summaryrefslogtreecommitdiffstats
path: root/block/blk-stat.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* blk-stat: make q->stats->lock irqsafeTejun Heo2020-09-021-6/+11
| | | | | | | | | | | blk-iocost calls blk_stat_enable_accounting() while holding an irqsafe lock which triggers a lockdep splat because q->stats->lock isn't irqsafe. Let's make it irqsafe. Signed-off-by: Tejun Heo <tj@kernel.org> Fixes: cd006509b0a9 ("blk-iocost: account for IO size when testing latencies") Cc: stable@vger.kernel.org # v5.8+ Signed-off-by: Jens Axboe <axboe@kernel.dk>
* blk-stat: Optimise blk_stat_add()Pavel Begunkov2019-10-081-3/+4
| | | | | | | | | blk_stat_add() calls {get,put}_cpu_ptr() in a loop, which entails overhead of disabling/enabling preemption. The loop is under RCU (i.e.short) anyway, so do get_cpu() in advance. Signed-off-by: Pavel Begunkov <asml.silence@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
* block: add SPDX tags to block layer files missing licensing informationChristoph Hellwig2019-05-011-0/+1
| | | | | | | | | Various block layer files do not have any licensing information at all. Add SPDX tags for the default kernel GPLv2 license to those. Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
* block: remove a few unused exportsChristoph Hellwig2018-11-151-4/+0
| | | | | | Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
* block: export blk_stat_enable_accounting()Omar Sandoval2018-09-281-0/+1
| | | | | | | Kyber will need this in a future change if it is built as a module. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
* blk-stat: export helpers for modifying blk_rq_statJosef Bacik2018-07-091-8/+8
| | | | | | | | | We need to use blk_rq_stat in the blkcg qos stuff, so export some of these helpers so they can be used by other things. Signed-off-by: Josef Bacik <jbacik@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
* block: consolidate struct request timestamp fieldsOmar Sandoval2018-05-091-3/+2
| | | | | | | | | | | | | | | | Currently, struct request has four timestamp fields: - A start time, set at get_request time, in jiffies, used for iostats - An I/O start time, set at start_request time, in ktime nanoseconds, used for blk-stats (i.e., wbt, kyber, hybrid polling) - Another start time and another I/O start time, used for cfq and bfq These can all be consolidated into one start time and one I/O start time, both in ktime nanoseconds, shaving off up to 16 bytes from struct request depending on the kernel config. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
* block: get rid of struct blk_issue_statOmar Sandoval2018-05-091-5/+2
| | | | | | | | | | | | | | | struct blk_issue_stat squashes three things into one u64: - The time the driver started working on a request - The original size of the request (for the io.low controller) - Flags for writeback throttling It turns out that on x86_64, we have a 4 byte hole in struct request which we can fill with the non-timestamp fields from blk_issue_stat, simplifying things quite a bit. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
* block: Protect queue flag changes with the queue lockBart Van Assche2018-03-081-3/+3
| | | | | | | | | | | | | | Since the queue flags may be changed concurrently from multiple contexts after a queue becomes visible in sysfs, make these changes safe by protecting these with the queue lock. Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Ming Lei <ming.lei@redhat.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
* block: Use the queue_flag_*() functions instead of open-coding theseBart Van Assche2018-03-081-3/+3
| | | | | | | | | | | | | | Except for changing the atomic queue flag manipulations that are protected by the queue lock into non-atomic manipulations, this patch does not change any functionality. Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Ming Lei <ming.lei@redhat.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
* treewide: setup_timer() -> timer_setup()Kees Cook2017-11-221-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
* blk-stat: delete useless codeShaohua Li2017-10-101-38/+7
| | | | | | | | | | | | Fix two issues: - the per-cpu stat flush is unnecessary, nobody uses per-cpu stat except sum it to global stat. We can do the calculation there. The flush just wastes cpu time. - some fields are signed int/s64. I don't see the point. Reviewed-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
* blk-stat: don't use this_cpu_ptr() in a preemptable sectionJens Axboe2017-05-101-7/+10
| | | | | | | | | | If PREEMPT_RCU is enabled, rcu_read_lock() isn't strong enough for us to use this_cpu_ptr() in that section. Use the safer get/put_cpu_ptr() variants instead. Reported-by: Mike Galbraith <efault@gmx.de> Fixes: 34dbad5d26e2 ("blk-stat: convert to callback-based statistics reporting") Signed-off-by: Jens Axboe <axboe@fb.com>
* blk-stat: kill blk_stat_rq_ddir()Jens Axboe2017-04-211-6/+0
| | | | | | | | No point in providing and exporting this helper. There's just one (real) user of it, just use rq_data_dir(). Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@fb.com>
* blk-stat: convert blk-stat bucket callback to signedStephen Bates2017-04-201-2/+4
| | | | | | | | | | | | | | | In order to allow for filtering of IO based on some other properties of the request than direction we allow the bucket function to return an int. If the bucket callback returns a negative do no count it in the stats accumulation. Signed-off-by: Stephen Bates <sbates@raithlin.com> Fixed up Kyber scheduler stat callback. Signed-off-by: Jens Axboe <axboe@fb.com>
