summaryrefslogtreecommitdiffstats
path: root/drivers/acpi/nfit.h (follow)
Commit message (Collapse)AuthorAgeFilesLines
* Merge branch 'for-4.7/acpi6.1' into libnvdimm-for-nextDan Williams2016-05-181-5/+7
|\
| * nfit: fix format interface code byte order per ACPI6.1Dan Williams2016-04-291-5/+7
| | | | | | | | | | | | | | | | ACPI6.1 clarifies that DCR fields are stored as an array of bytes, update the format interface code constants to match. Reviewed-by: Toshi Kani <toshi.kani@hpe.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | Merge branch 'for-4.7/dsm' into libnvdimm-for-nextDan Williams2016-05-181-3/+15
|\ \
| * | nfit, libnvdimm: limited/whitelisted dimm command marshaling mechanismDan Williams2016-04-291-1/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are currently 4 known similar but incompatible definitions of the command sets that can be sent to an NVDIMM through ACPI. It is also clear that future platform generations (ACPI or not) will continue to revise and extend the DIMM command set as new devices and use cases arrive. It is obviously untenable to continue to proliferate divergence of these command definitions, and to that end a standardization process has begun to provide for a unified specification. However, that leaves a problem about what to do with this first generation where vendors are already shipping divergence. The Linux kernel can support these initial diverged platforms without giving platform-firmware free reign to continue to diverge and compound kernel maintenance overhead. The kernel implementation can encourage standardization in two ways: 1/ Require that any function code that userspace wants to send be explicitly white-listed in the implementation. For ACPI this means function codes marked as supported by acpi_check_dsm() may only be invoked if they appear in the white-list. A function must be publicly documented before it is added to the white-list. 2/ The above restrictions can be trivially bypassed by using the "vendor-specific" payload command. However, since vendor-specific commands are by definition not publicly documented and have the potential to corrupt the kernel's view of the dimm state, we provide a toggle to disable vendor-specific operations. Enabling undefined behavior is a policy decision that can be made by the platform owner and encourages firmware implementations to choose public over private command implementations. Based on an initial patch from Jerry Hoemann Cc: Jerry Hoemann <jerry.hoemann@hpe.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
| * | nfit, libnvdimm: clarify "commands" vs "_DSMs"Dan Williams2016-04-291-2/+2
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Clarify the distinction between "commands", the ioctls userspace calls to request the kernel take some action on a given dimm device, and "_DSMs", the actual function numbers used in the firmware interface to the DIMM. _DSMs are ACPI specific whereas commands are Linux kernel generic. This is in preparation for breaking the 1:1 implicit relationship between the kernel ioctl number space and the firmware specific function numbers. Cc: Jerry Hoemann <jerry.hoemann@hpe.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* / libnvdimm, nfit: report multiple interface codes per-dimmDan Williams2016-04-111-0/+1
|/ | | | | | | | | | | | | | | | | | | | | | Starting with ACPI 6.1 an NFIT table will report multiple 'NVDIMM Control Region Structure' instances per-dimm, one for each supported format interface. Report that code in the following format in sysfs: nmemX/nfit/formats nmemX/nfit/format nmemX/nfit/format1 nmemX/nfit/format2 ... nmemX/nfit/formatN Where format2 - formatN are theoretical as there are no known DIMMs with support for more than two interface formats. This layout is compatible with existing libndctl binaries that only expect one code per-dimm as they will ignore nmemX/nfit/formats and nmemX/nfit/formatN. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* nfit: scrub and register regions in a workqueueDan Williams2016-03-051-1/+7
| | | | | | | | | | | | | | | | | | Address range scrub is a potentially long running process that we want to complete before any pmem regions are registered. Perform this operation asynchronously to allow other drivers to load in the meantime. Platform firmware may have initiated a partial scrub prior to the driver loading, so we must be careful to consume those results before kicking off kernel initiated scrubs on other regions. This rework also makes the registration path more tolerant of scrub errors in that it splits scrubbing into 2 phases. The first phase synchronously waits for a platform-firmware initiated scrub to complete. The second phase scans the remaining address ranges asynchronously and notifies the related driver(s) when the scrub completes. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* nfit, libnvdimm: async region scrub workqueueDan Williams2016-03-051-0/+3
