summaryrefslogtreecommitdiffstats
path: root/drivers/md/raid1.h (follow)
Commit message (Collapse)AuthorAgeFilesLines
* md/raid1: Use a new variable to count flighting sync requestsXiao Ni2017-04-271-0/+1
| | | | | | | | | | | | | | | | | | | | | | | In new barrier codes, raise_barrier waits if conf->nr_pending[idx] is not zero. After all the conditions are true, the resync request can go on be handled. But it adds conf->nr_pending[idx] again. The next resync request hit the same bucket idx need to wait the resync request which is submitted before. The performance of resync/recovery is degraded. So we should use a new variable to count sync requests which are in flight. I did a simple test: 1. Without the patch, create a raid1 with two disks. The resync speed: Device: rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await r_await w_await svctm %util sdb 0.00 0.00 166.00 0.00 10.38 0.00 128.00 0.03 0.20 0.20 0.00 0.19 3.20 sdc 0.00 0.00 0.00 166.00 0.00 10.38 128.00 0.96 5.77 0.00 5.77 5.75 95.50 2. With the patch, the result is: sdb 2214.00 0.00 766.00 0.00 185.69 0.00 496.46 2.80 3.66 3.66 0.00 1.03 79.10 sdc 0.00 2205.00 0.00 769.00 0.00 186.44 496.52 5.25 6.84 0.00 6.84 1.30 100.10 Suggested-by: Shaohua Li <shli@kernel.org> Signed-off-by: Xiao Ni <xni@redhat.com> Acked-by: Coly Li <colyli@suse.de> Signed-off-by: Shaohua Li <shli@fb.com>
* md/raid1: simplify the splitting of requests.NeilBrown2017-04-111-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | raid1 currently splits requests in two different ways for two different reasons. First, bio_split() is used to ensure the bio fits within a resync accounting region. Second, multiple r1bios are allocated for each bio to handle the possiblity of known bad blocks on some devices. This can be simplified to just use bio_split() once, and not use multiple r1bios. We delay the split until we know a maximum bio size that can be handled with a single r1bio, and then split the bio and queue the remainder for later handling. This avoids all loops inside raid1.c request handling. Just a single read, or a single set of writes, is submitted to lower-level devices for each bio that comes from generic_make_request(). When the bio needs to be split, generic_make_request() will do the necessary looping and call md_make_request() multiple times. raid1_make_request() no longer queues request for raid1 to handle, so we can remove that branch from the 'if'. This patch also creates a new private bio_set (conf->bio_split) for splitting bios. Using fs_bio_set is wrong, as it is meant to be used by filesystems, not block devices. Using it inside md can lead to deadlocks under high memory pressure. Delete unused variable in raid1_write_request() (Shaohua) Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
* md: raid1: improve write behindMing Lei2017-03-241-3/+7
| | | | | | | | | | | | | This patch improve handling of write behind in the following ways: - introduce behind master bio to hold all write behind pages - fast clone bios from behind master bio - avoid to change bvec table directly - use bio_copy_data() and make code more clean Suggested-by: Shaohua Li <shli@fb.com> Signed-off-by: Ming Lei <tom.leiming@gmail.com> Signed-off-by: Shaohua Li <shli@fb.com>
* RAID1: avoid unnecessary spin locks in I/O barrier codecolyli@suse.de2017-02-201-15/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When I run a parallel reading performan testing on a md raid1 device with two NVMe SSDs, I observe very bad throughput in supprise: by fio with 64KB block size, 40 seq read I/O jobs, 128 iodepth, overall throughput is only 2.7GB/s, this is around 50% of the idea performance number. The perf reports locking contention happens at allow_barrier() and wait_barrier() code, - 41.41% fio [kernel.kallsyms] [k] _raw_spin_lock_irqsave - _raw_spin_lock_irqsave + 89.92% allow_barrier + 9.34% __wake_up - 37.30% fio [kernel.kallsyms] [k] _raw_spin_lock_irq - _raw_spin_lock_irq - 100.00% wait_barrier The reason is, in these I/O barrier related functions, - raise_barrier() - lower_barrier() - wait_barrier() - allow_barrier() They always hold conf->resync_lock firstly, even there are only regular reading I/Os and no resync I/O at all. This is a huge performance penalty. The solution is a lockless-like algorithm in I/O barrier code, and only holding conf->resync_lock when it has to. The original idea is from Hannes Reinecke, and Neil Brown provides comments to improve it. I continue to work on it, and make the patch into current form. In the new simpler raid1 I/O barrier implementation, there are two wait barrier functions, - wait_barrier() Which calls _wait_barrier(), is used for regular write I/O. If there is resync I/O happening on the same I/O barrier bucket, or the whole array is frozen, task will wait until no barrier on same barrier bucket, or the whold array is