| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
btrfs_submit_compressed_write should not have to care if it is called
from a helper thread or not. Move the kthread_associate_blkcg handling
into submit_one_async_extent, as that is the one caller that needs it.
Also move the assignment of REQ_CGROUP_PUNT into cow_file_range_async,
as that is the routine that sets up the helper thread offload.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
| |
The original bio must be a btrfs_bio, so store a pointer to the
btrfs_bio for better type checking.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
btrfs_submit_compressed_read expects the bio passed to it to be embedded
into a btrfs_bio structure. Pass the btrfs_bio directly to increase type
safety and make the code self-documenting.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Embed a btrfs_bio into struct compressed_bio. This avoids potential
(so far theoretical) deadlocks due to nesting of btrfs_bioset allocations
for the original read bio and the compressed bio, and avoids an extra
memory allocation in the I/O path.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The current btrfs zoned device support is a little cumbersome in the data
I/O path as it requires the callers to not issue I/O larger than the
supported ZONE_APPEND size of the underlying device. This leads to a lot
of extra accounting. Instead change btrfs_submit_bio so that it can take
write bios of arbitrary size and form from the upper layers, and just
split them internally to the ZONE_APPEND queue limits. Then remove all
the upper layer warts catering to limited write sized on zoned devices,
including the extra refcount in the compressed_bio.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
| |
The input buffers passed down to compression must never be changed,
switch type to u8 as it's a raw byte buffer and use const.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When moving the printk messages into their own file I got a compiler
error because the includes grabbed compression.h, but nothing pulled in
the blk_types.h dependency that compression.h has because it uses
blkstatus_t. Add blk_types.h to compression.h so that this sort of
thing doesn't happen in the future.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[BACKGROUND]
In theory init_btrfs_fs() and exit_btrfs_fs() should match their
sequence, thus normally they should look like this:
init_btrfs_fs() | exit_btrfs_fs()
----------------------+------------------------
init_A(); |
init_B(); |
init_C(); |
| exit_C();
| exit_B();
| exit_A();
So is for the error path of init_btrfs_fs().
But it's not the case, some exit functions don't match their init
functions sequence in init_btrfs_fs().
Furthermore in init_btrfs_fs(), we need to have a new error label for
each new init function we added. This is not really expandable,
especially recently we may add several new functions to init_btrfs_fs().
[ENHANCEMENT]
The patch will introduce the following things to enhance the situation:
- struct init_sequence
Just a wrapper of init and exit function pointers.
The init function must use int type as return value, thus some init
functions need to be updated to return 0.
The exit function can be NULL, as there are some init sequence just
outputting a message.
- struct mod_init_seq[] array
This is a const array, recording all the initialization we need to do
in init_btrfs_fs(), and the order follows the old init_btrfs_fs().
- bool mod_init_result[] array
This is a bool array, recording if we have initialized one entry in
mod_init_seq[].
The reason to split mod_init_seq[] and mod_init_result[] is to avoid
section mismatch in reference.
All init function are in .init.text, but if mod_init_seq[] records
the @initialized member it can no longer be const, thus will be put
into .data section, and cause modpost warning.
For init_btrfs_fs() we just call all init functions in their order in
mod_init_seq[] array, and after each call, setting corresponding
mod_init_result[] to true.
For exit_btrfs_fs() and error handling path of init_btrfs_fs(), we just
iterate mod_init_seq[] in reverse order, and skip all uninitialized
entry.
With this patch, init_btrfs_fs()/exit_btrfs_fs() will be much easier to
expand and will always follow the strict order.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"This brings some long awaited changes, the send protocol bump,
otherwise lots of small improvements and fixes. The main core part is
reworking bio handling, cleaning up the submission and endio and
improving error handling.
There are some changes outside of btrfs adding helpers or updating
API, listed at the end of the changelog.
