler.
One might still want to PIN the IMMR and the first 24M of RAM.
It is now possible to do it in the C memory initialisation
functions. In addition, we now know how much memory we have
when we do it, so we are able to adapt the pining to the
real amount of memory available. So boards with less than 24M
can now also benefit from PIN_TLB.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Instead of using the first level page table to define mappings for
the linear memory space, we can use direct mapping from the TLB
handling routines. This has several advantages:
* No need to read the tables at each TLB miss
* No issue in 16k pages mode where the 1st level table maps 64 Mbytes
The size of the available linear space is known at system startup.
In order to avoid data access at each TLB miss to know the memory
size, the TLB routine is patched at startup with the proper size
This patch provides a 10%-15% improvment of TLB miss handling for
kernel addresses
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Bootloader may have pinned some TLB entries so the kernel must
unpin them before flushing TLBs with tlbia otherwise pinned TLB
entries won't get flushed
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| |
| | |
IMMR is now mapped by a fixed 512k page managed by the TLB miss
handler so it is not anymore necessary to PIN TLBs
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Once the linear memory space has been mapped with 8Mb pages, as
seen in the related commit, we get 11 millions DTLB missed during
the reference 600s period. 77% of the misses are on user addresses
and 23% are on kernel addresses (1 fourth for linear address space
and 3 fourth for virtual address space)
Traditionaly, each driver manages one computer board which has its
own components with its own memory maps.
But on embedded chips like the MPC8xx, the SOC has all registers
located in the same IO area.
When looking at ioremaps done during startup, we see that
many drivers are re-mapping small parts of the IMMR for their own use
and all those small pieces gets their own 4k page, amplifying the
number of TLB misses: in our system we get 0xff000000 mapped 31 times
and 0xff003000 mapped 9 times.
Even if each part of IMMR was mapped only once with 4k pages, it would
still be several small mappings towards linear area.
This patch maps the IMMR with a single 512k page.
With this patch applied, the number of DTLB misses during the 10 min
period is reduced to 11.8 millions for a duration of 5.8s, which
represents 2% of the non-idle time hence yet another 10% reduction.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Memory: 124428K/131072K available (3748K kernel code, 188K rwdata,
648K rodata, 508K init, 290K bss, 6644K reserved)
Kernel virtual memory layout:
* 0xfffdf000..0xfffff000 : fixmap
* 0xfde00000..0xfe000000 : consistent mem
* 0xfddf6000..0xfde00000 : early ioremap
* 0xc9000000..0xfddf6000 : vmalloc & ioremap
SLUB: HWalign=16, Order=0-3, MinObjects=0, CPUs=1, Nodes=1
Today, IMMR is mapped 1:1 at startup
Mapping IMMR 1:1 is just wrong because it may overlap with another
area. On most mpc8xx boards it is OK as IMMR is set to 0xff000000
but for instance on EP88xC board, IMMR is at 0xfa200000 which
overlaps with VM ioremap area
This patch fixes the virtual address for remapping IMMR with the fixmap
regardless of the value of IMMR.
The size of IMMR area is 256kbytes (CPM at offset 0, security engine
at offset 128k) so a 512k page is enough
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch provides VIRT_CPU_ACCOUTING to PPC32 architecture.
PPC32 doesn't have the PACA structure, so we use the task_info
structure to store the accounting data.
In order to reuse on PPC32 the PPC64 functions, all u64 data has
been replaced by 'unsigned long' so that it is u32 on PPC32 and
u64 on PPC64
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| | |
add qe node to t104xqds.dtsi
Signed-off-by: Zhao Qiang <qiang.zhao@nxp.com>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| | |
add qe node to t104xrdb.dtsi
Signed-off-by: Zhao Qiang <qiang.zhao@nxp.com>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| | |
add qe node to t104xd4rdb.dtsi and t1040si-post.dtsi.
Signed-off-by: Zhao Qiang <qiang.zhao@nxp.com>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Now that the FMAN mac driver has been merged the fman node is relevant.
The kmcoge4 board implements 3 ethernet interfaces, 1 with a RGMII phy
and 2 with fixed 1 Giga SGMII links.
Signed-off-by: Valentin Longchamp <valentin.longchamp@keymile.com>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch disables deprecated IDE subsystem in pq2fads_defconfig
(no IDE host drivers are selected in this config so there is no valid
reason to enable IDE subsystem itself).
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Add support for the Artesyn MVME7100 Single Board Computer.
