summaryrefslogtreecommitdiffstats
path: root/crypto/ecc.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* crypto: ecc - Prevent ecc_digits_from_bytes from reading too many bytesStefan Berger2024-05-171-0/+22
| | | | | | | | | | | | | | | | | | Prevent ecc_digits_from_bytes from reading too many bytes from the input byte array in case an insufficient number of bytes is provided to fill the output digit array of ndigits. Therefore, initialize the most significant digits with 0 to avoid trying to read too many bytes later on. Convert the function into a regular function since it is getting too big for an inline function. If too many bytes are provided on the input byte array the extra bytes are ignored since the input variable 'ndigits' limits the number of digits that will be filled. Fixes: d67c96fb97b5 ("crypto: ecdsa - Convert byte arrays with key coordinates to digits") Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecdh - Initialize ctx->private_key in proper byte orderStefan Berger2024-04-261-19/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The private key in ctx->private_key is currently initialized in reverse byte order in ecdh_set_secret and whenever the key is needed in proper byte order the variable priv is introduced and the bytes from ctx->private_key are copied into priv while being byte-swapped (ecc_swap_digits). To get rid of the unnecessary byte swapping initialize ctx->private_key in proper byte order and clean up all functions that were previously using priv or were called with ctx->private_key: - ecc_gen_privkey: Directly initialize the passed ctx->private_key with random bytes filling all the digits of the private key. Get rid of the priv variable. This function only has ecdh_set_secret as a caller to create NIST P192/256/384 private keys. - crypto_ecdh_shared_secret: Called only from ecdh_compute_value with ctx->private_key. Get rid of the priv variable and work with the passed private_key directly. - ecc_make_pub_key: Called only from ecdh_compute_value with ctx->private_key. Get rid of the priv variable and work with the passed private_key directly. Cc: Salvatore Benedetto <salvatore.benedetto@intel.com> Signed-off-by: Stefan Berger <stefanb@linux.ibm.com> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - Add NIST P521 curve parametersStefan Berger2024-04-121-0/+2
| | | | | | | | | | Add the parameters for the NIST P521 curve and define a new curve ID for it. Make the curve available in ecc_get_curve. Tested-by: Lukas Wunner <lukas@wunner.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - Add special case for NIST P521 in ecc_point_multStefan Berger2024-04-121-1/+4
| | | | | | | | | | | In ecc_point_mult use the number of bits of the NIST P521 curve + 2. The change is required specifically for NIST P521 to pass mathematical tests on the public key. Tested-by: Lukas Wunner <lukas@wunner.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - Implement vli_mmod_fast_521 for NIST p521Stefan Berger2024-04-121-0/+25
| | | | | | | | | | | | | | | | Implement vli_mmod_fast_521 following the description for how to calculate the modulus for NIST P521 in the NIST publication "Recommendations for Discrete Logarithm-Based Cryptography: Elliptic Curve Domain Parameters" section G.1.4. NIST p521 requires 9 64bit digits, so increase the ECC_MAX_DIGITS so that the vli digit array provides enough elements to fit the larger integers required by this curve. Tested-by: Lukas Wunner <lukas@wunner.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - Use ECC_CURVE_NIST_P192/256/384_DIGITS where possibleStefan Berger2024-04-121-6/+6
| | | | | | | | | | Replace hard-coded numbers with ECC_CURVE_NIST_P192/256/384_DIGITS where possible. Tested-by: Lukas Wunner <lukas@wunner.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - remove checks in crypto_ecdh_shared_secret() and ↵Roman Smirnov2024-04-121-2/+2
| | | | | | | | | | | | | | | ecc_make_pub_key() With the current state of the code, ecc_get_curve() cannot return NULL in crypto_ecdh_shared_secret() and ecc_make_pub_key(). This is conditioned by the fact that they are only called from ecdh_compute_value(), which implements the kpp_alg::{generate_public_key,compute_shared_secret}() methods. Also ecdh implements the kpp_alg::init() method, which is called before the other methods and sets ecdh_ctx::curve_id to a valid value. Signed-off-by: Roman Smirnov <r.smirnov@omp.ru> Reviewed-by: Sergey Shtylyov <s.shtylyov@omp.ru> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - update ecc_gen_privkey for FIPS 186-5Joachim Vandersmissen2024-04-021-12/+17