| | | | | | | | | | | Introduce a workqueue that will be used to run address range scrub asynchronously with the rest of nvdimm device probing. Userspace still wants notification when probing operations complete, so introduce a new callback to flush this workqueue when userspace is awaiting probe completion. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* nfit, tools/testing/nvdimm: unify common init for acpi_nfit_descDan Williams2016-03-051-1/+1
| | | | | | | | | The nvdimm unit test infrastructure performs its own initialization of an acpi_nfit_desc to specify test overrides over the native implementation. Make it clear which attributes and operations it is overriding by re-using acpi_nfit_init_desc() as a common starting point. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm, nfit: centralize command status translationDan Williams2016-03-051-2/+9
| | | | | | | | | | | | | | | | | | | The return value from an 'ndctl_fn' reports the command execution status, i.e. was the command properly formatted and was it successfully submitted to the bus provider. The new 'cmd_rc' parameter allows the bus provider to communicate command specific results, translated into common error codes. Convert the ARS commands to this scheme to: 1/ Consolidate status reporting 2/ Prepare for for expanding ars unit test cases 3/ Make the implementation more generic Cc: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* nfit, tools/testing/nvdimm: add format interface code definitionsDan Williams2016-03-051-0/+6
| | | | | | | ACPI 6.1 and JEDEC Annex L Release 3 formalize the format interface code. Add definitions and update their usage in the unit test. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* nfit: Adjust for different _FIT and NFIT headersLinda Knippers2015-11-301-1/+2
| | | | | | | | | | | | | | | | | | | | When support for _FIT was added, the code presumed that the data returned by the _FIT method is identical to the NFIT table, which starts with an acpi_table_header. However, the _FIT is defined to return a data in the format of a series of NFIT type structure entries and as a method, has an acpi_object header rather tahn an acpi_table_header. To address the differences, explicitly save the acpi_table_header from the NFIT, since it is accessible through /sys, and change the nfit pointer in the acpi_desc structure to point to the table entries rather than the headers. Reported-by: Jeff Moyer (jmoyer@redhat.com> Signed-off-by: Linda Knippers <linda.knippers@hpe.com> Acked-by: Vishal Verma <vishal.l.verma@intel.com> [vishal: fix up unit test for new header assumptions] Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* Merge tag 'libnvdimm-for-4.4' of ↵Linus Torvalds2015-11-101-0/+2
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm Pull libnvdimm updates from Dan Williams: "Outside of the new ACPI-NFIT hot-add support this pull request is more notable for what it does not contain, than what it does. There were a handful of development topics this cycle, dax get_user_pages, dax fsync, and raw block dax, that need more more iteration and will wait for 4.5. The patches to make devm and the pmem driver NUMA aware have been in -next for several weeks. The hot-add support has not, but is contained to the NFIT driver and is passing unit tests. The coredump support is straightforward and was looked over by Jeff. All of it has received a 0day build success notification across 107 configs. Summary: - Add support for the ACPI 6.0 NFIT hot add mechanism to process updates of the NFIT at runtime. - Teach the coredump implementation how to filter out DAX mappings. - Introduce NUMA hints for allocations made by the pmem driver, and as a side effect all devm allocations now hint their NUMA node by default" * tag 'libnvdimm-for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: coredump: add DAX filtering for FDPIC ELF coredumps coredump: add DAX filtering for ELF coredumps acpi: nfit: Add support for hot-add nfit: in acpi_nfit_init, break on a 0-length table pmem, memremap: convert to numa aware allocations devm_memremap_pages: use numa_mem_id devm: make allocations numa aware by default devm_memremap: convert to return ERR_PTR devm_memunmap: use devres_release() pmem: kill memremap_pmem() x86, mm: quiet arch_add_memory()
