| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
Now that the driver can handle every possible tunnel types there is no
point to log everything as info level so turn these to happen at debug
level instead.
While at it remove duplicated tunnel activation log message
(tb_tunnel_activate() calls tb_tunnel_restart() which print the same
message) and add one missing '\n' termination.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
| |
Two domains (hosts) can be connected through a Thunderbolt cable and in
that case they can start software services such as networking over the
high-speed DMA paths. Now that we have all the basic building blocks in
place to create DMA tunnels over the Thunderbolt fabric we can add this
support to the software connection manager as well.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order to detect possible connections to other domains we need to be
able to find out why tb_switch_alloc() fails so make it return ERR_PTR()
instead. This allows the caller to differentiate between errors such as
-ENOMEM which comes from the kernel and for instance -EIO which comes
from the hardware when trying to access the possible switch.
Convert all the current call sites to handle this properly.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Now that we have capability to discover existing tunnels during driver
load there is no point tearing down tunnels when the driver gets
unloaded. Instead we can just leave them running. If user disconnects
devices while there is no Thunderbolt driver loaded, tunneled protocol
hotplug happens and is handled by the corresponding driver (pciehp in
case of PCIe tunnel, GFX driver in case of DP tunnel).
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Display Port tunnels are somewhat more complex than PCIe tunnels as it
requires 3 tunnels (AUX Rx/Tx and Video). In addition we are not
supposed to create the tunnels immediately when a DP OUT is enumerated.
Instead we need to wait until we get hotplug event to that adapter port
or check if the port has HPD set before tunnels can be established. This
adds Display Port tunneling support to the software connection manager.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
|
|
|
|
|
|
| |
We will be needing these routines to find Display Port adapters as well
so modify them to take port type as the second parameter.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The only way to expand Thunderbolt topology is through the NULL adapter
ports (typically ports 1, 2, 3 and 4). There is no point handling
Thunderbolt hotplug events on any other port.
Add a helper function (tb_port_is_null()) that can be used to determine
if the port is NULL port, and use it in software connection manager code
when hotplug event is handled.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently the software connection manager (tb.c) has only supported
creating a single PCIe tunnel, no PCIe device daisy chaining has been
supported so far. This updates the software connection manager so that
it now can create PCIe tunnels for full chain of six devices.
Because PCIe allows DMA and opens possibility for DMA attacks we change
security level to "user" meaning that PCIe tunneling requires that the
userspace authorizes the devices first. This makes it possible to block
PCIe tunneling completely while still allowing other types of tunnels to
be automatically created.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In Apple Macs the boot firmware (EFI) connects all devices automatically
when the system is started, before it hands over to the OS. Instead of
ignoring we discover all those PCIe tunnels and record them using our
internal structures, just like we do when a device is connected after
the OS is already up.
By doing this we can properly tear down tunnels when devices are
disconnected. Also this allows us to resume the existing tunnels after
system suspend/resume cycle.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently the driver only assigns remote port for the primary port if in
case of dual link. This makes things such as walking from one port to
another more complex than necessary because the code needs to change
from secondary to primary port if the path that is established is
created using secondary links.
In order to always assign both remote pointers we need to prevent the
scanning code from following the secondary link. Failing to do that
might cause problems as the same switch may be enumerated twice (or
removed in case of unplug). Handle that properly by introducing a new
function tb_port_has_remote() that returns true only for the primary
port. We also update tb_is_upstream_port() to support both dual link
ports, make it take const port pointer and move it below
tb_upstream_port() to keep similar functions close.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
To be able to tunnel non-PCIe traffic, separate tunnel functionality
into generic and PCIe specific parts. Rename struct tb_pci_tunnel to
tb_tunnel, and make it hold an array of paths instead of just two.
Update all the tunneling functions to take this structure as parameter.
We also move tb_pci_port_active() to switch.c (and rename it) where we
will be keeping all port and switch related functions.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
|
|
|
|
|
|
| |
In order to tunnel non-PCIe traffic as well rename tunnel_pci.[ch] to
tunnel.[ch] to reflect this fact. No functional changes.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
| |
The adapter specific capability either is there or not if the port does
not hold an adapter. Instead of always finding it on-demand we read the
offset just once when the port is initialized.
While there we update the struct port documentation to follow kernel-doc
format.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
|
|
|
|
|
|
|
|
| |
tb_switch_find_by_route() does the same already so use it instead and
remove duplicated get_switch_at_route().
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Lukas Wunner <lukas@wunner.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently the driver logs quite a lot to the system message buffer even
when doing normal operations. This information is not useful for
ordinary users and might even annoy some.
For this reason convert most of the logs at info level to happen at
debug level instead. The nice output formatting is untouched.
Logging can be easily re-enabled by passing "thunderbolt.dyndbg" in the
kernel command line (or using the corresponding control file runtime).
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Yehezkel Bernat <yehezkelshb@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc updates from Greg KH:
"Here is the big set of char/misc and other driver subsystem patches
for 4.15-rc1.
