summaryrefslogtreecommitdiffstats
path: root/drivers/nvdimm/bus.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* acpi, nfit, libnvdimm: fix / harden ars_status output length handlingDan Williams2016-12-071-5/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Given ambiguities in the ACPI 6.1 definition of the "Output (Size)" field of the ARS (Address Range Scrub) Status command, a firmware implementation may in practice return 0, 4, or 8 to indicate that there is no output payload to process. The specification states "Size of Output Buffer in bytes, including this field.". However, 'Output Buffer' is also the name of the entire payload, and earlier in the specification it states "Max Query ARS Status Output Buffer Size: Maximum size of buffer (including the Status and Extended Status fields)". Without this fix if the BIOS happens to return 0 it causes memory corruption as evidenced by this result from the acpi_nfit_ctl() unit test. ars_status00000000: 00020000 00000000 ........ BUG: stack guard page was hit at ffffc90001750000 (stack is ffffc9000174c000..ffffc9000174ffff) kernel stack overflow (page fault): 0000 [#1] SMP DEBUG_PAGEALLOC task: ffff8803332d2ec0 task.stack: ffffc9000174c000 RIP: 0010:[<ffffffff814cfe72>] [<ffffffff814cfe72>] __memcpy+0x12/0x20 RSP: 0018:ffffc9000174f9a8 EFLAGS: 00010246 RAX: ffffc9000174fab8 RBX: 0000000000000000 RCX: 000000001fffff56 RDX: 0000000000000000 RSI: ffff8803231f5a08 RDI: ffffc90001750000 RBP: ffffc9000174fa88 R08: ffffc9000174fab0 R09: ffff8803231f54b8 R10: 0000000000000008 R11: 0000000000000001 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000003 R15: ffff8803231f54a0 FS: 00007f3a611af640(0000) GS:ffff88033ed00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffc90001750000 CR3: 0000000325b20000 CR4: 00000000000406e0 Stack: ffffffffa00bc60d 0000000000000008 ffffc90000000001 ffffc9000174faac 0000000000000292 ffffffffa00c24e4 ffffffffa00c2914 0000000000000000 0000000000000000 ffffffff00000003 ffff880331ae8ad0 0000000800000246 Call Trace: [<ffffffffa00bc60d>] ? acpi_nfit_ctl+0x49d/0x750 [nfit] [<ffffffffa01f4fe0>] nfit_test_probe+0x670/0xb1b [nfit_test] Cc: <stable@vger.kernel.org> Fixes: 747ffe11b440 ("libnvdimm, tools/testing/nvdimm: fix 'ars_status' output buffer sizing") Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* Merge branch 'for-4.9/libnvdimm' into libnvdimm-for-nextDan Williams2016-10-081-0/+2
|\
| * libnvdimm: clear the internal poison_list when clearing badblocksVishal Verma2016-10-011-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | nvdimm_clear_poison cleared the user-visible badblocks, and sent commands to the NVDIMM to clear the areas marked as 'poison', but it neglected to clear the same areas from the internal poison_list which is used to marshal ARS results before sorting them by namespace. As a result, once on-demand ARS functionality was added: 37b137f nfit, libnvdimm: allow an ARS scrub to be triggered on demand A scrub triggered from either sysfs or an MCE was found to be adding stale entries that had been cleared from gendisk->badblocks, but were still present in nvdimm_bus->poison_list. Additionally, the stale entries could be triggered into producing stale disk->badblocks by simply disabling and re-enabling the namespace or region. This adds the missing step of clearing poison_list entries when clearing poison, so that it is always in sync with badblocks. Fixes: 37b137f ("nfit, libnvdimm: allow an ARS scrub to be triggered on demand") Signed-off-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | libnvdimm: allow legacy (e820) pmem region to clear bad blocksDave Jiang2016-09-101-1/+5
|/ | | | | | | | | | | | | Bad blocks can be injected via /sys/block/pmemN/badblocks. In a situation where legacy pmem is being used or a pmem region created by using memmap kernel parameter, the injected bad blocks are not cleared due to nvdimm_clear_poison() failing from lack of ndctl function pointer. In this case we need to just return as handled and allow the bad blocks to be cleared rather than fail. Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* Merge tag 'libnvdimm-for-4.8' of ↵Linus Torvalds2016-07-291-12/+200