unfreezed. - wait_read_barrier() Since regular read I/O won't interfere with resync I/O (read_balance() will make sure only uptodate data will be read out), it is unnecessary to wait for barrier in regular read I/Os, waiting in only necessary when the whole array is frozen. The operations on conf->nr_pending[idx], conf->nr_waiting[idx], conf-> barrier[idx] are very carefully designed in raise_barrier(), lower_barrier(), _wait_barrier() and wait_read_barrier(), in order to avoid unnecessary spin locks in these functions. Once conf-> nr_pengding[idx] is increased, a resync I/O with same barrier bucket index has to wait in raise_barrier(). Then in _wait_barrier() if no barrier raised in same barrier bucket index and array is not frozen, the regular I/O doesn't need to hold conf->resync_lock, it can just increase conf->nr_pending[idx], and return to its caller. wait_read_barrier() is very similar to _wait_barrier(), the only difference is it only waits when array is frozen. For heavy parallel reading I/Os, the lockless I/O barrier code almostly gets rid of all spin lock cost. This patch significantly improves raid1 reading peroformance. From my testing, a raid1 device built by two NVMe SSD, runs fio with 64KB blocksize, 40 seq read I/O jobs, 128 iodepth, overall throughput increases from 2.7GB/s to 4.6GB/s (+70%). Changelog V4: - Change conf->nr_queued[] to atomic_t. - Define BARRIER_BUCKETS_NR_BITS by (PAGE_SHIFT - ilog2(sizeof(atomic_t))) V3: - Add smp_mb__after_atomic() as Shaohua and Neil suggested. - Change conf->nr_queued[] from atomic_t to int. - Change conf->array_frozen from atomic_t back to int, and use READ_ONCE(conf->array_frozen) to check value of conf->array_frozen in _wait_barrier() and wait_read_barrier(). - In _wait_barrier() and wait_read_barrier(), add a call to wake_up(&conf->wait_barrier) after atomic_dec(&conf->nr_pending[idx]), to fix a deadlock between _wait_barrier()/wait_read_barrier and freeze_array(). V2: - Remove a spin_lock/unlock pair in raid1d(). - Add more code comments to explain why there is no racy when checking two atomic_t variables at same time. V1: - Original RFC patch for comments. Signed-off-by: Coly Li <colyli@suse.de> Cc: Shaohua Li <shli@fb.com> Cc: Hannes Reinecke <hare@suse.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: Guoqing Jiang <gqjiang@suse.com> Reviewed-by: Neil Brown <neilb@suse.de> Signed-off-by: Shaohua Li <shli@fb.com>
* RAID1: a new I/O barrier implementation to remove resync windowcolyli@suse.de2017-02-201-24/+33
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 'Commit 79ef3a8aa1cb ("raid1: Rewrite the implementation of iobarrier.")' introduces a sliding resync window for raid1 I/O barrier, this idea limits I/O barriers to happen only inside a slidingresync window, for regular I/Os out of this resync window they don't need to wait for barrier any more. On large raid1 device, it helps a lot to improve parallel writing I/O throughput when there are background resync I/Os performing at same time. The idea of sliding resync widow is awesome, but code complexity is a challenge. Sliding resync window requires several variables to work collectively, this is complexed and very hard to make it work correctly. Just grep "Fixes: 79ef3a8aa1" in kernel git log, there are 8 more patches to fix the original resync window patch. This is not the end, any further related modification may easily introduce more regreassion. Therefore I decide to implement a much simpler raid1 I/O barrier, by removing resync window code, I believe life will be much easier. The brief idea of the simpler barrier is, - Do not maintain a global unique resync window - Use multiple hash buckets to reduce I/O barrier conflicts, regular I/O only has to wait for a resync I/O when both them have same barrier bucket index, vice versa. - I/O barrier can be reduced to an acceptable number if there are enough barrier buckets Here I explain how the barrier buckets are designed, - BARRIER_UNIT_SECTOR_SIZE The whole LBA address space of a raid1 device is divided into multiple barrier units, by the size of BARRIER_UNIT_SECTOR_SIZE. Bio requests won't go across border of barrier unit size, that means maximum bio size is BARRIER_UNIT_SECTOR_SIZE<<9 (64MB) in bytes. For random I/O 64MB is large enough for both read and write requests, for sequential I/O considering underlying block layer may merge them into larger requests, 64MB is still good enough. Neil also points out that for resync operation, "we want the resync to move from region to region fairly quickly so that the slowness caused by having to synchronize with the resync is averaged out over a fairly small time frame". For full speed resync, 64MB should take less then 1 second. When resync is competing with other I/O, it could take up a few minutes. Therefore 64MB size is fairly good range for resync. - BARRIER_BUCKETS_NR There are BARRIER_BUCKETS_NR