The MVME7100 is a 6U form factor VME64 computer with:
- A two e600 cores Freescale MPC8641D CPU
- 2 GB of DDR2 onboard memory
- Four Gigabit Ethernets
- Five 16550 compatible UARTs
- One USB 2.0 port
- Two PCI/PCI eXpress Mezzanine Card (PMC/XMC) Slots
- A DS1375 Real Time Clock (RTC)
- 512 KB of Non-Volatile Memory (NVRAM)
- Two 64 KB EEPROMs
- 128 MB NOR and 4/8 GB NAND Flash
This patch is based on linux-4.7-rc1 and has been only boot tested.
Limitations:
This patch covers only models 171 and 173
No plans to support CPLD timers
Know issues:
All four PHYs work in polling mode
Configuration is missing for:
PCI IDSEL and PCI Interrupt definition
Support is missing for:
Cache and memory controllers (which are very similar to the 85xx ones
but right now I don't know if we can re-use their support)
Watchdog, USB, NVRAM, NOR, NAND, EEPROMs, VME, PMC/XMC and RTC
Signed-off-by: Alessio Igor Bogani <alessio.bogani@elettra.eu>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Add usb aliases for consistency with the other platforms.
Signed-off-by: Laurentiu Tudor <Laurentiu.Tudor@freescale.com>
Signed-off-by: Sriram Dash <sriram.dash@nxp.com>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| | |
Change USB controller version name to 2.5 in compatible string for T1040
Signed-off-by: Sriram Dash <sriram.dash@nxp.com>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If the SRAM region parameters are missing the SRAM driver
probing exits and the L2 region is configured as L2 cache
entirely. This is the expected default behaviour, so it
makes no sense to report it as an error.
Signed-off-by: Claudiu Manoil <claudiu.manoil@nxp.com>
Signed-off-by: Scott Wood <oss@buserror.net>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Currently IS_ENABLED() produces an expression surrounded by parentheses,
which allows this code to compile, generating eg:
else if (1 || 0)
hpte_init_native();
However a change to the macro in the kbuild tree will break this in
future by removing the parentheses.
Fixes: 7353644fa9df ("powerpc/mm: Fix build break when PPC_NATIVE=n")
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The comment explaining why we modify VRSAVE is misleading, glibc
does rely on the behaviour. Update the comment.
Signed-off-by: Anton Blanchard <anton@samba.org>
Reviewed-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| | |
We removed the BEAT support in 2015 in commit bf4981a00636 ("powerpc:
Remove the celleb support"). These externs are unused since then.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
hpte_init_lpar() is part of the pseries platform, so name it as such.
Move the fallback implementation for when PSERIES=n into the header,
dropping the weak implementation. The panic() is now handled by the
calling code.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The recent commit to rework the hash MMU setup broke the build when
CONFIG_PPC_NATIVE=n. Fix it by adding an IS_ENABLED() check before
calling hpte_init_native().
Removing the else clause opens the possibility that we don't set any
ops, which would probably lead to a strange crash later. So add a check
that we correctly initialised at least one member of the struct.
Fixes: 166dd7d3fbf2 ("powerpc/64: Move MMU backend selection out of platform code")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch provides the necessary infrastructure to allow drivers
to be automatically loaded via udev. It implements the minimum
required to be able to use module_cpu_feature_match() to trigger
the GENERIC_CPU_AUTOPROBE mechanisms.
The features exposed are a mirror of the cpu_user_features
(converted to an offset from a mask). This decision was made to
ensure that the behavior between features for module loading and
userspace are consistent.
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
[mpe: Only define the bits we currently need]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The iommu_table_ops::exchange() callback writes new TCE to the table and
returns old value and permission mask. The old TCE value is correctly
converted from BE to CPU endian; however permission mask was calculated
from BE value and therefore always returned DMA_NONE which could cause
memory leak on LE systems using VFIO SPAPR TCE IOMMU v1 driver.
This fixes pnv_tce_xchg() to have @oldtce a CPU endian.
Fixes: 05c6cfb9dce0 ("powerpc/iommu/powernv: Release replaced TCE")
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
__hugepte_alloc() uses kmem_cache_zalloc() to allocate a zeroed PTE
and proceeds to use the newly allocated PTE. Add a memory barrier to
make sure that the other CPUs see a properly initialized PTE.
Based on a fix suggested by James Dykman.
Reported-by: James Dykman <jdykman@us.ibm.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Tested-by: James Dykman <jdykman@us.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In the module loader we process relocations, and for long jumps we
generate trampolines (aka stubs). At the call site for one of these
trampolines we usually need to generate a load instruction to restore
the TOC pointer into r2.
There is one exception however, which is calls to mcount() using the
mprofile-kernel ABI, they handle the TOC inside the stub, and so for
them we do not generate a TOC load.