Features:
- sysfs:
- export chunk size, in debug mode add tunable for setting its size
- show zoned among features (was only in debug mode)
- show commit stats (number, last/max/total duration)
- send protocol updated to 2
- new commands:
- ability write larger data chunks than 64K
- send raw compressed extents (uses the encoded data ioctls),
ie. no decompression on send side, no compression needed on
receive side if supported
- send 'otime' (inode creation time) among other timestamps
- send file attributes (a.k.a file flags and xflags)
- this is first version bump, backward compatibility on send and
receive side is provided
- there are still some known and wanted commands that will be
implemented in the near future, another version bump will be
needed, however we want to minimize that to avoid causing
usability issues
- print checksum type and implementation at mount time
- don't print some messages at mount (mentioned as people asked about
it), we want to print messages namely for new features so let's
make some space for that
- big metadata - this has been supported for a long time and is
not a feature that's worth mentioning
- skinny metadata - same reason, set by default by mkfs
Performance improvements:
- reduced amount of reserved metadata for delayed items
- when inserted items can be batched into one leaf
- when deleting batched directory index items
- when deleting delayed items used for deletion
- overall improved count of files/sec, decreased subvolume lock
contention
- metadata item access bounds checker micro-optimized, with a few
percent of improved runtime for metadata-heavy operations
- increase direct io limit for read to 256 sectors, improved
throughput by 3x on sample workload
Notable fixes:
- raid56
- reduce parity writes, skip sectors of stripe when there are no
data updates
- restore reading from on-disk data instead of using stripe cache,
this reduces chances to damage correct data due to RMW cycle
- refuse to replay log with unknown incompat read-only feature bit
set
- zoned
- fix page locking when COW fails in the middle of allocation
- improved tracking of active zones, ZNS drives may limit the
number and there are ENOSPC errors due to that limit and not
actual lack of space
- adjust maximum extent size for zone append so it does not cause
late ENOSPC due to underreservation
- mirror reading error messages show the mirror number
- don't fallback to buffered IO for NOWAIT direct IO writes, we don't
have the NOWAIT semantics for buffered io yet
- send, fix sending link commands for existing file paths when there
are deleted and created hardlinks for same files
- repair all mirrors for profiles with more than 1 copy (raid1c34)
- fix repair of compressed extents, unify where error detection and
repair happen
Core changes:
- bio completion cleanups
- don't double defer compression bios
- simplify endio workqueues
- add more data to btrfs_bio to avoid allocation for read requests
- rework bio error handling so it's same what block layer does,
the submission works and errors are consumed in endio
- when asynchronous bio offload fails fall back to synchronous
checksum calculation to avoid errors under writeback or memory
pressure
- new trace points
- raid56 events
- ordered extent operations
- super block log_root_transid deprecated (never used)
- mixed_backref and big_metadata sysfs feature files removed, they've
been default for sufficiently long time, there are no known users
and mixed_backref could be confused with mixed_groups
Non-btrfs changes, API updates:
- minor highmem API update to cover const arguments
- switch all kmap/kmap_atomic to kmap_local
- remove redundant flush_dcache_page()
- address_space_operations::writepage callback removed
- add bdev_max_segments() helper"
* tag 'for-5.20-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (163 commits)
btrfs: don't call btrfs_page_set_checked in finish_compressed_bio_read
btrfs: fix repair of compressed extents
btrfs: remove the start argument to check_data_csum and export
btrfs: pass a btrfs_bio to btrfs_repair_one_sector
btrfs: simplify the pending I/O counting in struct compressed_bio
btrfs: repair all known bad mirrors
btrfs: merge btrfs_dev_stat_print_on_error with its only caller
btrfs: join running log transaction when logging new name
btrfs: simplify error handling in btrfs_lookup_dentry
btrfs: send: always use the rbtree based inode ref management infrastructure
btrfs: send: fix sending link commands for existing file paths
btrfs: send: introduce recorded_ref_alloc and recorded_ref_free
btrfs: zoned: wait until zone is finished when allocation didn't progress
btrfs: zoned: write out partially allocated region
btrfs: zoned: activate necessary block group
btrfs: zoned: activate metadata block group on flush_space
btrfs: zoned: disable metadata overcommit for zoned
btrfs: zoned: introduce space_info->active_total_bytes
btrfs: zoned: finish least available block group on data bg allocation
btrfs: let can_allocate_chunk return error
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Currently the checksum of compressed extents is verified based on the
compressed data and the lower btrfs_bio, but the actual repair process
is driven by end_bio_extent_readpage on the upper btrfs_bio for the
decompressed data.