buckets in total, which is defined by, #define BARRIER_BUCKETS_NR_BITS (PAGE_SHIFT - 2) #define BARRIER_BUCKETS_NR (1<<BARRIER_BUCKETS_NR_BITS) this patch makes the bellowed members of struct r1conf from integer to array of integers, - int nr_pending; - int nr_waiting; - int nr_queued; - int barrier; + int *nr_pending; + int *nr_waiting; + int *nr_queued; + int *barrier; number of the array elements is defined as BARRIER_BUCKETS_NR. For 4KB kernel space page size, (PAGE_SHIFT - 2) indecates there are 1024 I/O barrier buckets, and each array of integers occupies single memory page. 1024 means for a request which is smaller than the I/O barrier unit size has ~0.1% chance to wait for resync to pause, which is quite a small enough fraction. Also requesting single memory page is more friendly to kernel page allocator than larger memory size. - I/O barrier bucket is indexed by bio start sector If multiple I/O requests hit different I/O barrier units, they only need to compete I/O barrier with other I/Os which hit the same I/O barrier bucket index with each other. The index of a barrier bucket which a bio should look for is calculated by sector_to_idx() which is defined in raid1.h as an inline function, static inline int sector_to_idx(sector_t sector) { return hash_long(sector >> BARRIER_UNIT_SECTOR_BITS, BARRIER_BUCKETS_NR_BITS); } Here sector_nr is the start sector number of a bio. - Single bio won't go across boundary of a I/O barrier unit If a request goes across boundary of barrier unit, it will be split. A bio may be split in raid1_make_request() or raid1_sync_request(), if sectors returned by align_to_barrier_unit_end() is smaller than original bio size. Comparing to single sliding resync window, - Currently resync I/O grows linearly, therefore regular and resync I/O will conflict within a single barrier units. So the I/O behavior is similar to single sliding resync window. - But a barrier unit bucket is shared by all barrier units with identical barrier uinit index, the probability of conflict might be higher than single sliding resync window, in condition that writing I/Os always hit barrier units which have identical barrier bucket indexs with the resync I/Os. This is a very rare condition in real I/O work loads, I cannot imagine how it could happen in practice. - Therefore we can achieve a good enough low conflict rate with much simpler barrier algorithm and implementation. There are two changes should be noticed, - In raid1d(), I change the code to decrease conf->nr_pending[idx] into single loop, it looks like this, spin_lock_irqsave(&conf->device_lock, flags); conf->nr_queued[idx]--; spin_unlock_irqrestore(&conf->device_lock, flags); This change generates more spin lock operations, but in next patch of this patch set, it will be replaced by a single line code, atomic_dec(&conf->nr_queueud[idx]); So we don't need to worry about spin lock cost here. - Mainline raid1 code split original raid1_make_request() into raid1_read_request() and raid1_write_request(). If the original bio goes across an I/O barrier unit size, this bio will be split before calling raid1_read_request() or raid1_write_request(), this change the code logic more simple and clear. - In this patch wait_barrier() is moved from raid1_make_request() to raid1_write_request(). In raid_read_request(), original wait_barrier() is replaced by raid1_read_request(). The differnece is wait_read_barrier() only waits if array is frozen, using different barrier function in different code path makes the code more clean and easy to read. Changelog V4: - Add alloc_r1bio() to remove redundant r1bio memory allocation code. - Fix many typos in patch comments. - Use (PAGE_SHIFT - ilog2(sizeof(int))) to define BARRIER_BUCKETS_NR_BITS. V3: - Rebase the patch against latest upstream kernel code. - Many fixes by review comments from Neil, - Back to use pointers to replace arraries in struct r1conf - Remove total_barriers from struct r1conf - Add more patch comments to explain how/why the values of BARRIER_UNIT_SECTOR_SIZE and BARRIER_BUCKETS_NR are decided. - Use get_unqueued_pending() to replace get_all_pendings() and get_all_queued() - Increase bucket number from 512 to 1024 - Change code comments format by review from Shaohua. V2: - Use bio_split() to split the orignal bio if it goes across barrier unit bounday, to make the code more simple, by suggestion from Shaohua and Neil. - Use hash_long() to replace original linear hash, to avoid a possible confilict between resync I/O and sequential write I/O, by suggestion from Shaohua. - Add conf->total_barriers to record barrier depth, which is used to control number of parallel sync I/O barriers, by suggestion from Shaohua. - In V1 patch the bellowed barrier buckets related members in r1conf are allocated in memory page. To make the code more simple, V2 patch moves the memory space into struct r1conf, like this, - int nr_pending; - int nr_waiting; - int nr_queued; - int barrier; + int nr_pending[BARRIER_BUCKETS_NR]; + int nr_waiting[BARRIER_BUCKETS_NR]; + int nr_queued[BARRIER_BUCKETS_NR]; + int barrier[BARRIER_BUCKETS_NR]; This change is by the suggestion from Shaohua. - Remove some inrelavent code comments, by suggestion from Guoqing. - Add a missing wait_barrier() before jumping to retry_write, in raid1_make_write_request(). V1: - Original RFC patch for comments Signed-off-by: Coly Li <colyli@suse.de> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: Guoqing Jiang <gqjiang@suse.com> Reviewed-by: Neil Brown <neilb@suse.de> Signed-off-by: Shaohua Li <shli@fb.com>