* blk-throttle: add a mechanism to estimate IO latencyShaohua Li2017-03-281-1/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | User configures latency target, but the latency threshold for each request size isn't fixed. For a SSD, the IO latency highly depends on request size. To calculate latency threshold, we sample some data, eg, average latency for request size 4k, 8k, 16k, 32k .. 1M. The latency threshold of each request size will be the sample latency (I'll call it base latency) plus latency target. For example, the base latency for request size 4k is 80us and user configures latency target 60us. The 4k latency threshold will be 80 + 60 = 140us. To sample data, we calculate the order base 2 of rounded up IO sectors. If the IO size is bigger than 1M, it will be accounted as 1M. Since the calculation does round up, the base latency will be slightly smaller than actual value. Also if there isn't any IO dispatched for a specific IO size, we will use the base latency of smaller IO size for this IO size. But we shouldn't sample data at any time. The base latency is supposed to be latency where disk isn't congested, because we use latency threshold to schedule IOs between cgroups. If disk is congested, the latency is higher, using it for scheduling is meaningless. Hence we only do the sampling when block throttling is in the LOW limit, with assumption disk isn't congested in such state. If the assumption isn't true, eg, low limit is too high, calculated latency threshold will be higher. Hard disk is completely different. Latency depends on spindle seek instead of request size. Currently this feature is SSD only, we probably can use a fixed threshold like 4ms for hard disk though. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
* block: fix stacked driver stats init and freeJens Axboe2017-03-221-1/+2
| | | | | | | | | | | | | | If a driver allocates a queue for stacked usage, then it does not currently get stats allocated. This causes the later init of, eg, writeback throttling to blow up. Move the init to the queue allocation instead. Additionally, allow a NULL callback unregistration. This avoids having the caller check for that, fixing another oops on removal of a block device that doesn't have poll stats allocated. Fixes: 34dbad5d26e2 ("blk-stat: convert to callback-based statistics reporting") Signed-off-by: Jens Axboe <axboe@fb.com>
* blk-stat: convert to callback-based statistics reportingOmar Sandoval2017-03-211-164/+147
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, statistics are gathered in ~0.13s windows, and users grab the statistics whenever they need them. This is not ideal for both in-tree users: 1. Writeback throttling wants its own dynamically sized window of statistics. Since the blk-stats statistics are reset after every window and the wbt windows don't line up with the blk-stats windows, wbt doesn't see every I/O. 2. Polling currently grabs the statistics on every I/O. Again, depending on how the window lines up, we may miss some I/Os. It's also unnecessary overhead to get the statistics on every I/O; the hybrid polling heuristic would be just as happy with the statistics from the previous full window. This reworks the blk-stats infrastructure to be callback-based: users register a callback that they want called at a given time with all of the statistics from the window during which the callback was active. Users can dynamically bucketize the statistics. wbt and polling both currently use read vs. write, but polling can be extended to further subdivide based on request size. The callbacks are kept on an RCU list, and each callback has percpu stats buffers. There will only be a few users, so the overhead on the I/O completion side is low. The stats flushing is also simplified considerably: since the timer function is responsible for clearing the statistics, we don't have to worry about stale statistics. wbt is a trivial conversion. After the conversion, the windowing problem mentioned above is fixed. For polling, we register an extra callback that caches the previous window's statistics in the struct request_queue for the hybrid polling heuristic to use. Since we no longer have a single stats buffer for the request queue, this also removes the sysfs and debugfs stats entries. To replace those, we add a debugfs entry for the poll statistics. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
* blk-stat: move BLK_RQ_STAT_BATCH definition to blk-stat.cOmar Sandoval2017-03-211-0/+2
| | | | | | | This is an implementation detail that no-one outside of blk-stat.c uses. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
* blk-stat: use READ and WRITE instead of BLK_STAT_{READ,WRITE}Omar Sandoval2017-03-211-41/+39
| | | | | | | | | The stats buckets will become generic soon, so make the existing users use the common READ and WRITE definitions instead of one internal to blk-stat. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
* blk-stat: fix blk_stat_sum() if all samples are batchedOmar Sandoval2017-03-211-2/+2
| | | | | | | | | We need to flush the batch _before_ we check the number of samples, otherwise we'll miss all of the batched samples. Fixes: cf43e6b ("block: add scalable completion tracking of requests") Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
* blk-stat: fix a few cases of missing batch flushingJens Axboe2016-12-091-0/+8
| | | | | | | | Everytime we need to read ->nr_samples, we should have flushed the batch first. The non-mq read path also needs to flush the batch. Signed-off-by: Jens Axboe <axboe@fb.com>
* blk-stat: fix a typoShaohua Li2016-12-031-1/+1
| | | | | | Signed-off-by: Shaohua Li <shli@fb.com> Fixes: cf43e6be865a ("block: add scalable completion tracking of requests") Signed-off-by: Jens Axboe <axboe@fb.com>
* block: add scalable completion tracking of requestsJens Axboe2016-11-101-0/+248
For legacy block, we simply track them in the request queue. For blk-mq, we track them on a per-sw queue basis, which we can then sum up through the hardware queues and finally to a per device state. The stats are tracked in, roughly, 0.1s interval windows. Add sysfs files to display the stats. The feature is off by default, to avoid any extra overhead. In-kernel users of it can turn it on by setting QUEUE_FLAG_STATS in the queue flags. We currently don't turn it on if someone just reads any of the stats files, that is something we could add as well. Signed-off-by: Jens Axboe <axboe@fb.com>