This has a bunch of issues, including not being able to properly
communicate the failed mirror up in case that the I/O submission got
preempted, a general loss of if an error was an I/O error or a checksum
verification failure, but most importantly that this design causes
btrfs_clean_io_failure to eventually write back the uncompressed good
data onto the disk sectors that are supposed to contain compressed data.
Fix this by moving the repair to the lower btrfs_bio. To do so, a fair
amount of code has to be reshuffled:
a) the lower btrfs_bio now needs a valid csum pointer. The easiest way
to achieve that is to pass NULL btrfs_lookup_bio_sums and just use
the btrfs_bio management of csums. For a compressed_bio that is
split into multiple btrfs_bios this means additional memory
allocations, but the code becomes a lot more regular.
b) checksum verification now runs directly on the lower btrfs_bio instead
of the compressed_bio. This actually nicely simplifies the end I/O
processing.
c) btrfs_repair_one_sector can't just look up the logical address for
the file offset any more, as there is no corresponding relative
offsets that apply to the file offset and the logic address for
compressed extents. Instead require that the saved bvec_iter in the
btrfs_bio is filled out for all read bios and use that, which again
removes a fair amount of code.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Instead of counting the sectors just count the bios, with an extra
reference held during submission. This significantly simplifies the
submission side error handling.
This slightly changes completion and error handling of
btrfs_submit_compressed_{read,write} because with the old code the
compressed_bio could have been completed in
submit_compressed_{read,write} only if there was an error during
submission for one of the lower bio, whilst with the new code there is a
chance for this to happen even for successful submission if the all the
lower bios complete before the end of the function is reached.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Compressed write bio completion is the only user of btrfs_bio_wq_end_io
for writes, and the use of btrfs_bio_wq_end_io is a little suboptimal
here as we only real need user context for the final completion of a
compressed_bio structure, and not every single bio completion.
Add a work_struct to struct compressed_bio instead and use that to call
finish_compressed_bio_write. This allows to remove all handling of
write bios in the btrfs_bio_wq_end_io infrastructure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|/
|
|
|
|
|
|
|
|
|
|
| |
Improve static type checking by using the enum req_op type for variables
that represent a request operation and the new blk_opf_t type for
variables that represent request flags.
Acked-by: David Sterba <dsterba@suse.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/20220714180729.1065367-51-bvanassche@acm.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
|
|
|
|
|
|
|
|
|
| |
Derive the compression type from extent map as opposed to the bio flags
passed. This makes it more precise and not reliant on function
parameters.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
| |
btrfs_submit_compressed_read already calls ->bi_end_io on error and
the caller must ignore the return value, so remove it.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Right now we just have a binary "errors" flag, so any error we get on
the compressed bio's gets translated to EIO. This isn't necessarily a
bad thing, but if we get an ENOMEM it may be nice to know that's what
happened instead of an EIO. Track our errors as a blk_status_t, and do
the appropriate setting of the errors accordingly.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
| |
The implementation resembles direct I/O: we have to flush any ordered
extents, invalidate the page cache, and do the io tree/delalloc/extent
map/ordered extent dance. From there, we can reuse the compression code
with a minor modification to distinguish the write from writeback. This
also creates inline extents when possible.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The static_assert introduced in 6bab69c65013 ("build_bug.h: add wrapper
for _Static_assert") has been supported by compilers for a long time
(gcc 4.6, clang 3.0) and can be used in header files. We don't need to
put BUILD_BUG_ON to random functions but rather keep it next to the
definition.
The exception here is the UAPI header btrfs_tree.h that could be
potentially included by userspace code and the static assert is not
defined (nor used in any other header).
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
btrfs_submit_compressed_write
Currently btrfs_submit_compressed_write() will check
btrfs_bio_fits_in_stripe() each time a new page is going to be added.
Even if compressed extent is small, we don't really need to do that for
every page.
Align the behavior to extent_io.c, by determining the stripe boundary
when allocating a bio.