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm Pull libnvdimm updates from Dan Williams: - Replace pcommit with ADR / directed-flushing. The pcommit instruction, which has not shipped on any product, is deprecated. Instead, the requirement is that platforms implement either ADR, or provide one or more flush addresses per nvdimm. ADR (Asynchronous DRAM Refresh) flushes data in posted write buffers to the memory controller on a power-fail event. Flush addresses are defined in ACPI 6.x as an NVDIMM Firmware Interface Table (NFIT) sub-structure: "Flush Hint Address Structure". A flush hint is an mmio address that when written and fenced assures that all previous posted writes targeting a given dimm have been flushed to media. - On-demand ARS (address range scrub). Linux uses the results of the ACPI ARS commands to track bad blocks in pmem devices. When latent errors are detected we re-scrub the media to refresh the bad block list, userspace can also request a re-scrub at any time. - Support for the Microsoft DSM (device specific method) command format. - Support for EDK2/OVMF virtual disk device memory ranges. - Various fixes and cleanups across the subsystem. * tag 'libnvdimm-for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (41 commits) libnvdimm-btt: Delete an unnecessary check before the function call "__nd_device_register" nfit: do an ARS scrub on hitting a latent media error nfit: move to nfit/ sub-directory nfit, libnvdimm: allow an ARS scrub to be triggered on demand libnvdimm: register nvdimm_bus devices with an nd_bus driver pmem: clarify a debug print in pmem_clear_poison x86/insn: remove pcommit Revert "KVM: x86: add pcommit support" nfit, tools/testing/nvdimm/: unify shutdown paths libnvdimm: move ->module to struct nvdimm_bus_descriptor nfit: cleanup acpi_nfit_init calling convention nfit: fix _FIT evaluation memory leak + use after free tools/testing/nvdimm: add manufacturing_{date|location} dimm properties tools/testing/nvdimm: add virtual ramdisk range acpi, nfit: treat virtual ramdisk SPA as pmem region pmem: kill __pmem address space pmem: kill wmb_pmem() libnvdimm, pmem: use nvdimm_flush() for namespace I/O writes fs/dax: remove wmb_pmem() libnvdimm, pmem: flush posted-write queues on shutdown ...
| * libnvdimm: register nvdimm_bus devices with an nd_bus driverDan Williams2016-07-231-7/+181
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A recent effort to add a new nvdimm bus provider attribute highlighted a race between interrogating nvdimm_bus->nd_desc and nvdimm_bus tear down. The typical way to handle these races is to take the device_lock() in the attribute method and validate that the device is still active. In order for a device to be 'active' it needs to be associated with a driver. So, we create the small boilerplate for a driver and register nvdimm_bus devices on the 'nvdimm_bus_type' bus. A result of this change is that ndbusX devices now appear under /sys/bus/nd/devices. In fact this makes /sys/class/nd somewhat redundant, but removing that will need to take a long deprecation period given its use by ndctl binaries in the field. This change naturally pulls code from drivers/nvdimm/core.c to drivers/nvdimm/bus.c, so it is a nice code organization clean-up as well. Cc: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
| * libnvdimm: move ->module to struct nvdimm_bus_descriptorDan Williams2016-07-221-1/+1
| | | | | | | | | | | | | | | | | | Let the provider module be explicitly passed in rather than implicitly assumed by the module that calls nvdimm_bus_register(). This is in preparation for unifying the nfit and nfit_test driver teardown paths. Reviewed-by: Lee, Chun-Yi <jlee@suse.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
| * libnvdimm, pmem: flush posted-write queues on shutdownDan Williams2016-07-131-0/+16
| | | | | | | | | | Commit writes to media on system shutdown or pmem driver unload. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
| * libnvdimm: IS_ERR() usage cleanupDan Williams2016-06-181-4/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Prompted by commit 287980e49ffc "remove lots of IS_ERR_VALUE abuses", I ran make coccicheck against drivers/nvdimm/ and found that: if (IS_ERR(x)) return PTR_ERR(x); return 0; ...can be replaced with PTR_ERR_OR_ZERO(). Reported-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | block: remove ->driverfs_devDan Williams2016-06-271-1/+1
|/ | | | | | | | | | | Now that all drivers that specify a ->driverfs_dev have been converted to device_add_disk(), the pointer can be removed from struct gendisk. Cc: Jens Axboe <axboe@fb.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* Merge branch 'for-4.7/dax' into libnvdimm-for-nextDan Williams2016-05-211-4/+5
|\
| * libnvdimm: stop requiring a driver ->remove() methodDan Williams2016-05-181-4/+5
| | | | | | | | | | | | | | | | | | | | | | The dax_pmem driver was implementing an empty ->remove() method to satisfy the nvdimm bus driver that unconditionally calls ->remove(). Teach the core bus driver to check if ->remove() is NULL to remove that requirement. Reported-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | Merge branch 'for-4.7/dsm' into libnvdimm-for-nextDan Williams2016-05-181-4/+43