* md/raid1: add failfast handling for reads.NeilBrown2016-11-221-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If a device is marked FailFast and it is not the only device we can read from, we mark the bio with REQ_FAILFAST_* flags. If this does fail, we don't try read repair but just allow failure. If it was the last device it doesn't fail of course, so the retry happens on the same device - this time without FAILFAST. A subsequent failure will not retry but will just pass up the error. During resync we may use FAILFAST requests and on a failure we will simply use the other device(s). During recovery we will only use FAILFAST in the unusual case were there are multiple places to read from - i.e. if there are > 2 devices. If we get a failure we will fail the device and complete the resync/recovery with remaining devices. The new R1BIO_FailFast flag is set on read reqest to suggest the a FAILFAST request might be acceptable. The rdev needs to have FailFast set as well for the read to actually use REQ_FAILFAST_*. We need to know there are at least two working devices before we can set R1BIO_FailFast, so we mustn't stop looking at the first device we find. So the "min_pending == 0" handling to not exit early, but too always choose the best_pending_disk if min_pending == 0. The spinlocked region in raid1_error() in enlarged to ensure that if two bios, reading from two different devices, fail at the same time, then there is no risk that both devices will be marked faulty, leaving zero "In_sync" devices. Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
* md: define mddev flags, recovery flags and r1bio state bits using enumsNeilBrown2016-11-091-8/+10
| | | | | | | This is less error prone than using individual #defines. Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
* md-cluster: Use a small window for resyncGoldwyn Rodrigues2015-10-121-0/+7
| | | | | | | | | | | | | | | | | | | | | | | Suspending the entire device for resync could take too long. Resync in small chunks. cluster's resync window (32M) is maintained in r1conf as cluster_sync_low and cluster_sync_high and processed in raid1's sync_request(). If the current resync is outside the cluster resync window: 1. Set the cluster_sync_low to curr_resync_completed. 2. Check if the sync will fit in the new window, if not issue a wait_barrier() and set cluster_sync_low to sector_nr. 3. Set cluster_sync_high to cluster_sync_low + resync_window. 4. Send a message to all nodes so they may add it in their suspension list. bitmap_cond_end_sync is modified to allow to force a sync inorder to get the curr_resync_completed uptodate with the sector passed. Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: NeilBrown <neilb@suse.de>
* md/raid1: ensure device failure recorded before write request returns.NeilBrown2015-08-311-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | When a write to one of the legs of a RAID1 fails, the failure is recorded in the metadata of the other leg(s) so that after a restart the data on the failed drive wont be trusted even if that drive seems to be working again (maybe a cable was unplugged). Similarly when we record a bad-block in response to a write failure, we must not let the write complete until the bad-block update is safe. Currently there is no interlock between the write request completing and the metadata update. So it is possible that the write will complete, the app will confirm success in some way, and then the machine will crash before the metadata update completes. This is an extremely small hole for a racy to fit in, but it is theoretically possible and so should be closed. So: - set MD_CHANGE_PENDING when requesting a metadata update for a failed device, so we can know with certainty when it completes - queue requests that experienced an error on a new queue which is only processed after the metadata update completes - call raid_end_bio_io() on bios in that queue when the time comes. Signed-off-by: NeilBrown <neilb@suse.com>
* md: make ->congested robust against personality changes.NeilBrown2015-02-031-3/+0
