summaryrefslogtreecommitdiffstats
path: root/crypto/keywrap.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* crypto: skcipher - Add skcipher_ialg_simple helperHerbert Xu2019-12-271-8/+7
| | | | | | | | | | | | | | This patch introduces the skcipher_ialg_simple helper which fetches the crypto_alg structure from a simple skcipher instance's spawn. This allows us to remove the third argument from the function skcipher_alloc_instance_simple. In doing so the reference count to the algorithm is now maintained by the Crypto API and the caller no longer needs to drop the alg refcount. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: run initcalls for generic implementations earlierEric Biggers2019-04-181-1/+1
| | | | | | | | | | | | | | | | | | | | Use subsys_initcall for registration of all templates and generic algorithm implementations, rather than module_init. Then change cryptomgr to use arch_initcall, to place it before the subsys_initcalls. This is needed so that when both a generic and optimized implementation of an algorithm are built into the kernel (not loadable modules), the generic implementation is registered before the optimized one. Otherwise, the self-tests for the optimized implementation are unable to allocate the generic implementation for the new comparison fuzz tests. Note that on arm, a side effect of this change is that self-tests for generic implementations may run before the unaligned access handler has been installed. So, unaligned accesses will crash the kernel. This is arguably a good thing as it makes it easier to detect that type of bug. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: keywrap - convert to skcipher APIEric Biggers2019-01-111-133/+65
| | | | | | | | | | | Convert the keywrap template from the deprecated "blkcipher" API to the "skcipher" API, taking advantage of skcipher_alloc_instance_simple() to simplify it considerably. Cc: Stephan Mueller <smueller@chronox.de> Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: keywrap - Add missing ULL suffixes for 64-bit constantsGeert Uytterhoeven2017-11-291-2/+2
| | | | | | | | | | | | | | On 32-bit (e.g. with m68k-linux-gnu-gcc-4.1): crypto/keywrap.c: In function ‘crypto_kw_decrypt’: crypto/keywrap.c:191: warning: integer constant is too large for ‘long’ type crypto/keywrap.c: In function ‘crypto_kw_encrypt’: crypto/keywrap.c:224: warning: integer constant is too large for ‘long’ type Fixes: 9e49451d7a15365d ("crypto: keywrap - simplify code") Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org> Reviewed-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: keywrap - simplify codeStephan Mueller2017-10-121-58/+26
| | | | | | | | | | | | The code is simplified by using two __be64 values for the operation instead of using two arrays of u8. This allows to get rid of the memory alignment code. In addition, the crypto_xor can be replaced with a native XOR operation. Finally, the definition of the variables is re-arranged such that the data structures come before simple variables to potentially reduce memory space. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: keywrap - memzero the correct memoryDan Carpenter2016-02-011-2/+2
| | | | | | | | | | | We're clearing the wrong memory. The memory corruption is likely harmless because we weren't going to use that stack memory again but not zeroing is a potential information leak. Fixes: e28facde3c39 ('crypto: keywrap - add key wrapping block chaining mode') Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: keywrap - add key wrapping block chaining modeStephan Mueller2015-10-151-0/+419
This patch implements the AES key wrapping as specified in NIST SP800-38F and RFC3394. The implementation covers key wrapping without padding. IV handling: The caller does not provide an IV for encryption, but must obtain the IV after encryption which would serve as the first semblock in the ciphertext structure defined by SP800-38F. Conversely, for decryption, the caller must provide the first semiblock of the data as the IV and the following blocks as ciphertext. The key wrapping is an authenticated decryption operation. The caller will receive EBADMSG during decryption if the authentication failed. Albeit the standards define the key wrapping for AES only, the template can be used with any other block cipher that has a block size of 16 bytes. During initialization of the template, that condition is checked. Any cipher not having a block size of 16 bytes will cause the initialization to fail. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>