|\ \
| * | nfit, libnvdimm: limited/whitelisted dimm command marshaling mechanismDan Williams2016-04-291-0/+39
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are currently 4 known similar but incompatible definitions of the command sets that can be sent to an NVDIMM through ACPI. It is also clear that future platform generations (ACPI or not) will continue to revise and extend the DIMM command set as new devices and use cases arrive. It is obviously untenable to continue to proliferate divergence of these command definitions, and to that end a standardization process has begun to provide for a unified specification. However, that leaves a problem about what to do with this first generation where vendors are already shipping divergence. The Linux kernel can support these initial diverged platforms without giving platform-firmware free reign to continue to diverge and compound kernel maintenance overhead. The kernel implementation can encourage standardization in two ways: 1/ Require that any function code that userspace wants to send be explicitly white-listed in the implementation. For ACPI this means function codes marked as supported by acpi_check_dsm() may only be invoked if they appear in the white-list. A function must be publicly documented before it is added to the white-list. 2/ The above restrictions can be trivially bypassed by using the "vendor-specific" payload command. However, since vendor-specific commands are by definition not publicly documented and have the potential to corrupt the kernel's view of the dimm state, we provide a toggle to disable vendor-specific operations. Enabling undefined behavior is a policy decision that can be made by the platform owner and encourages firmware implementations to choose public over private command implementations. Based on an initial patch from Jerry Hoemann Cc: Jerry Hoemann <jerry.hoemann@hpe.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
| * | nfit, libnvdimm: clarify "commands" vs "_DSMs"Dan Williams2016-04-291-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Clarify the distinction between "commands", the ioctls userspace calls to request the kernel take some action on a given dimm device, and "_DSMs", the actual function numbers used in the firmware interface to the DIMM. _DSMs are ACPI specific whereas commands are Linux kernel generic. This is in preparation for breaking the 1:1 implicit relationship between the kernel ioctl number space and the firmware specific function numbers. Cc: Jerry Hoemann <jerry.hoemann@hpe.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | | Merge branch 'for-4.7/libnvdimm' into libnvdimm-for-nextDan Williams2016-05-181-0/+3
|\ \ \ | |_|/ |/| |
| * | libnvdimm, test: add mock SMART data payloadDan Williams2016-04-111-0/+3
| |/ | | | | | | | | | | | | | | | | | | | | | | Provide simulated SMART data to enable the ndctl implementation of SMART data retrieval and parsing. The payload is defined here, "Section 4.1 SMART and Health Info (Function Index 1)": http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* / libnvdimm, dax: introduce device-dax infrastructureDan Williams2016-05-101-0/+4
|/ | | | | | | | | | | Device DAX is the device-centric analogue of Filesystem DAX (CONFIG_FS_DAX). It allows persistent memory ranges to be allocated and mapped without need of an intervening file system. This initial infrastructure arranges for a libnvdimm pfn-device to be represented as a different device-type so that it can be attached to a driver other than the pmem driver. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm: fix smart data retrievalDan Williams2016-04-081-1/+1
| | | | | | | | | It appears that smart data retrieval has been broken the since the initial implementation. Fix the payload size to be 128-bytes per the specification. Cc: <stable@vger.kernel.