| | | | | | | | | | | | | | | | | | | | | FIPS 186-5 [1] was released approximately 1 year ago. The most interesting change for ecc_gen_privkey is the removal of curves with order < 224 bits. This is minimum is now checked in step 1. It is unlikely that there is still any benefit in generating private keys for curves with n < 224, as those curves provide less than 112 bits of security strength and are therefore unsafe for any modern usage. This patch also updates the documentation for __ecc_is_key_valid and ecc_gen_privkey to clarify which FIPS 186-5 method is being used to generate private keys. Previous documentation mentioned that "extra random bits" was used. However, this did not match the code. Instead, the code currently uses (and always has used) the "rejection sampling" ("testing candidates" in FIPS 186-4) method. [1]: https://doi.org/10.6028/NIST.FIPS.186-5 Signed-off-by: Joachim Vandersmissen <git@jvdsn.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - Silence sparse warningHerbert Xu2023-02-141-2/+4
| | | | | | | | | | | | Rewrite the bitwise operations to silence the sparse warnings: CHECK ../crypto/ecc.c ../crypto/ecc.c:1387:39: warning: dubious: !x | y ../crypto/ecc.c:1397:47: warning: dubious: !x | y Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Reviewed-by: Vitaly Chikunov <vt@altlinux.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - Export additional helper functionsDaniele Alessandrelli2021-10-291-4/+8
| | | | | | | | | | | | | | | | | | | | Export the following additional ECC helper functions: - ecc_alloc_point() - ecc_free_point() - vli_num_bits() - ecc_point_is_zero() This is done to allow future ECC device drivers to re-use existing code, thus simplifying their implementation. Functions are exported using EXPORT_SYMBOL() (instead of EXPORT_SYMBOL_GPL()) to be consistent with the functions already exported by crypto/ecc.c. Exported functions are documented in include/crypto/internal/ecc.h. Signed-off-by: Daniele Alessandrelli <daniele.alessandrelli@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - Move ecc.h to include/crypto/internalDaniele Alessandrelli2021-10-291-1/+1
| | | | | | | | | | | Move ecc.h header file to 'include/crypto/internal' so that it can be easily imported from everywhere in the kernel tree. This change is done to allow crypto device drivers to re-use the symbols exported by 'crypto/ecc.c', thus avoiding code duplication. Signed-off-by: Daniele Alessandrelli <daniele.alessandrelli@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - Correct an error in the commentsMeng Yu2021-03-261-1/+1
| | | | | | | Remove repeated word 'bit' in comments. Signed-off-by: Meng Yu <yumeng18@huawei.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* Merge branch 'ecc'Herbert Xu2021-03-261-84/+194
|\ | | | | | | This pulls in the NIST P384/256/192 x509 changes.
| * crypto: ecc - Add math to support fast NIST P384Saulo Alessandre2021-03-261-74/+192
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add the math needed for NIST P384 and adapt certain functions' parameters so that the ecc_curve is passed to vli_mmod_fast. This allows to identify the curve by its name prefix and the appropriate function for fast mmod calculation can be used. Summary of changes: * crypto/ecc.c - add vli_mmod_fast_384 - change some routines to pass ecc_curve forward until vli_mmod_fast * crypto/ecc.h - add ECC_CURVE_NIST_P384_DIGITS - change ECC_MAX_DIGITS to P384 size Signed-off-by: Saulo Alessandre <saulo.alessandre@tse.jus.br> Tested-by: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
| * crypto: ecc - Add NIST P384 curve parametersSaulo Alessandre2021-03-261-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add the parameters for the NIST P384 curve and define a new curve ID for it. Make the curve available in ecc_get_curve. Summary of changes: * crypto/ecc_curve_defs.h - add nist_p384 params * include/crypto/ecdh.h - add ECC_CURVE_NIST_P384 * crypto/ecc.c - change ecc_get_curve to accept nist_p384 Signed-off-by: Saulo Alessandre <saulo.alessandre@tse.jus.br> Tested-by: Stefan Berger <stefanb@linux.ibm.com> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
| * crypto: ecdsa - Add support for ECDSA signature verificationStefan Berger2021-03-261-11/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add support for parsing the parameters of a NIST P256 or NIST P192 key. Enable signature verification using these keys. The new module is enabled with CONFIG_ECDSA: Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) is A NIST cryptographic standard algorithm. Only signature verification is implemented. Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: linux-crypto@vger.kernel.org Signed-off-by: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* | crypto: ecc - add curve25519 params and expose themMeng Yu2021-03-121-0/+6
| | | | | | | | | | | | | | | | | | | | | | 1. Add curve 25519 parameters in 'crypto/ecc_curve_defs.h'; 2. Add curve25519 interface 'ecc_get_curve25519_param' in 'include/crypto/ecc_curve.h', to make its parameters be exposed to everyone in kernel tree. Signed-off-by: Meng Yu <yumeng18@huawei.com> Reviewed-by: Zaibo Xu <xuzaibo@huawei.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* | crypto: ecc - expose ecc curvesMeng Yu2021-03-121-1/+4