There are small changes all over here, hyperv driver updates, pcmcia
driver updates, w1 driver updats, vme driver updates, nvmem driver
updates, and lots of other little one-off driver updates as well. The
shortlog has the full details.
All of these have been in linux-next for quite a while with no
reported issues"
* tag 'char-misc-4.15-rc1' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (90 commits)
VME: Return -EBUSY when DMA list in use
w1: keep balance of mutex locks and refcnts
MAINTAINERS: Update VME subsystem tree.
nvmem: sunxi-sid: add support for A64/H5's SID controller
nvmem: imx-ocotp: Update module description
nvmem: imx-ocotp: Enable i.MX7D OTP write support
nvmem: imx-ocotp: Add i.MX7D timing write clock setup support
nvmem: imx-ocotp: Move i.MX6 write clock setup to dedicated function
nvmem: imx-ocotp: Add support for banked OTP addressing
nvmem: imx-ocotp: Pass parameters via a struct
nvmem: imx-ocotp: Restrict OTP write to IMX6 processors
nvmem: uniphier: add UniPhier eFuse driver
dt-bindings: nvmem: add description for UniPhier eFuse
nvmem: set nvmem->owner to nvmem->dev->driver->owner if unset
nvmem: qfprom: fix different address space warnings of sparse
nvmem: mtk-efuse: fix different address space warnings of sparse
nvmem: mtk-efuse: use stack for nvmem_config instead of malloc'ing it
nvmem: imx-iim: use stack for nvmem_config instead of malloc'ing it
thunderbolt: tb: fix use after free in tb_activate_pcie_devices
MAINTAINERS: Add git tree for Thunderbolt development
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Add a ̣̣continue statement in order to avoid using a previously
free'd pointer tunnel in list_add.
Addresses-Coverity-ID: 1415336
Fixes: 9d3cce0b6136 ("thunderbolt: Introduce thunderbolt bus and connection manager")
Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We're about to amend ACPI bus scan with DMI checks whether we're running
on a Mac to support Apple device properties in AML. The DMI checks are
performed for every single device, adding overhead for everything x86
that isn't Apple, which is the majority. Rafael and Andy therefore
request to perform the DMI match only once and cache the result.
Outside of ACPI various other Apple DMI checks exist and it seems
reasonable to use the cached value there as well. Rafael, Andy and
Darren suggest performing the DMI check in arch code and making it
available with a header in include/linux/platform_data/x86/.
To this end, add early_platform_quirks() to arch/x86/kernel/quirks.c
to perform the DMI check and invoke it from setup_arch(). Switch over
all existing Apple DMI checks, thereby fixing two deficiencies:
* They are now #defined to false on non-x86 arches and can thus be
optimized away if they're located in cross-arch code.
* Some of them only match "Apple Inc." but not "Apple Computer, Inc.",
which is used by BIOSes released between January 2006 (when the first
x86 Macs started shipping) and January 2007 (when the company name
changed upon introduction of the iPhone).
Suggested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Suggested-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Suggested-by: Darren Hart <dvhart@infradead.org>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Starting from Intel Falcon Ridge the NVM firmware can be upgraded by
using DMA configuration based mailbox commands. If we detect that the
host or device (device support starts from Intel Alpine Ridge) has the
DMA configuration based mailbox we expose NVM information to the
userspace as two separate Linux NVMem devices: nvm_active and
nvm_non_active. The former is read-only portion of the active NVM which
firmware upgrade tools can be use to find out suitable NVM image if the
device identification strings are not enough.
The latter is write-only portion where the new NVM image is to be
written by the userspace. It is up to the userspace to find out right
NVM image (the kernel does very minimal validation). The ICM firmware
itself authenticates the new NVM firmware and fails the operation if it
is not what is expected.
We also expose two new sysfs files per each switch: nvm_version and
nvm_authenticate which can be used to read the active NVM version and
start the upgrade process.
We also introduce safe mode which is the mode a switch goes when it does
not have properly authenticated firmware. In this mode the switch only
accepts a couple of commands including flashing a new NVM firmware image
and triggering power cycle.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Starting from Intel Falcon Ridge the internal connection manager running
on the Thunderbolt host controller has been supporting 4 security
levels. One reason for this is to prevent DMA attacks and only allow
connecting devices the user trusts.
The internal connection manager (ICM) is the preferred way of connecting
Thunderbolt devices over software only implementation typically used on
Macs. The driver communicates with ICM using special Thunderbolt ring 0
(control channel) messages. In order to handle these messages we add
support for the ICM messages to the control channel.
The security levels are as follows:
none - No security, all tunnels are created automatically
user - User needs to approve the device before tunnels are created
secure - User need to approve the device before tunnels are created.
The device is sent a challenge on future connects to be able
to verify it is actually the approved device.
dponly - Only Display Port and USB tunnels can be created and those
are created automatically.
The security levels are typically configurable from the system BIOS and
by default it is set to "user" on many systems.
In this patch each Thunderbolt device will have either one or two new
sysfs attributes: authorized and key. The latter appears for devices
that support secure connect.