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* Merge branch 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-armLinus Torvalds2016-03-201-1/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull ARM updates from Russell King: "Another mixture of changes this time around: - Split XIP linker file from main linker file to make it more maintainable, and various XIP fixes, and clean up a resulting macro. - Decompressor cleanups from Masahiro Yamada - Avoid printing an error for a missing L2 cache - Remove some duplicated symbols in System.map, and move vectors/stubs back into kernel VMA - Various low priority fixes from Arnd - Updates to allow bus match functions to return negative errno values, touching some drivers and the driver core. Greg has acked these changes. - Virtualisation platform udpates form Jean-Philippe Brucker. - Security enhancements from Kees Cook - Rework some Kconfig dependencies and move PSCI idle management code out of arch/arm into drivers/firmware/psci.c - ARM DMA mapping updates, touching media, acked by Mauro. - Fix places in ARM code which should be using virt_to_idmap() so that Keystone2 can work. - Fix Marvell Tauros2 to work again with non-DT boots. - Provide a delay timer for ARM Orion platforms" * 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm: (45 commits) ARM: 8546/1: dma-mapping: refactor to fix coherent+cma+gfp=0 ARM: 8547/1: dma-mapping: store buffer information ARM: 8543/1: decompressor: rename suffix_y to compress-y ARM: 8542/1: decompressor: merge piggy.*.S and simplify Makefile ARM: 8541/1: decompressor: drop redundant FORCE in Makefile ARM: 8540/1: decompressor: use clean-files instead of extra-y to clean files ARM: 8539/1: decompressor: drop more unneeded assignments to "targets" ARM: 8538/1: decompressor: drop unneeded assignments to "targets" ARM: 8532/1: uncompress: mark putc as inline ARM: 8531/1: turn init_new_context into an inline function ARM: 8530/1: remove VIRT_TO_BUS ARM: 8537/1: drop unused DEBUG_RODATA from XIP_KERNEL ARM: 8536/1: mm: hide __start_rodata_section_aligned for non-debug builds ARM: 8535/1: mm: DEBUG_RODATA makes no sense with XIP_KERNEL ARM: 8534/1: virt: fix hyp-stub build for pre-ARMv7 CPUs ARM: make the physical-relative calculation more obvious ARM: 8512/1: proc-v7.S: Adjust stack address when XIP_KERNEL ARM: 8411/1: Add default SPARSEMEM settings ARM: 8503/1: clk_register_clkdev: remove format string interface ARM: 8529/1: remove 'i' and 'zi' targets ...
| * ARM: 8522/1: drivers: nvdimm: ensure no negative value gets returned on ↵Dan Williams2016-02-161-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | positive match This patch ensures that existing bus match callbacks don't return negative values (which might be interpreted as potential errors in the future) in case of positive match. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* | libnvdimm, pmem: clear poison on writeDan Williams2016-03-101-0/+46
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If a write is directed at a known bad block perform the following: 1/ write the data 2/ send a clear poison command 3/ invalidate the poison out of the cache hierarchy Cc: <x86@kernel.org> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | nfit, libnvdimm: clear poison command supportDan Williams2016-03-061-0/+19
| | | | | | | | | | | | | | | | | | Add the boiler-plate for a 'clear error' command based on section 9.20.7.6 "Function Index 4 - Clear Uncorrectable Error" from the ACPI 6.1 specification, and add a reference implementation in nfit_test. Reviewed-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | libnvdimm: Fix security issue with DSM IOCTL.Jerry Hoemann2016-03-051-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | Code attempts to prevent certain IOCTL DSM from being called when device is opened read only. This security feature can be trivially overcome by changing the size portion of the ioctl_command which isn't used. Check only the _IOC_NR (i.e. the command). Cc: <stable@vger.kernel.org> Signed-off-by: Jerry Hoemann <jerry.hoemann@hpe.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | libnvdimm: Clean-up access mode check.Jerry Hoemann2016-03-051-6/+6
| | | | | | | | | | | | | | Change nd_ioctl and nvdimm_ioctl access mode check to use O_RDONLY. Signed-off-by: Jerry Hoemann <jerry.hoemann@hpe.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | nfit: disable userspace initiated ars during scrubDan Williams2016-03-051-5/+13
| | | | | | | | | | | | | | | | | | While the nfit driver is issuing address range scrub commands and reaping the results do not permit an ars_start command issued from userspace. The scrub thread assumes that all ars completions are for scrubs initiated by platform firmware at boot, or by the nfit driver. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | libnvdimm: async notification supportDan Williams2016-03-051-0/+26