| | | | | | | | | | | | | | | | | | | | | | | There is currently no locking around calls to the 'congested' bdi function. If called at an awkward time while an array is being converted from one level (or personality) to another, there is a tiny chance of running code in an unreferenced module etc. So add a 'congested' function to the md_personality operations structure, and call it with appropriate locking from a central 'mddev_congested'. When the array personality is changing the array will be 'suspended' so no IO is processed. If mddev_congested detects this, it simply reports that the array is congested, which is a safe guess. As mddev_suspend calls synchronize_rcu(), mddev_congested can avoid races by included the whole call inside an rcu_read_lock() region. This require that the congested functions for all subordinate devices can be run under rcu_lock. Fortunately this is the case. Signed-off-by: NeilBrown <neilb@suse.de>
* md: remove unwanted white space from md.cNeilBrown2014-10-141-2/+0
| | | | | | My editor shows much of this is RED. Signed-off-by: NeilBrown <neilb@suse.de>
* raid1: Rewrite the implementation of iobarrier.majianpeng2013-11-191-0/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There is an iobarrier in raid1 because of contention between normal IO and resync IO. It suspends all normal IO when resync/recovery happens. However if normal IO is out side the resync window, there is no contention. So this patch changes the barrier mechanism to only block IO that could contend with the resync that is currently happening. We partition the whole space into five parts. |---------|-----------|------------|----------------|-------| start next_resync start_next_window end_window start + RESYNC_WINDOW = next_resync next_resync + NEXT_NORMALIO_DISTANCE = start_next_window start_next_window + NEXT_NORMALIO_DISTANCE = end_window Firstly we introduce some concepts: 1 - RESYNC_WINDOW: For resync, there are 32 resync requests at most at the same time. A sync request is RESYNC_BLOCK_SIZE(64*1024). So the RESYNC_WINDOW is 32 * RESYNC_BLOCK_SIZE, that is 2MB. 2 - NEXT_NORMALIO_DISTANCE: the distance between next_resync and start_next_window. It also indicates the distance between start_next_window and end_window. It is currently 3 * RESYNC_WINDOW_SIZE but could be tuned if this turned out not to be optimal. 3 - next_resync: the next sector at which we will do sync IO. 4 - start: a position which is at most RESYNC_WINDOW before next_resync. 5 - start_next_window: a position which is NEXT_NORMALIO_DISTANCE beyond next_resync. Normal-io after this position doesn't need to wait for resync-io to complete. 6 - end_window: a position which is 2 * NEXT_NORMALIO_DISTANCE beyond next_resync. This also doesn't need to wait, but is counted differently. 7 - current_window_requests: the count of normalIO between start_next_window and end_window. 8 - next_window_requests: the count of normalIO after end_window. NormalIO will be partitioned into four types: NormIO1: the end sector of bio is smaller or equal the start NormIO2: the start sector of bio larger or equal to end_window NormIO3: the start sector of bio larger or equal to start_next_window. NormIO4: the location between start_next_window and end_window |--------|-----------|--------------------|----------------|-------------| | start | next_resync | start_next_window | end_window | NormIO1 NormIO4 NormIO4 NormIO3 NormIO2 For NormIO1, we don't need any io barrier. For NormIO4, we used a similar approach to the original iobarrier mechanism. The normalIO and resyncIO must be kept separate. For NormIO2/3, we add two fields to struct r1conf: "current_window_requests" and "next_window_requests". They indicate the count of active requests in the two window. For these, we don't wait for resync io to complete. For resync action, if there are NormIO4s, we must wait for it. If not, we can proceed. But if resync action reaches start_next_window and current_window_requests > 0 (that is there are NormIO3s), we must wait until the current_window_requests becomes zero. When current_window_requests becomes zero, start_next_window also moves forward. Then current_window_requests will replaced by next_window_requests. There is a problem which when and how to change from NormIO2 to NormIO3. Only then can sync action progress. We add a field in struct r1conf "start_next_window". A: if start_next_window == MaxSector, it means there are no NormIO2/3. So start_next_window = next_resync + NEXT_NORMALIO_DISTANCE B: if current_window_requests == 0 && next_window_requests != 0, it means start_next_window move to end_window There is another problem which how to differentiate between old NormIO2(now it is NormIO3) and NormIO2. For example, there are many bios which are NormIO2 and a bio which is NormIO3. NormIO3 firstly completed, so the bios of NormIO2 became NormIO3. We add a field in struct r1bio "start_next_window". This is used to record the position conf->start_next_window when the call to wait_barrier() is