In order to identify the device the user can read identication
information, including UUID and name of the device from sysfs and based
on that make a decision to authorize the device. The device is
authorized by simply writing 1 to the "authorized" sysfs attribute. This
is following the USB bus device authorization mechanism. The secure
connect requires an additional challenge step (writing 2 to the
"authorized" attribute) in future connects when the key has already been
stored to the NVM of the device.
Non-ICM systems (before Alpine Ridge) continue to use the existing
functionality and the security level is set to none. For systems with
Alpine Ridge, even on Apple hardware, we will use ICM.
This code is based on the work done by Amir Levy and Michael Jamet.
Signed-off-by: Michael Jamet <michael.jamet@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently the control channel (ctl.c) handles the one supported
notification (PLUG_EVENT) and sends back ACK accordingly. However, we
are going to add support for the internal connection manager (ICM) that
needs to handle a different notifications. So instead of dealing
everything in the control channel, we change the callback to take an
arbitrary thunderbolt packet and convert the native connection manager
to handle the event itself.
In addition we only push replies we know of to the response FIFO.
Everything else is treated as notification (or request) and is expected
to be dealt by the connection manager implementation.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Thunderbolt domain consists of switches that are connected to each
other, forming a bus. This will convert each switch into a real Linux
device structure and adds them to the domain. The advantage here is
that we get all the goodies from the driver core, like reference
counting and sysfs hierarchy for free.
Also expose device identification information to the userspace via new
sysfs attributes.
In order to support internal connection manager (ICM) we separate switch
configuration into its own function (tb_switch_configure()) which is
only called by the existing native connection manager implementation
used on Macs.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Thunderbolt fabric consists of one or more switches. This fabric is
called domain and it is controlled by an entity called connection
manager. The connection manager can be either internal (driven by a
firmware running on the host controller) or external (software driver).
This driver currently implements support for the latter.
In order to manage switches and their properties more easily we model
this domain structure as a Linux bus. Each host controller adds a domain
device to this bus, and these devices are named as domainN where N
stands for index or id of the current domain.
We then abstract connection manager specific operations into a new
structure tb_cm_ops and convert the existing tb.c to fill those
accordingly. This makes it easier to add support for the internal
connection manager in subsequent patches.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Organization of the capabilities in switches and ports is not so random
after all. Rework the capability handling functionality so that it
follows how capabilities are organized and provide two new functions
(tb_switch_find_vse_cap() and tb_port_find_cap()) which can be used to
extract capabilities for ports and switches. Then convert the current
users over these.
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Reviewed-by: Yehezkel Bernat <yehezkel.bernat@intel.com>
Reviewed-by: Michael Jamet <michael.jamet@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
| |
Fix typo in tb_cfg_print_error() message. Fix bytecount in struct
tb_drom_entry_port comment. Replace magic number in tb_switch_alloc().
Rename tb_sw_set_unpplugged() and TB_CAL_IECS to fix typos.
[bhelgaas: no functional change intended]
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Andreas Noever <andreas.noever@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix issues observed with the Startech docking station:
Fix the type of the route parameter in tb_ctl_rx. It should be u64 and not
u8 (which only worked for short routes).
A thunderbolt cable contains two lanes. If both endpoints support it a
connection will be established on both lanes. Previously we tried to
scan below both "dual link ports". Use the information extracted from
the drom to only scan behind ports with lane_nr == 0.
Endpoints with more complex thunderbolt controllers have some of their
ports disabled (for example the NHI port or one of the HDMI/DP ports).
Accessing them results in an error so we now ignore ports which are
marked as disabled in the drom.
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
| |
We use _noirq since we have to restore the pci tunnels before the pci
core wakes the tunneled devices.
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
A pci downstream and pci upstream port can be connected through a
tunnel. To establish the tunnel we have to setup two unidirectional
paths between the two ports.
Right now we only support paths with two hops (i.e. no chaining) and at
most one pci device per thunderbolt device.
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
| |
We receive a plug event callback whenever a thunderbolt device is added
or removed. This patch fills in the tb_handle_hotplug method and starts
reacting to these events by adding/removing switches from the hierarchy.
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
| |
Add utility methods tb_port_state and tb_wait_for_port. Add
tb_scan_switch which recursively checks for downstream switches.
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
| |
This patch adds the structures tb_switch and tb_port as well as code to
initialize the root switch.
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Every thunderbolt device consists (logically) of a switch with multiple
ports. Every port contains up to four config regions (HOPS, PORT,
SWITCH, COUNTERS) which are used to configure the device.
The tb_regs.h file contains all known registers and capabilities from
these config regions.
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Add struct tb which will contain our view of the thunderbolt bus. For
now it just contains a pointer to the control channel and a workqueue
for hotplug events.
Add thunderbolt_alloc_and_start() and thunderbolt_shutdown_and_free()
which are responsible for setup and teardown of struct tb.
Signed-off-by: Andreas Noever <andreas.noever@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|