|/ | | | | | | | | Move 'ecc_get_curve' to 'include/crypto/ecc_curve.h', so everyone in kernel tree can easily get ecc curve params; Signed-off-by: Meng Yu <yumeng18@huawei.com> Reviewed-by: Zaibo Xu <xuzaibo@huawei.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* mm, treewide: rename kzfree() to kfree_sensitive()Waiman Long2020-08-071-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As said by Linus: A symmetric naming is only helpful if it implies symmetries in use. Otherwise it's actively misleading. In "kzalloc()", the z is meaningful and an important part of what the caller wants. In "kzfree()", the z is actively detrimental, because maybe in the future we really _might_ want to use that "memfill(0xdeadbeef)" or something. The "zero" part of the interface isn't even _relevant_. The main reason that kzfree() exists is to clear sensitive information that should not be leaked to other future users of the same memory objects. Rename kzfree() to kfree_sensitive() to follow the example of the recently added kvfree_sensitive() and make the intention of the API more explicit. In addition, memzero_explicit() is used to clear the memory to make sure that it won't get optimized away by the compiler. The renaming is done by using the command sequence: git grep -w --name-only kzfree |\ xargs sed -i 's/kzfree/kfree_sensitive/' followed by some editing of the kfree_sensitive() kerneldoc and adding a kzfree backward compatibility macro in slab.h. [akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h] [akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more] Suggested-by: Joe Perches <joe@perches.com> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David Howells <dhowells@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com> Cc: James Morris <jmorris@namei.org> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Joe Perches <joe@perches.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Rientjes <rientjes@google.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: "Jason A . Donenfeld" <Jason@zx2c4.com> Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* crypto: ecc - SP800-56A rev 3 local public key validationStephan Müller2020-07-311-1/+30
| | | | | | | | | | | | | | After the generation of a local public key, SP800-56A rev 3 section 5.6.2.1.3 mandates a validation of that key with a full validation compliant to section 5.6.2.3.3. Only if the full validation passes, the key is allowed to be used. The patch adds the full key validation compliant to 5.6.2.3.3 and performs the required check on the generated public key. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecdh - check validity of Z before exportStephan Müller2020-07-311-3/+8
| | | | | | | | | | | | | SP800-56A rev3 section 5.7.1.2 step 2 mandates that the validity of the calculated shared secret is verified before the data is returned to the caller. Thus, the export function and the validity check functions are reversed. In addition, the sensitive variables of priv and rand_z are zeroized. Signed-off-by: Stephan Mueller <smueller@chronox.de> Reviewed-by: Vitaly Chikunov <vt@altlinux.org> Acked-by: Neil Horman <nhorman@redhat.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: Replace HTTP links with HTTPS onesAlexander A. Klimov2020-07-231-1/+1
| | | | | | | | | | | | | | | | | | | | Rationale: Reduces attack surface on kernel devs opening the links for MITM as HTTPS traffic is much harder to manipulate. Deterministic algorithm: For each file: If not .svg: For each line: If doesn't contain `\bxmlns\b`: For each link, `\bhttp://[^# \t\r\n]*(?:\w|/)`: If neither `\bgnu\.org/license`, nor `\bmozilla\.org/MPL\b`: If both the HTTP and HTTPS versions return 200 OK and serve the same content: Replace HTTP with HTTPS. Signed-off-by: Alexander A. Klimov <grandmaster@al2klimov.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* int128: move __uint128_t compiler test to KconfigArd Biesheuvel2019-11-171-1/+1
| | | | | | | | | | | | | | | | | | In order to use 128-bit integer arithmetic in C code, the architecture needs to have declared support for it by setting ARCH_SUPPORTS_INT128, and it requires a version of the toolchain that supports this at build time. This is why all existing tests for ARCH_SUPPORTS_INT128 also test whether __SIZEOF_INT128__ is defined, since this is only the case for compilers that can support 128-bit integers. Let's fold this additional test into the Kconfig declaration of ARCH_SUPPORTS_INT128 so that we can also use the symbol in Makefiles, e.g., to decide whether a certain object needs to be included in the first place. Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecdh - fix big endian bug in ECC libraryArd Biesheuvel2019-11-011-1/+2
