| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently we abuse the extent_map structure for two purposes:
1) To actually represent extents for inodes;
2) To represent chunk mappings.
This is odd and has several disadvantages:
1) To create a chunk map, we need to do two memory allocations: one for
an extent_map structure and another one for a map_lookup structure, so
more potential for an allocation failure and more complicated code to
manage and link two structures;
2) For a chunk map we actually only use 3 fields (24 bytes) of the
respective extent map structure: the 'start' field to have the logical
start address of the chunk, the 'len' field to have the chunk's size,
and the 'orig_block_len' field to contain the chunk's stripe size.
Besides wasting a memory, it's also odd and not intuitive at all to
have the stripe size in a field named 'orig_block_len'.
We are also using 'block_len' of the extent_map structure to contain
the chunk size, so we have 2 fields for the same value, 'len' and
'block_len', which is pointless;
3) When an extent map is associated to a chunk mapping, we set the bit
EXTENT_FLAG_FS_MAPPING on its flags and then make its member named
'map_lookup' point to the associated map_lookup structure. This means
that for an extent map associated to an inode extent, we are not using
this 'map_lookup' pointer, so wasting 8 bytes (on a 64 bits platform);
4) Extent maps associated to a chunk mapping are never merged or split so
it's pointless to use the existing extent map infrastructure.
So add a dedicated data structure named 'btrfs_chunk_map' to represent
chunk mappings, this is basically the existing map_lookup structure with
some extra fields:
1) 'start' to contain the chunk logical address;
2) 'chunk_len' to contain the chunk's length;
3) 'stripe_size' for the stripe size;
4) 'rb_node' for insertion into a rb tree;
5) 'refs' for reference counting.
This way we do a single memory allocation for chunk mappings and we don't
waste memory for them with unused/unnecessary fields from an extent_map.
We also save 8 bytes from the extent_map structure by removing the
'map_lookup' pointer, so the size of struct extent_map is reduced from
144 bytes down to 136 bytes, and we can now have 30 extents map per 4K
page instead of 28.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"New features:
- raid-stripe-tree
New tree for logical file extent mapping where the physical mapping
may not match on multiple devices. This is now used in zoned mode
to implement RAID0/RAID1* profiles, but can be used in non-zoned
mode as well. The support for RAID56 is in development and will
eventually fix the problems with the current implementation. This
is a backward incompatible feature and has to be enabled at mkfs
time.
- simple quota accounting (squota)
A simplified mode of qgroup that accounts all space on the initial
extent owners (a subvolume), the snapshots are then cheap to create
and delete. The deletion of snapshots in fully accounting qgroups
is a known CPU/IO performance bottleneck.
The squota is not suitable for the general use case but works well
for containers where the original subvolume exists for the whole
time. This is a backward incompatible feature as it needs extending
some structures, but can be enabled on an existing filesystem.
- temporary filesystem fsid (temp_fsid)
The fsid identifies a filesystem and is hard coded in the
structures, which disallows mounting the same fsid found on
different devices.
For a single device filesystem this is not strictly necessary, a
new temporary fsid can be generated on mount e.g. after a device is
cloned. This will be used by Steam Deck for root partition A/B
testing, or can be used for VM root images.
Other user visible changes:
- filesystems with partially finished metadata_uuid conversion cannot
be mounted anymore and the uuid fixup has to be done by btrfs-progs
(btrfstune).