Unlike extent_io.c, in compressed.c we don't need to bother things like
different bio flags, thus no need to re-use bio_ctrl.
Here we just manually introduce new local variable, next_stripe_start,
and use that value returned from alloc_compressed_bio() to calculate
the stripe boundary.
Then each time we add some page range into the bio, we check if we
reached the boundary. And if reached, submit it.
Also, since we have @cur_disk_bytenr to determine whether we're the last
bio, we don't need a explicit last_bio: tag for error handling any more.
And since we use @cur_disk_bytenr to wait, there is no need for
pending_bios, also remove it to save some memory of compressed_bio.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For btrfs_submit_compressed_read() and btrfs_submit_compressed_write(),
we have a pretty weird dance around compressed_bio::pending_bios:
btrfs_submit_compressed_read/write()
{
cb = kmalloc()
refcount_set(&cb->pending_bios, 0);
bio = btrfs_alloc_bio();
/* NOTE here, we haven't yet submitted any bio */
refcount_set(&cb->pending_bios, 1);
for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
if (submit) {
/* Here we submit bio, but we always have one
* extra pending_bios */
refcount_inc(&cb->pending_bios);
ret = btrfs_map_bio();
}
}
/* Submit the last bio */
ret = btrfs_map_bio();
}
There are two reasons why we do this:
- compressed_bio::pending_bios is a refcount
Thus if it's reduced to 0, it can not be increased again.
- To ensure the compressed_bio is not freed by some submitted bios
If the submitted bio is finished before the next bio submitted,
we can free the compressed_bio completely.
But the above code is sometimes confusing, and we can do it better by
introducing a new member, compressed_bio::pending_sectors.
Now we use compressed_bio::pending_sectors to indicate whether we have
any pending sectors under IO or not yet submitted.
If pending_sectors == 0, we're definitely the last bio of compressed_bio,
and is OK to release the compressed bio.
Now the workflow looks like this:
btrfs_submit_compressed_read/write()
{
cb = kmalloc()
atomic_set(&cb->pending_bios, 0);
refcount_set(&cb->pending_sectors,
compressed_len >> sectorsize_bits);
bio = btrfs_alloc_bio();
for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
if (submit) {
refcount_inc(&cb->pending_bios);
ret = btrfs_map_bio();
}
}
/* Submit the last bio */
refcount_inc(&cb->pending_bios);
ret = btrfs_map_bio();
}
For now we still need pending_bios for later error handling, but will
remove pending_bios eventually after properly handling the errors.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are several bugs inside the function btrfs_decompress_buf2page()
- @start_byte doesn't take bvec.bv_offset into consideration
Thus it can't handle case where the target range is not page aligned.
- Too many helper variables
There are tons of helper variables, @buf_offset, @current_buf_start,
@start_byte, @prev_start_byte, @working_bytes, @bytes.
This hurts anyone who wants to read the function.
- No obvious main cursor for the iteartion
A new problem caused by previous problem.
- Comments for parameter list makes no sense
Like @buf_start is the offset to @buf, or offset inside the full
decompressed extent? (Spoiler alert, the later case)
And @total_out acts more like @buf_start + @size_of_buf.
The worst is @disk_start.
The real meaning of it is the file offset of the full decompressed
extent.
This patch will rework the whole function by:
- Add a proper comment with ASCII art to explain the parameter list
- Rework parameter list
The old @buf_start is renamed to @decompressed, to show how many bytes
are already decompressed inside the full decompressed extent.
The old @total_out is replaced by @buf_len, which is the decompressed
data size.
For old @disk_start and @bio, just pass @compressed_bio in.
- Use single main cursor
The main cursor will be @cur_file_offset, to show what's the current
file offset.
Other helper variables will be declared inside the main loop, and only
minimal amount of helper variables:
* offset_inside_decompressed_buf: The only real helper
* copy_start_file_offset: File offset we start memcpy
* bvec_file_offset: File offset of current bvec
Even with all these extensive comments, the final function is still
smaller than the original function, which is definitely a win.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
Patch "btrfs: reduce compressed_bio member's types" reduced some
member's size. Function arguments @len, @compressed_len and @nr_pages
can be declared as unsigned int.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Several members of compressed_bio are of type that's unnecessarily big
for the values that they'd hold:
- the size of the uncompressed and compressed data is 128K now, we can
keep is as int
- same for number of pages
- the compress type fits to a byte
- the errors is 0/1
The size of the unpatched structure is 80 bytes with several holes.