made in make_request(). In allow_barrier(), we check the conf->start_next_window. If r1bio->stat_next_window == conf->start_next_window, it means there is no transition between NormIO2 and NormIO3. If r1bio->start_next_window != conf->start_next_window, it mean there was a transition between NormIO2 and NormIO3. There can only have been one transition. So it only means the bio is old NormIO2. For one bio, there may be many r1bio's. So we make sure all the r1bio->start_next_window are the same value. If we met blocked_dev in make_request(), it must call allow_barrier and wait_barrier. So the former and the later value of conf->start_next_window will be change. If there are many r1bio's with differnet start_next_window, for the relevant bio, it depend on the last value of r1bio. It will cause error. To avoid this, we must wait for previous r1bios to complete. Signed-off-by: Jianpeng Ma <majianpeng@gmail.com> Signed-off-by: NeilBrown <neilb@suse.de>
* raid1: Add a field array_frozen to indicate whether raid in freeze state.majianpeng2013-11-191-0/+1
| | | | | | | | | Because the following patch will rewrite the content between normal IO and resync IO. So we used a parameter to indicate whether raid is in freeze array. Signed-off-by: Jianpeng Ma <majianpeng@gmail.com> Signed-off-by: NeilBrown <neilb@suse.de>
* md/raid1: prevent merging too large requestShaohua Li2012-07-311-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For SSD, if request size exceeds specific value (optimal io size), request size isn't important for bandwidth. In such condition, if making request size bigger will cause some disks idle, the total throughput will actually drop. A good example is doing a readahead in a two-disk raid1 setup. So when should we split big requests? We absolutly don't want to split big request to very small requests. Even in SSD, big request transfer is more efficient. This patch only considers request with size above optimal io size. If all disks are busy, is it worth doing a split? Say optimal io size is 16k, two requests 32k and two disks. We can let each disk run one 32k request, or split the requests to 4 16k requests and each disk runs two. It's hard to say which case is better, depending on hardware. So only consider case where there are idle disks. For readahead, split is always better in this case. And in my test, below patch can improve > 30% thoughput. Hmm, not 100%, because disk isn't 100% busy. Such case can happen not just in readahead, for example, in directio. But I suppose directio usually will have bigger IO depth and make all disks busy, so I ignored it. Note: if the raid uses any hard disk, we don't prevent merging. That will make performace worse. Signed-off-by: Shaohua Li <shli@fusionio.com> Signed-off-by: NeilBrown <neilb@suse.de>
* md/raid1: make sequential read detection per disk basedShaohua Li2012-07-311-6/+5
| | | | | | | | | | Currently the sequential read detection is global wide. It's natural to make it per disk based, which can improve the detection for concurrent multiple sequential reads. And next patch will make SSD read balance not use distance based algorithm, where this change help detect truly sequential read for SSD. Signed-off-by: Shaohua Li <shli@fusionio.com> Signed-off-by: NeilBrown <neilb@suse.de>
* MD: Move macros from raid1*.h to raid1*.cJonathan Brassow2012-07-311-14/+0
| | | | | | | | | | | | | | | | | MD RAID1/RAID10: Move some macros from .h file to .c file There are three macros (IO_BLOCKED,IO_MADE_GOOD,BIO_SPECIAL) which are defined in both raid1.h and raid10.h. They are only used in there respective .c files. However, if we wish to make RAID10 accessible to the device-mapper RAID target (dm-raid.c), then we need to move these macros into the .c files where they are used so that they do not conflict with each other. The macros from the two files are identical and could be moved into md.h, but I chose to leave the duplication and have them remain in the personality files. Signed-off-by: Jonathan Brassow <jbrassow@redhat.com> Signed-off-by: NeilBrown <neilb@suse.de>
* MD RAID1: rename mirror_info structureJonathan Brassow2012-07-311-2/+2
| | | | | | | | | | | | | | MD RAID1: Rename the structure 'mirror_info' to 'raid1_info' The same structure name ('mirror_info') is used by raid10. Each of these structures are defined in there respective header files. If dm-raid is to support both RAID1 and RAID10, the header files will be included and the structure names must not collide. While only one of these structure names needs to change, this patch adds consistency to the naming of the structure. Signed-off-by: Jonathan Brassow <jbrassow@redhat.com> Signed-off-by: NeilBrown <neilb@suse.de>
* md/raid1: Allocate spare to store replacement devices and their bios.NeilBrown2011-12-231-1/+6
