| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add SPDX license identifiers to all Make/Kconfig files which:
- Have no license information of any form
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use page directory based shared buffer implementation
now available as common code for Xen frontend drivers.
Remove flushing of shared buffer on page flip as this
workaround needs a proper fix.
Signed-off-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
Reviewed-by: Noralf Trønnes <noralf@tronnes.org>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It turns out this was only needed to paper over a bug in the CMA
helpers, which was addressed in
commit 998fb1a0f478b83492220ff79583bf9ad538bdd8
Author: Liviu Dudau <Liviu.Dudau@arm.com>
Date: Fri Nov 10 13:33:10 2017 +0000
drm: gem_cma_helper.c: Allow importing of contiguous scatterlists with nents > 1
Without this the following pipeline didn't work:
domU:
1. xen-front allocates a non-contig buffer
2. creates grants out of it
dom0:
3. converts the grants into a dma-buf. Since they're non-contig, the
scatter-list is huge.
4. imports it into rcar-du, which requires dma-contig memory for
scanout.
-> On this given platform there's an IOMMU, so in theory this should
work. But in practice this failed, because of the huge number of sg
entries, even though the IOMMU driver mapped it all into a dma-contig
range.
With a guest-contig buffer allocated in step 1, this problem doesn't
exist. But there's technically no reason to require guest-contig
memory for xen buffer sharing using grants.
Given all that, the xen-front cma support is not needed and should be
removed.
Signed-off-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
Suggested-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/20180417074012.21311-1-andr2000@gmail.com
|
|
Add support for Xen para-virtualized frontend display driver.
Accompanying backend [1] is implemented as a user-space application
and its helper library [2], capable of running as a Weston client
or DRM master.
Configuration of both backend and frontend is done via
Xen guest domain configuration options [3].
Driver limitations:
1. Only primary plane without additional properties is supported.
2. Only one video mode supported which resolution is configured
via XenStore.
3. All CRTCs operate at fixed frequency of 60Hz.
1. Implement Xen bus state machine for the frontend driver according to
the state diagram and recovery flow from display para-virtualized
protocol: xen/interface/io/displif.h.
2. Read configuration values from Xen store according
to xen/interface/io/displif.h protocol:
- read connector(s) configuration
- read buffer allocation mode (backend/frontend)
3. Handle Xen event channels:
- create for all configured connectors and publish
corresponding ring references and event channels in Xen store,
so backend can connect
- implement event channels interrupt handlers
- create and destroy event channels with respect to Xen bus state
4. Implement shared buffer handling according to the
para-virtualized display device protocol at xen/interface/io/displif.h:
- handle page directories according to displif protocol:
- allocate and share page directories
- grant references to the required set of pages for the
page directory
- allocate xen balllooned pages via Xen balloon driver
with alloc_xenballooned_pages/free_xenballooned_pages
- grant references to the required set of pages for the
shared buffer itself
- implement pages map/unmap for the buffers allocated by the
backend (gnttab_map_refs/gnttab_unmap_refs)
5. Implement kernel modesetiing/connector handling using
DRM simple KMS helper pipeline:
- implement KMS part of the driver with the help of DRM
simple pipepline helper which is possible due to the fact
that the para-virtualized driver only supports a single
(primary) plane:
- initialize connectors according to XenStore configuration
- handle frame done events from the backend
- create and destroy frame buffers and propagate those
to the backend
- propagate set/reset mode configuration to the backend on display
enable/disable callbacks
- send page flip request to the backend and implement logic for
reporting backend IO errors on prepare fb callback
- implement virtual connector handling:
- support only pixel formats suitable for single plane modes
- make sure the connector is always connected
- support a single video mode as per para-virtualized driver
configuration
6. Implement GEM handling depending on driver mode of operation:
depending on the requirements for the para-virtualized environment,
namely requirements dictated by the accompanying DRM/(v)GPU drivers
running in both host and guest environments, number of operating
modes of para-virtualized display driver are supported:
- display buffers can be allocated by either
frontend driver or backend
- display buffers can be allocated to be contiguous
in memory or not
Note! Frontend driver itself has no dependency on contiguous memory for
its operation.
6.1. Buffers allocated by the frontend driver.
The below modes of operation are configured at compile-time via
frontend driver's kernel configuration.
6.1.1. Front driver configured to use GEM CMA helpers
This use-case is useful when used with accompanying DRM/vGPU driver
in guest domain which was designed to only work with contiguous
buffers, e.g. DRM driver based on GEM CMA helpers: such drivers can
only import contiguous PRIME buffers, thus requiring frontend driver
to provide such. In order to implement this mode of operation
para-virtualized frontend driver can be configured to use
GEM CMA helpers.
6.1.2. Front driver doesn't use GEM CMA
If accompanying drivers can cope with non-contiguous memory then, to
lower pressure on CMA subsystem of the kernel, driver can allocate
buffers from system memory.
Note! If used with accompanying DRM/(v)GPU drivers this mode of operation
may require IOMMU support on the platform, so accompanying DRM/vGPU
hardware can still reach display buffer memory while importing PRIME
buffers from the frontend driver.
6.2. Buffers allocated by the backend
This mode of operation is run-time configured via guest domain
configuration through XenStore entries.
For systems which do not provide IOMMU support, but having specific
requirements for display buffers it is possible to allocate such buffers
at backend side and share those with the frontend.
For example, if host domain is 1:1 mapped and has DRM/GPU hardware
expecting physically contiguous memory, this allows implementing
zero-copying use-cases.
Note, while using this scenario the following should be considered:
a) If guest domain dies then pages/grants received from the backend
cannot be claimed back
b) Misbehaving guest may send too many requests to the
backend exhausting its grant references and memory
(consider this from security POV).
Note! Configuration options 1.1 (contiguous display buffers) and 2
(backend allocated buffers) are not supported at the same time.
7. Handle communication with the backend:
- send requests and wait for the responses according
to the displif protocol
- serialize access to the communication channel
- time-out used for backend communication is set to 3000 ms
- manage display buffers shared with the backend
[1] https://github.com/xen-troops/displ_be
[2] https://github.com/xen-troops/libxenbe
[3] https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=docs/man/xl.cfg.pod.5.in;h=a699367779e2ae1212ff8f638eff0206ec1a1cc9;hb=refs/heads/master#l1257
Signed-off-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/20180403112317.28751-2-andr2000@gmail.com
|