Reordering nr_pages next to the pages the hole after pending_bios is
filled and the resulting size is 56 bytes. This keeps the csums array
aligned to 8 bytes, which is nice. Further size optimizations may be
possible but right now it looks good to me:
struct compressed_bio {
refcount_t pending_bios; /* 0 4 */
unsigned int nr_pages; /* 4 4 */
struct page * * compressed_pages; /* 8 8 */
struct inode * inode; /* 16 8 */
u64 start; /* 24 8 */
unsigned int len; /* 32 4 */
unsigned int compressed_len; /* 36 4 */
u8 compress_type; /* 40 1 */
u8 errors; /* 41 1 */
/* XXX 2 bytes hole, try to pack */
int mirror_num; /* 44 4 */
struct bio * orig_bio; /* 48 8 */
u8 sums[]; /* 56 0 */
/* size: 56, cachelines: 1, members: 12 */
/* sum members: 54, holes: 1, sum holes: 2 */
/* last cacheline: 56 bytes */
};
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
| |
The declarations of compression algorithm callbacks are defined in the
.c file as they're used from there. Compiler warns that there are no
declarations for public functions when compiling lzo.c/zlib.c/zstd.c.
Fix that by moving the declarations to the header as it's the common
place for all of them.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
| |
Majority of its uses are for btrfs_inode so take it as an argument
directly.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
btrfs_compress_set_level() can be static function in the file
compression.c.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
We can infer the ops from the type that is now passed to all functions
that would need it, this makes workspace_manager::ops redundant and can
be removed.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
Replace indirect calls to free_workspace by switch and calls to the
specific callbacks. This is mainly to get rid of the indirection due to
spectre vulnerability mitigations.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
| |
We can infer the workspace_manager from type and the type will be used
in the following patch to call a common helper for free_workspace.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
Replace indirect calls to alloc_workspace by switch and calls to the
specific callbacks. This is mainly to get rid of the indirection due to
spectre vulnerability mitigations.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
| |
We can infer the workspace_manager from type and the type will be used
in the following patch to call a common helper for alloc_workspace.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
Similar to get_workspace, majority of the callbacks is trivial, we don't
gain anything by the indirection, so replace them by a switch function.
Trivial callback implementations use the helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Majority of the callbacks is trivial, we don't gain anything by the
indirection, so replace them by a switch function.
ZLIB needs to adjust level in the callback and ZSTD workspace management
is complex, the rest is call to the helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
Replace loop calling to all algos with a list of direct calls to the
cleanup manager callback. When that becomes trivial it is replaced by
direct call to the helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
| |
With the access to the workspace structures, we can look it up together
with the compression ops inside the workspace manager cleanup helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
Replace loop calling to all algos with a list of direct calls to the
init manager callback. When that becomes trivial it is replaced by
direct call to the helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
| |
With the access to the workspace structures, we can look it up together
with the compression ops inside the workspace manager init helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There's a lot of indirection when the generic code calls into
algo-specific callbacks to reach the private workspace manager structure
and back to the generic code.
To simplify that, export the workspace manager for heuristic, LZO and
ZLIB, while ZSTD is going to use it's own manager.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
The indirect calls bring some overhead due to spectre vulnerability
mitigations. The number of cases is small and below the threshold
(10-20) where indirect call would be better.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
| |
The compression type upper limit constant is the same as the last value
and this is confusing. In order to keep coding style consistent, use
BTRFS_NR_COMPRESS_TYPES as the total number that follows the idom of
'NR' being one more than the last value.
Signed-off-by: Chengguang Xu <cgxu519@mykernel.net>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Async CRCs and compression submit IO through helper threads, which means
they have IO priority inversions when cgroup IO controllers are in use.
This flags all of the writes submitted by btrfs helper threads as
REQ_CGROUP_PUNT. submit_bio() will punt these to dedicated per-blkcg
work items to avoid the priority inversion.