| * acpi: nfit: Add support for hot-addVishal Verma2015-11-021-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a .notify callback to the acpi_nfit_driver that gets called on a hotplug event. From this, evaluate the _FIT ACPI method which returns the updated NFIT with handles for the hot-plugged NVDIMM. Iterate over the new NFIT, and add any new tables found, and register/enable the corresponding regions. In the nfit test framework, after normal initialization, update the NFIT with a new hot-plugged NVDIMM, and directly call into the driver to update its view of the available regions. Cc: Dan Williams <dan.j.williams@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Elliott, Robert <elliott@hpe.com> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: <linux-acpi@vger.kernel.org> Cc: <linux-nvdimm@lists.01.org> Signed-off-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | ACPICA: Update NFIT table to rename a flags fieldBob Moore2015-10-221-1/+1
|/ | | | | | | | | | | ACPICA commit 534deab97fb416a13bfede15c538e2c9eac9384a Updated one of the memory subtable flags to clarify. Link: https://github.com/acpica/acpica/commit/534deab9 Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Lv Zheng <lv.zheng@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* nd_blk: change aperture mapping from WC to WBRoss Zwisler2015-08-281-5/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This should result in a pretty sizeable performance gain for reads. For rough comparison I did some simple read testing using PMEM to compare reads of write combining (WC) mappings vs write-back (WB). This was done on a random lab machine. PMEM reads from a write combining mapping: # dd of=/dev/null if=/dev/pmem0 bs=4096 count=100000 100000+0 records in 100000+0 records out 409600000 bytes (410 MB) copied, 9.2855 s, 44.1 MB/s PMEM reads from a write-back mapping: # dd of=/dev/null if=/dev/pmem0 bs=4096 count=1000000 1000000+0 records in 1000000+0 records out 4096000000 bytes (4.1 GB) copied, 3.44034 s, 1.2 GB/s To be able to safely support a write-back aperture I needed to add support for the "read flush" _DSM flag, as outlined in the DSM spec: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf This flag tells the ND BLK driver that it needs to flush the cache lines associated with the aperture after the aperture is moved but before any new data is read. This ensures that any stale cache lines from the previous contents of the aperture will be discarded from the processor cache, and the new data will be read properly from the DIMM. We know that the cache lines are clean and will be discarded without any writeback because either a) the previous aperture operation was a read, and we never modified the contents of the aperture, or b) the previous aperture operation was a write and we must have written back the dirtied contents of the aperture to the DIMM before the I/O was completed. In order to add support for the "read flush" flag I needed to add a generic routine to invalidate cache lines, mmio_flush_range(). This is protected by the ARCH_HAS_MMIO_FLUSH Kconfig variable, and is currently only supported on x86. Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm: Add DSM support for Address Range Scrub commandsVishal Verma2015-07-281-0/+1
| | | | | | | | | | | | | | | | | | Add support for the three ARS DSM commands: - Query ARS Capabilities - Queries the firmware to check if a given range supports scrub, and if so, which type (persistent vs. volatile) - Start ARS - Starts a scrub for a given range/type - Query ARS Status - Checks status of a previously started scrub, and provides the error logs if any. The commands are described by the example DSM spec at: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf Also add these commands to the nfit_test test framework, and return canned data. Signed-off-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* nfit: add support for NVDIMM "latch" flagRoss Zwisler2015-07-101-0/+5
| | | | | | | | | | | | | | | Add support in the NFIT BLK I/O path for the "latch" flag defined in the "Get Block NVDIMM Flags" _DSM function: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf This flag requires the driver to read back the command register after it is written in the block I/O path. This ensures that the hardware has fully processed the new command and moved the aperture appropriately. Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* nfit: update block I/O path to use PMEM APIRoss Zwisler2015-07-101-1/+14