| | | | | | | | | | | | | | | The elliptic curve arithmetic library used by the EC-DH KPP implementation assumes big endian byte order, and unconditionally reverses the byte and word order of multi-limb quantities. On big endian systems, the byte reordering is not necessary, while the word ordering needs to be retained. So replace the __swab64() invocation with a call to be64_to_cpu() which should do the right thing for both little and big endian builds. Fixes: 3c4b23901a0c ("crypto: ecdh - Add ECDH software support") Cc: <stable@vger.kernel.org> # v4.9+ Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecrdsa - add EC-RDSA (GOST 34.10) algorithmVitaly Chikunov2019-04-181-8/+384
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012, RFC 7091, ISO/IEC 14888-3) is one of the Russian (and since 2018 the CIS countries) cryptographic standard algorithms (called GOST algorithms). Only signature verification is supported, with intent to be used in the IMA. Summary of the changes: * crypto/Kconfig: - EC-RDSA is added into Public-key cryptography section. * crypto/Makefile: - ecrdsa objects are added. * crypto/asymmetric_keys/x509_cert_parser.c: - Recognize EC-RDSA and Streebog OIDs. * include/linux/oid_registry.h: - EC-RDSA OIDs are added to the enum. Also, a two currently not implemented curve OIDs are added for possible extension later (to not change numbering and grouping). * crypto/ecc.c: - Kenneth MacKay copyright date is updated to 2014, because vli_mmod_slow, ecc_point_add, ecc_point_mult_shamir are based on his code from micro-ecc. - Functions needed for ecrdsa are EXPORT_SYMBOL'ed. - New functions: vli_is_negative - helper to determine sign of vli; vli_from_be64 - unpack big-endian array into vli (used for a signature); vli_from_le64 - unpack little-endian array into vli (used for a public key); vli_uadd, vli_usub - add/sub u64 value to/from vli (used for increment/decrement); mul_64_64 - optimized to use __int128 where appropriate, this speeds up point multiplication (and as a consequence signature verification) by the factor of 1.5-2; vli_umult - multiply vli by a small value (speeds up point multiplication by another factor of 1.5-2, depending on vli sizes); vli_mmod_special - module reduction for some form of Pseudo-Mersenne primes (used for the curves A); vli_mmod_special2 - module reduction for another form of Pseudo-Mersenne primes (used for the curves B); vli_mmod_barrett - module reduction using pre-computed value (used for the curve C); vli_mmod_slow - more general module reduction which is much slower (used when the modulus is subgroup order); vli_mod_mult_slow - modular multiplication; ecc_point_add - add two points; ecc_point_mult_shamir - add two points multiplied by scalars in one combined multiplication (this gives speed up by another factor 2 in compare to two separate multiplications). ecc_is_pubkey_valid_partial - additional samity check is added. - Updated vli_mmod_fast with non-strict heuristic to call optimal module reduction function depending on the prime value; - All computations for the previously defined (two NIST) curves should not unaffected. * crypto/ecc.h: - Newly exported functions are documented. * crypto/ecrdsa_defs.h - Five curves are defined. * crypto/ecrdsa.c: - Signature verification is implemented. * crypto/ecrdsa_params.asn1, crypto/ecrdsa_pub_key.asn1: - Templates for BER decoder for EC-RDSA parameters and public key. Cc: linux-integrity@vger.kernel.org Signed-off-by: Vitaly Chikunov <vt@altlinux.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - make ecc into separate moduleVitaly Chikunov2019-04-181-7/+18
| | | | | | | | | | | | ecc.c have algorithms that could be used togeter by ecdh and ecrdsa. Make it separate module. Add CRYPTO_ECC into Kconfig. EXPORT_SYMBOL and document to what seems appropriate. Move structs ecc_point and ecc_curve from ecc_curve_defs.h into ecc.h. No code changes. Signed-off-by: Vitaly Chikunov <vt@altlinux.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - regularize scalar for scalar multiplicationVitaly Chikunov2018-11-161-4/+12
| | | | | | | | | | | | | | | | | | | | | | | | ecc_point_mult is supposed to be used with a regularized scalar, otherwise, it's possible to deduce the position of the top bit of the scalar with timing attack. This is important when the scalar is a private key. ecc_point_mult is already using a regular algorithm (i.e. having an operation flow independent of the input scalar) but regularization step is not implemented. Arrange scalar to always have fixed top bit by adding a multiple of the curve order (n). References: The constant time regularization step is based on micro-ecc by Kenneth MacKay and also referenced in the literature (Bernstein, D. J., & Lange, T. (2017). Montgomery curves and the Montgomery ladder. (Cryptology ePrint Archive; Vol. 2017/293). s.l.: IACR. Chapter 4.6.2.) Signed-off-by: Vitaly Chikunov <vt@altlinux.org> Cc: kernel-hardening@lists.openwall.com Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - check for invalid values in the key verification testVitaly Chikunov2018-11-161-16/+26