For the compression code, we take a reference on the wbc's blkg css and
pass it down to the async workers.
For the async CRCs, the bio already has the correct css, we just need to
tell the block layer to use REQ_CGROUP_PUNT.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Chris Mason <clm@fb.com>
Modified-and-reviewed-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
| |
The set_level callbacks do not do anything special and can be replaced
by a helper that uses the levels defined in the tables.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
The maximum and default levels do not change and can be defined
directly. The set_level callback was a temporary solution and will be
removed.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Nikolay reported the following KASAN splat when running btrfs/048:
[ 1843.470920] ==================================================================
[ 1843.471971] BUG: KASAN: slab-out-of-bounds in strncmp+0x66/0xb0
[ 1843.472775] Read of size 1 at addr ffff888111e369e2 by task btrfs/3979
[ 1843.473904] CPU: 3 PID: 3979 Comm: btrfs Not tainted 5.2.0-rc3-default #536
[ 1843.475009] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
[ 1843.476322] Call Trace:
[ 1843.476674] dump_stack+0x7c/0xbb
[ 1843.477132] ? strncmp+0x66/0xb0
[ 1843.477587] print_address_description+0x114/0x320
[ 1843.478256] ? strncmp+0x66/0xb0
[ 1843.478740] ? strncmp+0x66/0xb0
[ 1843.479185] __kasan_report+0x14e/0x192
[ 1843.479759] ? strncmp+0x66/0xb0
[ 1843.480209] kasan_report+0xe/0x20
[ 1843.480679] strncmp+0x66/0xb0
[ 1843.481105] prop_compression_validate+0x24/0x70
[ 1843.481798] btrfs_xattr_handler_set_prop+0x65/0x160
[ 1843.482509] __vfs_setxattr+0x71/0x90
[ 1843.483012] __vfs_setxattr_noperm+0x84/0x130
[ 1843.483606] vfs_setxattr+0xac/0xb0
[ 1843.484085] setxattr+0x18c/0x230
[ 1843.484546] ? vfs_setxattr+0xb0/0xb0
[ 1843.485048] ? __mod_node_page_state+0x1f/0xa0
[ 1843.485672] ? _raw_spin_unlock+0x24/0x40
[ 1843.486233] ? __handle_mm_fault+0x988/0x1290
[ 1843.486823] ? lock_acquire+0xb4/0x1e0
[ 1843.487330] ? lock_acquire+0xb4/0x1e0
[ 1843.487842] ? mnt_want_write_file+0x3c/0x80
[ 1843.488442] ? debug_lockdep_rcu_enabled+0x22/0x40
[ 1843.489089] ? rcu_sync_lockdep_assert+0xe/0x70
[ 1843.489707] ? __sb_start_write+0x158/0x200
[ 1843.490278] ? mnt_want_write_file+0x3c/0x80
[ 1843.490855] ? __mnt_want_write+0x98/0xe0
[ 1843.491397] __x64_sys_fsetxattr+0xba/0xe0
[ 1843.492201] ? trace_hardirqs_off_thunk+0x1a/0x1c
[ 1843.493201] do_syscall_64+0x6c/0x230
[ 1843.493988] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 1843.495041] RIP: 0033:0x7fa7a8a7707a
[ 1843.495819] Code: 48 8b 0d 21 de 2b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 be 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d ee dd 2b 00 f7 d8 64 89 01 48
[ 1843.499203] RSP: 002b:00007ffcb73bca38 EFLAGS: 00000202 ORIG_RAX: 00000000000000be
[ 1843.500210] RAX: ffffffffffffffda RBX: 00007ffcb73bda9d RCX: 00007fa7a8a7707a
[ 1843.501170] RDX: 00007ffcb73bda9d RSI: 00000000006dc050 RDI: 0000000000000003
[ 1843.502152] RBP: 00000000006dc050 R08: 0000000000000000 R09: 0000000000000000
[ 1843.503109] R10: 0000000000000002 R11: 0000000000000202 R12: 00007ffcb73bda91
[ 1843.504055] R13: 0000000000000003 R14: 00007ffcb73bda82 R15: ffffffffffffffff
[ 1843.505268] Allocated by task 3979:
[ 1843.505771] save_stack+0x19/0x80
[ 1843.506211] __kasan_kmalloc.constprop.5+0xa0/0xd0
[ 1843.506836] setxattr+0xeb/0x230
[ 1843.507264] __x64_sys_fsetxattr+0xba/0xe0
[ 1843.507886] do_syscall_64+0x6c/0x230
[ 1843.508429] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 1843.509558] Freed by task 0:
[ 1843.510188] (stack is not available)
[ 1843.511309] The buggy address belongs to the object at ffff888111e369e0
which belongs to the cache kmalloc-8 of size 8
[ 1843.514095] The buggy address is located 2 bytes inside of
8-byte region [ffff888111e369e0, ffff888111e369e8)
[ 1843.516524] The buggy address belongs to the page:
[ 1843.517561] page:ffff88813f478d80 refcount:1 mapcount:0 mapping:ffff88811940c300 index:0xffff888111e373b8 compound_mapcount: 0
[ 1843.519993] flags: 0x4404000010200(slab|head)
[ 1843.520951] raw: 0004404000010200 ffff88813f48b008 ffff888119403d50 ffff88811940c300
[ 1843.522616] raw: ffff888111e373b8 000000000016000f 00000001ffffffff 0000000000000000
[ 1843.524281] page dumped because: kasan: bad access detected
[ 1843.525936] Memory state around the buggy address:
[ 1843.526975] ffff888111e36880: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 1843.528479] ffff888111e36900: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 1843.530138] >ffff888111e36980: fc fc fc fc fc fc fc fc fc fc fc fc 02 fc fc fc
[ 1843.531877] ^
[ 1843.533287] ffff888111e36a00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 1843.534874] ffff888111e36a80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 1843.536468] ==================================================================
This is caused by supplying a too short compression value ('lz') in the
test-case and comparing it to 'lzo' with strncmp() and a length of 3.
strncmp() read past the 'lz' when looking for the 'o' and thus caused an
out-of-bounds read.
Introduce a new check 'btrfs_compress_is_valid_type()' which not only
checks the user-supplied value against known compression types, but also
employs checks for too short values.
Reported-by: Nikolay Borisov <nborisov@suse.com>
Fixes: 272e5326c783 ("btrfs: prop: fix vanished compression property after failed set")
CC: stable@vger.kernel.org # 5.1+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
BTRFS has the implicit assumption that a checksum in compressed_bio is 4
bytes. While this is true for CRC32C, it is not for any other checksum.
Change the data type to be a byte array and adjust loop index calculation
accordingly.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, the only user of set_level() is zlib which sets an internal
workspace parameter. As level is now plumbed into get_workspace(), this
can be handled there rather than separately.
This repurposes set_level() to bound the level passed in so it can be
used when setting the mounts compression level and as well as verifying
the level before getting a workspace. The other benefit is this divides
the meaning of compress(0) and get_workspace(0). The former means we
want to use the default compression level of the compression type. The
latter means we can use any workspace available.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Zlib compression supports multiple levels, but doesn't require changing
in how a workspace itself is created and managed. Zstd introduces a
different memory requirement such that higher levels of compression
require more memory.
This requires changes in how the alloc()/get() methods work for zstd.
This pach plumbs compression level through the interface as a parameter
in preparation for zstd compression levels. This gives the compression
types opportunity to create/manage based on the compression level.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The previous patch added generic helpers for get_workspace() and
put_workspace(). Now, we can migrate ownership of the workspace_manager
to be in the compression type code as the compression code itself
doesn't care beyond being able to get a workspace. The init/cleanup and
get/put methods are abstracted so each compression algorithm can decide
how they want to manage their workspaces.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
While the heuristic workspaces aren't really compression workspaces,
they use the same interface for managing them. So rather than branching,
let's just handle them once again as the index 0 compression type.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
It is very easy to miss places that rely on a certain bitshifting for
decoding the type_level overloading. Add helpers to do this instead.
Cc: Omar Sandoval <osandov@osandov.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|