| | | | | | | | | | | | | | In RAID1, a replacement is much like a normal device, so we just double the size of the relevant arrays and look at all possible devices for reads and writes. This means that the array looks like it is now double the size in some way - we need to be careful about that. In particular, we checking if the array is still degraded while creating a recovery request we need to only consider the first 'half' - i.e. the real (non-replacement) devices. Signed-off-by: NeilBrown <neilb@suse.de>
* md: add proper write-congestion reporting to RAID1 and RAID10.NeilBrown2011-10-111-0/+1
| | | | | | | | | | | | | | | | | | RAID1 and RAID10 handle write requests by queuing them for handling by a separate thread. This is because when a write-intent-bitmap is active we might need to update the bitmap first, so it is good to queue a lot of writes, then do one big bitmap update for them all. However writeback request devices to appear to be congested after a while so it can make some guesstimate of throughput. The infinite queue defeats that (note that RAID5 has already has a finite queue so it doesn't suffer from this problem). So impose a limit on the number of pending write requests. By default it is 1024 which seems to be generally suitable. Make it configurable via module option just in case someone finds a regression. Signed-off-by: NeilBrown <neilb@suse.de>
* md/raid1: typedef removal: conf_t -> struct r1confNeilBrown2011-10-111-3/+1
| | | | Signed-off-by: NeilBrown <neilb@suse.de>
* md: remove typedefs: mirror_info_t -> struct mirror_infoNeilBrown2011-10-111-3/+1
| | | | Signed-off-by: NeilBrown <neilb@suse.de>
* md: remove typedefs: r10bio_t -> struct r10bio and r1bio_t -> struct r1bioNeilBrown2011-10-111-9/+6
| | | | Signed-off-by: NeilBrown <neilb@suse.de>
* md: remove typedefs: mdk_thread_t -> struct md_threadNeilBrown2011-10-111-1/+1
| | | | Signed-off-by: NeilBrown <neilb@suse.de>
* md: remove typedefs: mddev_t -> struct mddevNeilBrown2011-10-111-4/+4
| | | | | | Having mddev_t and 'struct mddev_s' is ugly and not preferred Signed-off-by: NeilBrown <neilb@suse.de>
* md: removing typedefs: mdk_rdev_t -> struct md_rdevNeilBrown2011-10-111-1/+1
| | | | | | | The typedefs are just annoying. 'mdk' probably refers to 'md_k.h' which used to be an include file that defined this thing. Signed-off-by: NeilBrown <neilb@suse.de>
* md/raid1: add documentation to r1_private_data_s data structure.NeilBrown2011-10-071-17/+42
| | | | | | | | There wasn't much and it is inconsistent. Also rearrange fields to keep related fields together. Reported-by: Aapo Laine <aapo.laine@shiftmail.org> Signed-off-by: NeilBrown <neilb@suse.de>
* md/raid1: Handle write errors by updating badblock log.NeilBrown2011-07-281-1/+2
| | | | | | | | | | | When we get a write error (in the data area, not in metadata), update the badblock log rather than failing the whole device. As the write may well be many blocks, we trying writing each block individually and only log the ones which fail. Signed-off-by: NeilBrown <neilb@suse.de> Reviewed-by: Namhyung Kim <namhyung@gmail.com>
* md/raid1: store behind-write pages in bi_vecs.NeilBrown2011-07-281-1/+1
| | | | | | | | | | | | When performing write-behind we allocate pages to store the data during write. Previously we just keep a list of pages. Now we keep a list of bi_vec which includes offset and size. This means that the r1bio has complete information to create a new bio which will be needed for retrying after write errors. Signed-off-by: NeilBrown <neilb@suse.de> Reviewed-by: Namhyung Kim <namhyung@gmail.com>
* md/raid1: clear bad-block record when write succeeds.NeilBrown2011-07-281-1/+12
| | | | | | | | | | | If we succeed in writing to a block that was recorded as being bad, we clear the bad-block record. This requires some delayed handling as the bad-block-list update has to happen in process-context. Signed-off-by: NeilBrown <neilb@suse.de> Reviewed-by: Namhyung Kim <namhyung@gmail.com>
* md/raid1: avoid reading from known bad blocks.NeilBrown2011-07-281-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | Now that we have a bad block list, we should not read from those blocks. There are several main parts to this: 1/ read_balance needs to check for bad blocks, and return not only the chosen device, but also how many good blocks are available there. 2/ fix_read_error needs to avoid trying to read from bad blocks. 3/ read submission must be ready to issue multiple reads to different devices as different bad blocks on different devices could mean that a single large read cannot be served by any one device, but can still be served by the array. This requires keeping count of the number of outstanding requests per bio. This count is stored in 'bi_phys_segments' 4/ retrying a read needs to also be ready to submit a smaller read and queue another request for the rest. This does not yet handle bad blocks when reading to perform resync, recovery, or check. 'md_trim_bio' will also be used for RAID10, so put it in md.c and export it. Signed-off-by: NeilBrown <neilb@suse.de>