| | | | | | | | | | | | | | | | | | | | | Update the nfit block I/O path to use the new PMEM API and to adhere to the read/write flows outlined in the "NVDIMM Block Window Driver Writer's Guide": http://pmem.io/documents/NVDIMM_Driver_Writers_Guide.pdf This includes adding support for targeted NVDIMM flushes called "flush hints" in the ACPI 6.0 specification: http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf For performance and media durability the mapping for a BLK aperture is moved to a write-combining mapping which is consistent with memcpy_to_pmem() and wmb_blk(). Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm, nfit: handle unarmed dimms, mark namespaces read-onlyDan Williams2015-06-261-0/+3
| | | | | | | | | | | | | | | | | | | | | | Upon detection of an unarmed dimm in a region, arrange for descendant BTT, PMEM, or BLK instances to be read-only. A dimm is primarily marked "unarmed" via flags passed by platform firmware (NFIT). The flags in the NFIT memory device sub-structure indicate the state of the data on the nvdimm relative to its energy source or last "flush to persistence". For the most part there is nothing the driver can do but advertise the state of these flags in sysfs and emit a message if firmware indicates that the contents of the device may be corrupted. However, for the case of ACPI_NFIT_MEM_ARMED, the driver can arrange for the block devices incorporating that nvdimm to be marked read-only. This is a safe default as the data is still available and new writes are held off until the administrator either forces read-write mode, or the energy source becomes armed. A 'read_only' attribute is added to REGION devices to allow for overriding the default read-only policy of all descendant block devices. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* tools/testing/nvdimm: libnvdimm unit test infrastructureDan Williams2015-06-261-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 'libnvdimm' is the first driver sub-system in the kernel to implement mocking for unit test coverage. The nfit_test module gets built as an external module and arranges for external module replacements of nfit, libnvdimm, nd_pmem, and nd_blk. These replacements use the linker --wrap option to redirect calls to ioremap() + request_mem_region() to custom defined unit test resources. The end result is a fully functional nvdimm_bus, as far as userspace is concerned, but with the capability to perform otherwise destructive tests on emulated resources. Q: Why not use QEMU for this emulation? QEMU is not suitable for unit testing. QEMU's role is to faithfully emulate the platform. A unit test's role is to unfaithfully implement the platform with the goal of triggering bugs in the corners of the sub-system implementation. As bugs are discovered in platforms, or the sub-system itself, the unit tests are extended to backstop a fix with a reproducer unit test. Another problem with QEMU is that it would require coordination of 3 software projects instead of 2 (kernel + libndctl [1]) to maintain and execute the tests. The chances for bit rot and the difficulty of getting the tests running goes up non-linearly the more components involved. Q: Why submit this to the kernel tree instead of external modules in libndctl? Simple, to alleviate the same risk that out-of-tree external modules face. Updates to drivers/nvdimm/ can be immediately evaluated to see if they have any impact on tools/testing/nvdimm/. Q: What are the negative implications of merging this? It is a unique maintenance burden because the purpose of mocking an interface to enable a unit test is to purposefully short circuit the semantics of a routine to enable testing. For example __wrap_ioremap_cache() fakes the pmem driver into "ioremap()'ing" a test resource buffer allocated by dma_alloc_coherent(). The future maintenance burden hits when someone changes the semantics of ioremap_cache() and wonders what the implications are for the unit test. [1]: https://github.com/pmem/ndctl Cc: <linux-acpi@vger.kernel.org> Cc: Lv Zheng <lv.zheng@intel.com> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm, nfit, nd_blk: driver for BLK-mode access persistent memoryRoss Zwisler2015-06-261-0/+49