The bug is in how the code in restore_r2() decides if it needs to
generate the TOC load. It does so by looking for a nop following the
branch, and if it sees a nop, it replaces it with the load. In general
the compiler has no reason to generate a nop following the mcount()
call and so that check works OK.
However if we combine a jump label at the start of a function, with an
early return, such that GCC applies the shrink-wrapping optimisation, we
can then end up with an mcount call followed immediately by a nop.
However the nop is not there for a TOC load, it is for the jump label.
That confuses restore_r2() into replacing the jump label nop with a TOC
load, which in turn confuses ftrace into replacing the mcount call with
a b +8 (fixed in the previous commit). The end result is we jump over
the jump label, which if it was supposed to return means we incorrectly
run the body of the function.
We have seen this in practice with some yet-to-be-merged patches that
use jump labels more extensively.
The fix is relatively simple, in restore_r2() we check for an
mprofile-kernel style mcount() call first, before looking for the
presence of a nop.
Fixes: 153086644fd1 ("powerpc/ftrace: Add support for -mprofile-kernel ftrace ABI")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In __ftrace_make_nop() (the 64-bit version), we have code to deal with
two ftrace ABIs. There is the original ABI, which looks mostly like a
function call, and then the mprofile-kernel ABI which is just a branch.
The code tries to handle both cases, by looking for the presence of a
load to restore the TOC pointer (PPC_INST_LD_TOC). If we detect the TOC
load, we assume the call site is for an mcount() call using the old ABI.
That means we patch the mcount() call with a b +8, to branch over the
TOC load.
However if the kernel was built with mprofile-kernel, then there will
never be a call site using the original ftrace ABI. If for some reason
we do see a TOC load, then it's there for a good reason, and we should
not jump over it.
So split the code, using the existing CC_USING_MPROFILE_KERNEL. Kernels
built with mprofile-kernel will only look for, and expect, the new ABI,
and similarly for the original ABI.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
There is little enough differences now.
mpe: Add a/p/k/setup.h to contain the prototypes and empty versions of
functions we need, rather than using weak functions. Add a few other
empty versions to avoid as many #ifdefs as possible in the code.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| | |
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Do it right after probe_machine() since it's about testing ppc_md,
and put the test in the common code.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
It makes more sense to do it before intializing xmon() as xmon might
use the info in there. We do want to register the console early
though in case we want some functioning printk's in the cpu map setup.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| | |
Matches 64-bit. Also move the call to the same spot as ppc64
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| | |
And kill setup_system().
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Also remove the completely osbolete comment. We *do* look in the
device-tree.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| | |
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| | |
It is now called right after platform probe, so the probe function
can just do the job.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This converts all the 32-bit platforms to use the expanded device-tree
which is a pretty mechanical change. Unlike 64-bit, the 32-bit kernel
didn't rely on platform initializations to setup the MMU since it
sets it up entirely before probe_machine() so the move has comparatively
less consequences though it's a bigger patch.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We no long need the machine type that early, so we can move probe_machine()
to after the device-tree has been expanded. This will allow further
consolidation.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Anything in there will be overwritten, so it helps catching nasty
bugs if we check that it's indeed full of NULL's before we do so.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Moving probe_machine() to after mmu init will cause the ppc_md
fields relative to the hash table management to be overwritten.
Since we have essentially disconnected the machine type from
the hash backend ops, finish the job by moving them to a different
structure.
The only callback that didn't quite fix is update_partition_table
since this is not specific to hash, so I moved it to a standalone
variable for now. We can revisit later if needed.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Fix ppc64e build failure in kexec]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
pmac_declare_of_platform_devices() is already a machine initcall, thus
it won't be called on a non-powermac machine. Testing for chrp there
is pointless.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Instead, check for FW_FEATURE_SPLPAR. This should be roughtly equivalent
as all pseries machiens that can have an HEA also support SPLPAR and
no other machine type does.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Use the device-tree instead as we'll be moving probe_machine()
out of early_setup
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| | |
These days, memblocks is available later, so we can just allocate it
as part of iob_init.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| | |
We move it into early_mmu_init() based on firmware features. For PS3,
we have to move the setting of these into early_init_devtree().
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The SMU command buffer needs to be allocated below 2G using memblock.
In the past, this had to be done very early from the arch code as
memblock wasn't available past that point. That is no longer the
case though, smu_init() is called from setup_arch() when memblock
is still functional these days. So move the allocation to the
SMU driver itself.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The various calls to establish exception endianness and AIL are
now done from a single point using already established CPU and FW
feature bits to decide what to do.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We move the function itself to pseries/firmware.c and call it along
with almost all other flat device-tree parsers from early_init_devtree()
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Move #ifdefs into the header by providing pseries_probe_fw_features()]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|