| | | | | | | | | | | | | | | | In preparation for asynchronous address range scrub support add an ability for the pmem driver to dynamically consume address range scrub results. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | libnvdimm, nfit: centralize command status translationDan Williams2016-03-051-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The return value from an 'ndctl_fn' reports the command execution status, i.e. was the command properly formatted and was it successfully submitted to the bus provider. The new 'cmd_rc' parameter allows the bus provider to communicate command specific results, translated into common error codes. Convert the ARS commands to this scheme to: 1/ Consolidate status reporting 2/ Prepare for for expanding ars unit test cases 3/ Make the implementation more generic Cc: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | nfit: update address range scrub commands to the acpi 6.1 formatDan Williams2016-02-241-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The original format of these commands from the "NVDIMM DSM Interface Example" [1] are superseded by the ACPI 6.1 definition of the "NVDIMM Root Device _DSMs" [2]. [1]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf [2]: http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf "9.20.7 NVDIMM Root Device _DSMs" Changes include: 1/ New 'restart' fields in ars_status, unfortunately these are implemented in the middle of the existing definition so this change is not backwards compatible. The expectation is that shipping platforms will only ever support the ACPI 6.1 definition. 2/ New status values for ars_start ('busy') and ars_status ('overflow'). Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Linda Knippers <linda.knippers@hpe.com> Cc: <stable@vger.kernel.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | libnvdimm, tools/testing/nvdimm: fix 'ars_status' output buffer sizingDan Williams2016-02-201-4/+4
|/ | | | | | | | | | | | Use the output length specified in the command to size the receive buffer rather than the arbitrary 4K limit. This bug was hiding the fact that the ndctl implementation of ndctl_bus_cmd_new_ars_status() was not specifying an output buffer size. Cc: <stable@vger.kernel.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* nvdimm: Fix return value of nvdimm_bus_init() if class_create() failsAxel Lin2015-06-301-1/+3
| | | | | | | Return proper error if class_create() fails. Signed-off-by: Axel Lin <axel.lin@ingics.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm: smatch cleanups in __nd_ioctlDan Williams2015-06-301-7/+0
| | | | | | | | Drop use of access_ok() since we are already using copy_{to|from}_user() which do their own access_ok(). Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm: Add sysfs numa_node to NVDIMM devicesToshi Kani2015-06-261-0/+30
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add support of sysfs 'numa_node' to I/O-related NVDIMM devices under /sys/bus/nd/devices, regionN, namespaceN.0, and bttN.x. An example of numa_node values on a 2-socket system with a single NVDIMM range on each socket is shown below. /sys/bus/nd/devices |-- btt0.0/numa_node:0 |-- btt1.0/numa_node:1 |-- btt1.1/numa_node:1 |-- namespace0.0/numa_node:0 |-- namespace1.0/numa_node:1 |-- region0/numa_node:0 |-- region1/numa_node:1 These numa_node files are then linked under the block class of their device names. /sys/class/block/pmem0/device/numa_node:0 /sys/class/block/pmem1s/device/numa_node:1 This enables numactl(8) to accept 'block:' and 'file:' paths of pmem and btt devices as shown in the examples below. numactl --preferred block:pmem0 --show numactl --preferred file:/dev/pmem1s --show Signed-off-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm: Set numa_node to NVDIMM devicesToshi Kani2015-06-261-0/+6
| | | | | | | | | | | | | | | | | ACPI NFIT table has System Physical Address Range Structure entries that describe a proximity ID of each range when ACPI_NFIT_PROXIMITY_VALID is set in the flags. Change acpi_nfit_register_region() to map a proximity ID to its node ID, and set it to a new numa_node field of nd_region_desc, which is then conveyed to the nd_region device. The device core arranges for btt and namespace devices to inherit their node from their parent region. Signed-off-by: Toshi Kani <toshi.kani@hp.com> [djbw: move set_dev_node() from region.c to bus.c] Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm, nfit: handle unarmed dimms, mark namespaces read-onlyDan Williams2015-06-261-0/+18