| | | | | | | | | | Currently used scalar multiplication algorithm (Matthieu Rivain, 2011) have invalid values for scalar == 1, n-1, and for regularized version n-2, which was previously not checked. Verify that they are not used as private keys. Signed-off-by: Vitaly Chikunov <vt@altlinux.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecdh - add public key verification testStephan Mueller2018-07-081-4/+38
| | | | | | | | | | | | | | | | | | According to SP800-56A section 5.6.2.1, the public key to be processed for the ECDH operation shall be checked for appropriateness. When the public key is considered to be an ephemeral key, the partial validation test as defined in SP800-56A section 5.6.2.3.4 can be applied. The partial verification test requires the presence of the field elements of a and b. For the implemented NIST curves, b is defined in FIPS 186-4 appendix D.1.2. The element a is implicitly given with the Weierstrass equation given in D.1.2 where a = p - 3. Without the test, the NIST ACVP testing fails. After adding this check, the NIST ACVP testing passes. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - Actually remove stack VLA usageKees Cook2018-04-201-38/+28
| | | | | | | | | | | | | | | | On the quest to remove all VLAs from the kernel[1], this avoids VLAs by just using the maximum allocation size (4 bytes) for stack arrays. All the VLAs in ecc were either 3 or 4 bytes (or a multiple), so just make it 4 bytes all the time. Initialization routines are adjusted to check that ndigits does not end up larger than the arrays. This includes a removal of the earlier attempt at this fix from commit a963834b4742 ("crypto/ecc: Remove stack VLA usage") [1] https://lkml.org/lkml/2018/3/7/621 Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - Remove stack VLA usageKees Cook2018-03-161-6/+17
| | | | | | | | | | | | | On the quest to remove all VLAs from the kernel[1], this switches to a pair of kmalloc regions instead of using the stack. This also moves the get_random_bytes() after all allocations (and drops the needless "nbytes" variable). [1] https://lkml.org/lkml/2018/3/7/621 Signed-off-by: Kees Cook <keescook@chromium.org> Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - Fix NULL pointer deref. on no default_rngPierre2017-11-291-1/+1
| | | | | | | | | | | | | | If crypto_get_default_rng returns an error, the function ecc_gen_privkey should return an error. Instead, it currently tries to use the default_rng nevertheless, thus creating a kernel panic with a NULL pointer dereference. Returning the error directly, as was supposedly intended when looking at the code, fixes this. Signed-off-by: Pierre Ducroquet <pinaraf@pinaraf.info> Reviewed-by: PrasannaKumar Muralidharan <prasannatsmkumar@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecdh - add privkey generation supportTudor-Dan Ambarus2017-06-101-0/+56
| | | | | | | | | | | | | | | | | | Add support for generating ecc private keys. Generation of ecc private keys is helpful in a user-space to kernel ecdh offload because the keys are not revealed to user-space. Private key generation is also helpful to implement forward secrecy. If the user provides a NULL ecc private key, the kernel will generate it and further use it for ecdh. Move ecdh's object files below drbg's. drbg must be present in the kernel at the time of calling. Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com> Reviewed-by: Stephan Müller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - rename ecdh_make_pub_key()Tudor-Dan Ambarus2017-06-101-2/+2
| | | | | | | | | Rename ecdh_make_pub_key() to ecc_make_pub_key(). ecdh_make_pub_key() is not dh specific and the reference to dh is wrong. Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - remove unnecessary castsTudor-Dan Ambarus2017-06-101-15/+13
| | | | | | | | | ecc software implementation works with chunks of u64 data. There were some unnecessary casts to u8 and then back to u64 for the ecc keys. This patch removes the unnecessary casts. Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - remove unused function argumentsTudor-Dan Ambarus2017-06-101-5/+3
| | | | | Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecdh - make ecdh_shared_secret uniqueStephen Rothwell2016-06-241-1/+1
| | | | | | | | There is another ecdh_shared_secret in net/bluetooth/ecc.c Fixes: 3c4b23901a0c ("crypto: ecdh - Add ECDH software support") Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecdh - Add ECDH software supportSalvatore Benedetto2016-06-231-0/+1018
* Implement ECDH under kpp API * Provide ECC software support for curve P-192 and P-256. * Add kpp test for ECDH with data generated by OpenSSL Signed-off-by: Salvatore Benedetto <salvatore.benedetto@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>