| | | | | | | | | | | | | | | | | | | | | | | | | | The libnvdimm implementation handles allocating dimm address space (DPA) between PMEM and BLK mode interfaces. After DPA has been allocated from a BLK-region to a BLK-namespace the nd_blk driver attaches to handle I/O as a struct bio based block device. Unlike PMEM, BLK is required to handle platform specific details like mmio register formats and memory controller interleave. For this reason the libnvdimm generic nd_blk driver calls back into the bus provider to carry out the I/O. This initial implementation handles the BLK interface defined by the ACPI 6 NFIT [1] and the NVDIMM DSM Interface Example [2] composed from DCR (dimm control region), BDW (block data window), IDT (interleave descriptor) NFIT structures and the hardware register format. [1]: http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf [2]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm: control (ioctl) messages for nvdimm_bus and nvdimm devicesDan Williams2015-06-251-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Most discovery/configuration of the nvdimm-subsystem is done via sysfs attributes. However, some nvdimm_bus instances, particularly the ACPI.NFIT bus, define a small set of messages that can be passed to the platform. For convenience we derive the initial libnvdimm-ioctl command formats directly from the NFIT DSM Interface Example formats. ND_CMD_SMART: media health and diagnostics ND_CMD_GET_CONFIG_SIZE: size of the label space ND_CMD_GET_CONFIG_DATA: read label space ND_CMD_SET_CONFIG_DATA: write label space ND_CMD_VENDOR: vendor-specific command passthrough ND_CMD_ARS_CAP: report address-range-scrubbing capabilities ND_CMD_ARS_START: initiate scrubbing ND_CMD_ARS_STATUS: report on scrubbing state ND_CMD_SMART_THRESHOLD: configure alarm thresholds for smart events If a platform later defines different commands than this set it is straightforward to extend support to those formats. Most of the commands target a specific dimm. However, the address-range-scrubbing commands target the bus. The 'commands' attribute in sysfs of an nvdimm_bus, or nvdimm, enumerate the supported commands for that object. Cc: <linux-acpi@vger.kernel.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reported-by: Nicholas Moulin <nicholas.w.moulin@linux.intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm, nfit: dimm/memory-devicesDan Williams2015-06-251-0/+1
| | | | | | | | | | | | | | | | | | Enable nvdimm devices to be registered on a nvdimm_bus. The kernel assigned device id for nvdimm devicesis dynamic. If userspace needs a more static identifier it should consult a provider-specific attribute. In the case where NFIT is the provider, the 'nmemX/nfit/handle' or 'nmemX/nfit/serial' attributes may be used for this purpose. Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm: control character device and nvdimm_bus sysfs attributesDan Williams2015-06-251-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | The control device for a nvdimm_bus is registered as an "nd" class device. The expectation is that there will usually only be one "nd" bus registered under /sys/class/nd. However, we allow for the possibility of multiple buses and they will listed in discovery order as ndctl0...ndctlN. This character device hosts the ioctl for passing control messages. The initial command set has a 1:1 correlation with the commands listed in the by the "NFIT DSM Example" document [1], but this scheme is extensible to future command sets. Note, nd_ioctl() and the backing ->ndctl() implementation are defined in a subsequent patch. This is simply the initial registrations and sysfs attributes. [1]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf Cc: Neil Brown <neilb@suse.de> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: <linux-acpi@vger.kernel.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm, nfit: initial libnvdimm infrastructure and NFIT supportDan Williams2015-06-251-0/+90
A struct nvdimm_bus is the anchor device for registering nvdimm resources and interfaces, for example, a character control device, nvdimm devices, and I/O region devices. The ACPI NFIT (NVDIMM Firmware Interface Table) is one possible platform description for such non-volatile memory resources in a system. The nfit.ko driver attaches to the "ACPI0012" device that indicates the presence of the NFIT and parses the table to register a struct nvdimm_bus instance. Cc: <linux-acpi@vger.kernel.org> Cc: Lv Zheng <lv.zheng@intel.com> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>