* md: change managed of recovery_disabled.NeilBrown2011-07-271-0/+6
| | | | | | | | | | | | | | | | | | | | | If we hit a read error while recovering a mirror, we want to abort the recovery without necessarily failing the disk - as having a disk this a read error is better than not having an array at all. Currently this is managed with a per-array flag "recovery_disabled" and is only implemented for RAID1. For RAID10 we will need finer grained control as we might want to disable recovery for individual devices separately. So push more of the decision making into the personality. 'recovery_disabled' is now a 'cookie' which is copied when the personality want to disable recovery and is changed when a device is added to the array as this is used as a trigger to 'try recovery again'. This will allow RAID10 to get the control that it needs. Signed-off-by: NeilBrown <neilb@suse.de>
* MD: raid1 changes to allow use by device mapperJonathan Brassow2011-06-081-0/+2
| | | | | | | | | | MD RAID1: Changes to allow RAID1 to be used by device-mapper (dm-raid.c) Added the necessary congestion function and conditionalize calls requiring an array 'queue' or 'gendisk'. Signed-off-by: Jonathan Brassow <jbrassow@redhat.com> Signed-off-by: NeilBrown <neilb@suse.de>
* md/raid1: improve handling of pages allocated for write-behind.NeilBrown2011-05-111-1/+3
| | | | | | | | | | | The current handling and freeing of these pages is a bit fragile. We only keep the list of allocated pages in each bio, so we need to still have a valid bio when freeing the pages, which is a bit clumsy. So simply store the allocated page list in the r1_bio so it can easily be found and freed when we are finished with the r1_bio. Signed-off-by: NeilBrown <neilb@suse.de>
* md/raid1: discard unused variable.NeilBrown2010-10-291-2/+0
| | | | | | This structure field (flushing_bio_list) is never used, so remove it. Signed-off-by: NeilBrown <neilb@suse.de>
* md: implment REQ_FLUSH/FUA supportTejun Heo2010-09-101-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch converts md to support REQ_FLUSH/FUA instead of now deprecated REQ_HARDBARRIER. In the core part (md.c), the following changes are notable. * Unlike REQ_HARDBARRIER, REQ_FLUSH/FUA don't interfere with processing of other requests and thus there is no reason to mark the queue congested while FLUSH/FUA is in progress. * REQ_FLUSH/FUA failures are final and its users don't need retry logic. Retry logic is removed. * Preflush needs to be issued to all member devices but FUA writes can be handled the same way as other writes - their processing can be deferred to request_queue of member devices. md_barrier_request() is renamed to md_flush_request() and simplified accordingly. For linear, raid0 and multipath, the core changes are enough. raid1, 5 and 10 need the following conversions. * raid1: Handling of FLUSH/FUA bio's can simply be deferred to request_queues of member devices. Barrier related logic removed. * raid5: Queue draining logic dropped. FUA bit is propagated through biodrain and stripe resconstruction such that all the updated parts of the stripe are written out with FUA writes if any of the dirtying writes was FUA. preread_active_stripes handling in make_request() is updated as suggested by Neil Brown. * raid10: FUA bit needs to be propagated to write clones. linear, raid0, 1, 5 and 10 tested. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: Neil Brown <neilb@suse.de> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
* md/raid1: add takeover support for raid5->raid1NeilBrown2009-12-141-0/+5
| | | | | | A 2-device raid5 array can now be converted to raid1. Signed-off-by: NeilBrown <neilb@suse.de>
* md: remove mddev_to_conf "helper" macroNeilBrown2009-06-161-6/+0
| | | | | | | | | | Having a macro just to cast a void* isn't really helpful. I would must rather see that we are simply de-referencing ->private, than have to know what the macro does. So open code the macro everywhere and remove the pointless cast. Signed-off-by: NeilBrown <neilb@suse.de>
* md: move lots of #include lines out of .h files and into .cNeilBrown2009-03-311-2/+0
| | | | | | | | | | This makes the includes more explicit, and is preparation for moving md_k.h to drivers/md/md.h Remove include/raid/md.h as its only remaining use was to #include other files. Signed-off-by: NeilBrown <neilb@suse.de>
* md: move headers out of include/linux/raid/Christoph Hellwig2009-03-311-0/+134
Move the headers with the local structures for the disciplines and bitmap.h into drivers/md/ so that they are more easily grepable for hacking and not far away. md.h is left where it is for now as there are some uses from the outside. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: NeilBrown <neilb@suse.de>