| | | | | | | | | | | | | | | | | | | | | | Upon detection of an unarmed dimm in a region, arrange for descendant BTT, PMEM, or BLK instances to be read-only. A dimm is primarily marked "unarmed" via flags passed by platform firmware (NFIT). The flags in the NFIT memory device sub-structure indicate the state of the data on the nvdimm relative to its energy source or last "flush to persistence". For the most part there is nothing the driver can do but advertise the state of these flags in sysfs and emit a message if firmware indicates that the contents of the device may be corrupted. However, for the case of ACPI_NFIT_MEM_ARMED, the driver can arrange for the block devices incorporating that nvdimm to be marked read-only. This is a safe default as the data is still available and new writes are held off until the administrator either forces read-write mode, or the energy source becomes armed. A 'read_only' attribute is added to REGION devices to allow for overriding the default read-only policy of all descendant block devices. Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm: infrastructure for btt devicesDan Williams2015-06-251-2/+10
| | | | | | | | | | | | | | | | | NVDIMM namespaces, in addition to accepting "struct bio" based requests, also have the capability to perform byte-aligned accesses. By default only the bio/block interface is used. However, if another driver can make effective use of the byte-aligned capability it can claim namespace interface and use the byte-aligned ->rw_bytes() interface. The BTT driver is the initial first consumer of this mechanism to allow adding atomic sector update semantics to a pmem or blk namespace. This patch is the sysfs infrastructure to allow configuring a BTT instance for a namespace. Enabling that BTT and performing i/o is in a subsequent patch. Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Neil Brown <neilb@suse.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm: write blk label setDan Williams2015-06-251-0/+4
| | | | | | | | | | | | | | | After 'uuid', 'size', 'sector_size', and optionally 'alt_name' have been set to valid values the labels on the dimm can be updated. The difference with the pmem case is that blk namespaces are limited to one dimm and can cover discontiguous ranges in dpa space. Also, after allocating label slots, it is useful for userspace to know how many slots are left. Export this information in sysfs. Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Neil Brown <neilb@suse.de> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm: pmem label sets and namespace instantiation.Dan Williams2015-06-251-2/+6
| | | | | | | | | | | | | | | | | | | A complete label set is a PMEM-label per-dimm per-interleave-set where all the UUIDs match and the interleave set cookie matches the hosting interleave set. Present sysfs attributes for manipulation of a PMEM-namespace's 'alt_name', 'uuid', and 'size' attributes. A later patch will make these settings persistent by writing back the label. Note that PMEM allocations grow forwards from the start of an interleave set (lowest dimm-physical-address (DPA)). BLK-namespaces that alias with a PMEM interleave set will grow allocations backward from the highest DPA. Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Neil Brown <neilb@suse.de> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm, nfit: add interleave-set state-tracking infrastructureDan Williams2015-06-251-1/+58
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On platforms that have firmware support for reading/writing per-dimm label space, a portion of the dimm may be accessible via an interleave set PMEM mapping in addition to the dimm's BLK (block-data-window aperture(s)) interface. A label, stored in a "configuration data region" on the dimm, disambiguates which dimm addresses are accessed through which exclusive interface. Add infrastructure that allows the kernel to block modifications to a label in the set while any member dimm is active. Note that this is meant only for enforcing "no modifications of active labels" via the coarse ioctl command. Adding/deleting namespaces from an active interleave set is always possible via sysfs. Another aspect of tracking interleave sets is tracking their integrity when DIMMs in a set are physically re-ordered. For this purpose we generate an "interleave-set cookie" that can be recorded in a label and validated against the current configuration. It is the bus provider implementation's responsibility to calculate the interleave set cookie and attach it to a given region. Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm: support for legacy (non-aliasing) nvdimmsDan Williams2015-06-251-0/+26
