| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In preparation for adding XChaCha12 support, rename/refactor
chacha20-generic to support different numbers of rounds. The
justification for needing XChaCha12 support is explained in more detail
in the patch "crypto: chacha - add XChaCha12 support".
The only difference between ChaCha{8,12,20} are the number of rounds
itself; all other parts of the algorithm are the same. Therefore,
remove the "20" from all definitions, structures, functions, files, etc.
that will be shared by all ChaCha versions.
Also make ->setkey() store the round count in the chacha_ctx (previously
chacha20_ctx). The generic code then passes the round count through to
chacha_block(). There will be a ->setkey() function for each explicitly
allowed round count; the encrypt/decrypt functions will be the same. I
decided not to do it the opposite way (same ->setkey() function for all
round counts, with different encrypt/decrypt functions) because that
would have required more boilerplate code in architecture-specific
implementations of ChaCha and XChaCha.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support for the XChaCha20 stream cipher. XChaCha20 is the
application of the XSalsa20 construction
(https://cr.yp.to/snuffle/xsalsa-20081128.pdf) to ChaCha20 rather than
to Salsa20. XChaCha20 extends ChaCha20's nonce length from 64 bits (or
96 bits, depending on convention) to 192 bits, while provably retaining
ChaCha20's security. XChaCha20 uses the ChaCha20 permutation to map the
key and first 128 nonce bits to a 256-bit subkey. Then, it does the
ChaCha20 stream cipher with the subkey and remaining 64 bits of nonce.
We need XChaCha support in order to add support for the Adiantum
encryption mode. Note that to meet our performance requirements, we
actually plan to primarily use the variant XChaCha12. But we believe
it's wise to first add XChaCha20 as a baseline with a higher security
margin, in case there are any situations where it can be used.
Supporting both variants is straightforward.
Since XChaCha20's subkey differs for each request, XChaCha20 can't be a
template that wraps ChaCha20; that would require re-keying the
underlying ChaCha20 for every request, which wouldn't be thread-safe.
Instead, we make XChaCha20 its own top-level algorithm which calls the
ChaCha20 streaming implementation internally.
Similar to the existing ChaCha20 implementation, we define the IV to be
the nonce and stream position concatenated together. This allows users
to seek to any position in the stream.
I considered splitting the code into separate chacha20-common, chacha20,
and xchacha20 modules, so that chacha20 and xchacha20 could be
enabled/disabled independently. However, since nearly all the code is
shared anyway, I ultimately decided there would have been little benefit
to the added complexity of separate modules.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
| |
chacha20-generic doesn't use SIMD instructions or otherwise disable
preemption, so passing atomic=true to skcipher_walk_virt() is
unnecessary.
Suggested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In commit 9f480faec58c ("crypto: chacha20 - Fix keystream alignment for
chacha20_block()"), I had missed that chacha20_block() can be called
directly on the buffer passed to get_random_bytes(), which can have any
alignment. So, while my commit didn't break anything, it didn't fully
solve the alignment problems.
Revert my solution and just update chacha20_block() to use
put_unaligned_le32(), so the output buffer need not be aligned.
This is simpler, and on many CPUs it's the same speed.
But, I kept the 'tmp' buffers in extract_crng_user() and
_get_random_bytes() 4-byte aligned, since that alignment is actually
needed for _crng_backtrack_protect() too.
Reported-by: Stephan Müller <smueller@chronox.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When chacha20_block() outputs the keystream block, it uses 'u32' stores
directly. However, the callers (crypto/chacha20_generic.c and
drivers/char/random.c) declare the keystream buffer as a 'u8' array,
which is not guaranteed to have the needed alignment.
Fix it by having both callers declare the keystream as a 'u32' array.
For now this is preferable to switching over to the unaligned access
macros because chacha20_block() is only being used in cases where we can
easily control the alignment (stack buffers).
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
| |
Now that crypto_chacha20_setkey() and crypto_chacha20_init() use the
unaligned access macros and crypto_xor() also accepts unaligned buffers,
there is no need to have a cra_alignmask set for chacha20-generic.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The generic ChaCha20 implementation has a cra_alignmask of 3, which
ensures that the key passed into crypto_chacha20_setkey() and the IV
passed into crypto_chacha20_init() are 4-byte aligned. However, these
functions are also called from the ARM and ARM64 implementations of
ChaCha20, which intentionally do not have a cra_alignmask set. This is
broken because 32-bit words are being loaded from potentially-unaligned
buffers without the unaligned access macros.
Fix it by using the unaligned access macros when loading the key and IV.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
| |
The four 32-bit constants for the initial state of ChaCha20 were loaded
from a char array which is not guaranteed to have the needed alignment.
Fix it by just assigning the constants directly instead.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 9ae433bc79f9 ("crypto: chacha20 - convert generic and x86 versions
to skcipher") ported the existing chacha20 code to use the new skcipher
API, and introduced a bug along the way. Unfortunately, the tcrypt tests
did not catch the error, and it was only found recently by Tobias.
Stefan kindly diagnosed the error, and proposed a fix which is similar
to the one below, with the exception that 'walk.stride' is used rather
than the hardcoded block size. This does not actually matter in this
case, but it's a better example of how to use the skcipher walk API.
Fixes: 9ae433bc79f9 ("crypto: chacha20 - convert generic and x86 ...")
Cc: <stable@vger.kernel.org> # v4.11+
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Reported-by: Tobias Brunner <tobias@strongswan.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This converts the ChaCha20 code from a blkcipher to a skcipher, which
is now the preferred way to implement symmetric block and stream ciphers.
This ports the generic and x86 versions at the same time because the
latter reuses routines of the former.
Note that the skcipher_walk() API guarantees that all presented blocks
except the final one are a multiple of the chunk size, so we can simplify
the encrypt() routine somewhat.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
| |
The CRNG is faster, and we don't pretend to track entropy usage in the
CRNG any more.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
| |
As architecture specific drivers need a software fallback, export a
ChaCha20 en-/decryption function together with some helpers in a header
file.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
ChaCha20 is a high speed 256-bit key size stream cipher algorithm designed by
Daniel J. Bernstein. It is further specified in RFC7539 for use in IETF
protocols as a building block for the ChaCha20-Poly1305 AEAD.
This is a portable C implementation without any architecture specific
optimizations. It uses a 16-byte IV, which includes the 12-byte ChaCha20 nonce
prepended by the initial block counter. Some algorithms require an explicit
counter value, for example the mentioned AEAD construction.
Signed-off-by: Martin Willi <martin@strongswan.org>
Acked-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|