| | | | | | | | | | | | | | | | | | The libnvdimm region driver is an intermediary driver that translates non-volatile "region"s into "namespace" sub-devices that are surfaced by persistent memory block-device drivers (PMEM and BLK). ACPI 6 introduces the concept that a given nvdimm may simultaneously offer multiple access modes to its media through direct PMEM load/store access, or windowed BLK mode. Existing nvdimms mostly implement a PMEM interface, some offer a BLK-like mode, but never both as ACPI 6 defines. If an nvdimm is single interfaced, then there is no need for dimm metadata labels. For these devices we can take the region boundaries directly to create a child namespace device (nd_namespace_io). Acked-by: Christoph Hellwig <hch@lst.de> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm, nvdimm: dimm driver and base libnvdimm device-driver infrastructureDan Williams2015-06-251-2/+166
| | | | | | | | | | | | | | | | | | | | | | | | * Implement the device-model infrastructure for loading modules and attaching drivers to nvdimm devices. This is a simple association of a nd-device-type number with a driver that has a bitmask of supported device types. To facilitate userspace bind/unbind operations 'modalias' and 'devtype', that also appear in the uevent, are added as generic sysfs attributes for all nvdimm devices. The reason for the device-type number is to support sub-types within a given parent devtype, be it a vendor-specific sub-type or otherwise. * The first consumer of this infrastructure is the driver for dimm devices. It simply uses control messages to retrieve and store the configuration-data image (label set) from each dimm. Note: nd_device_register() arranges for asynchronous registration of nvdimm bus devices by default. Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Neil Brown <neilb@suse.de> Acked-by: Christoph Hellwig <hch@lst.de> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm: control (ioctl) messages for nvdimm_bus and nvdimm devicesDan Williams2015-06-251-4/+322
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Most discovery/configuration of the nvdimm-subsystem is done via sysfs attributes. However, some nvdimm_bus instances, particularly the ACPI.NFIT bus, define a small set of messages that can be passed to the platform. For convenience we derive the initial libnvdimm-ioctl command formats directly from the NFIT DSM Interface Example formats. ND_CMD_SMART: media health and diagnostics ND_CMD_GET_CONFIG_SIZE: size of the label space ND_CMD_GET_CONFIG_DATA: read label space ND_CMD_SET_CONFIG_DATA: write label space ND_CMD_VENDOR: vendor-specific command passthrough ND_CMD_ARS_CAP: report address-range-scrubbing capabilities ND_CMD_ARS_START: initiate scrubbing ND_CMD_ARS_STATUS: report on scrubbing state ND_CMD_SMART_THRESHOLD: configure alarm thresholds for smart events If a platform later defines different commands than this set it is straightforward to extend support to those formats. Most of the commands target a specific dimm. However, the address-range-scrubbing commands target the bus. The 'commands' attribute in sysfs of an nvdimm_bus, or nvdimm, enumerate the supported commands for that object. Cc: <linux-acpi@vger.kernel.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reported-by: Nicholas Moulin <nicholas.w.moulin@linux.intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm, nfit: dimm/memory-devicesDan Williams2015-06-251-1/+13
| | | | | | | | | | | | | | | | | | Enable nvdimm devices to be registered on a nvdimm_bus. The kernel assigned device id for nvdimm devicesis dynamic. If userspace needs a more static identifier it should consult a provider-specific attribute. In the case where NFIT is the provider, the 'nmemX/nfit/handle' or 'nmemX/nfit/serial' attributes may be used for this purpose. Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* libnvdimm: control character device and nvdimm_bus sysfs attributesDan Williams2015-06-251-0/+83
The control device for a nvdimm_bus is registered as an "nd" class device. The expectation is that there will usually only be one "nd" bus registered under /sys/class/nd. However, we allow for the possibility of multiple buses and they will listed in discovery order as ndctl0...ndctlN. This character device hosts the ioctl for passing control messages. The initial command set has a 1:1 correlation with the commands listed in the by the "NFIT DSM Example" document [1], but this scheme is extensible to future command sets. Note, nd_ioctl() and the backing ->ndctl() implementation are defined in a subsequent patch. This is simply the initial registrations and sysfs attributes. [1]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf Cc: Neil Brown <neilb@suse.de> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: <linux-acpi@vger.kernel.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>