Performance improvements:
- reduce reservations for checksum deletions (with enabled free space
tree by factor of 4), on a sample workload on file with many
extents the deletion time decreased by 12%
- make extent state merges more efficient during insertions, reduce
rb-tree iterations (run time of critical functions reduced by 5%)
Core changes:
- the integrity check functionality has been removed, this was a
debugging feature and removal does not affect other integrity
checks like checksums or tree-checker
- space reservation changes:
- more efficient delayed ref reservations, this avoids building up
too much work or overusing or exhausting the global block
reserve in some situations
- move delayed refs reservation to the transaction start time,
this prevents some ENOSPC corner cases related to exhaustion of
global reserve
- improvements in reducing excessive reservations for block group
items
- adjust overcommit logic in near full situations, account for one
more chunk to eventually allocate metadata chunk, this is mostly
relevant for small filesystems (<10GiB)
- single device filesystems are scanned but not registered (except
seed devices), this allows temp_fsid to work
- qgroup iterations do not need GFP_ATOMIC allocations anymore
- cleanups, refactoring, reduced data structure size, function
parameter simplifications, error handling fixes"
* tag 'for-6.7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (156 commits)
btrfs: open code timespec64 in struct btrfs_inode
btrfs: remove redundant log root tree index assignment during log sync
btrfs: remove redundant initialization of variable dirty in btrfs_update_time()
btrfs: sysfs: show temp_fsid feature
btrfs: disable the device add feature for temp-fsid
btrfs: disable the seed feature for temp-fsid
btrfs: update comment for temp-fsid, fsid, and metadata_uuid
btrfs: remove pointless empty log context list check when syncing log
btrfs: update comment for struct btrfs_inode::lock
btrfs: remove pointless barrier from btrfs_sync_file()
btrfs: add and use helpers for reading and writing last_trans_committed
btrfs: add and use helpers for reading and writing fs_info->generation
btrfs: add and use helpers for reading and writing log_transid
btrfs: add and use helpers for reading and writing last_log_commit
btrfs: support cloned-device mount capability
btrfs: add helper function find_fsid_by_disk
btrfs: stop reserving excessive space for block group item insertions
btrfs: stop reserving excessive space for block group item updates
btrfs: reorder btrfs_inode to fill gaps
btrfs: open code btrfs_ordered_inode_tree in btrfs_inode
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When marking an extent buffer as dirty, at btrfs_mark_buffer_dirty(),
we check if its generation matches the running transaction and if not we
just print a warning. Such mismatch is an indicator that something really
went wrong and only printing a warning message (and stack trace) is not
enough to prevent a corruption. Allowing a transaction to commit with such
an extent buffer will trigger an error if we ever try to read it from disk
due to a generation mismatch with its parent generation.
So abort the current transaction with -EUCLEAN if we notice a generation
mismatch. For this we need to pass a transaction handle to
btrfs_mark_buffer_dirty() which is always available except in test code,
in which case we can pass NULL since it operates on dummy extent buffers
and all test roots have a single node/leaf (root node at level 0).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The function btrfsic_mount() is part of the deprecated check-integrity
functionality.
Now let's remove the main entry point of check-integrity, and thankfully
most of the check-integrity code is self-contained inside
check-integrity.c, we can safely remove the function without huge
changes to btrfs code base.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
| |
Convert btrfs to use bdev_open_by_path() and pass the handle around. We
also drop the holder from struct btrfs_device as it is now not needed
anymore.
CC: David Sterba <dsterba@suse.com>
CC: linux-btrfs@vger.kernel.org
Acked-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20230927093442.25915-20-jack@suse.cz
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently find_first_extent_bit() returns a 0 if it found a range in the
given io tree and 1 if it didn't find any. There's no need to return any
errors, so make the return value a boolean and invert the logic to make
more sense: return true if it found a range and false if it didn't find
any range.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull block updates from Jens Axboe:
- NVMe pull request via Keith:
- Various cleanups all around (Irvin, Chaitanya, Christophe)
- Better struct packing (Christophe JAILLET)
- Reduce controller error logs for optional commands (Keith)
- Support for >=64KiB block sizes (Daniel Gomez)
- Fabrics fixes and code organization (Max, Chaitanya, Daniel
Wagner)
- bcache updates via Coly:
- Fix a race at init time (Mingzhe Zou)
- Misc fixes and cleanups (Andrea, Thomas, Zheng, Ye)
- use page pinning in the block layer for dio (David)
- convert old block dio code to page pinning (David, Christoph)
- cleanups for pktcdvd (Andy)
- cleanups for rnbd (Guoqing)
- use the unchecked __bio_add_page() for the initial single page
additions (Johannes)
- fix overflows in the Amiga partition handling code (Michael)
- improve mq-deadline zoned device support (Bart)
- keep passthrough requests out of the IO schedulers (Christoph, Ming)
- improve support for flush requests, making them less special to deal
with (Christoph)
- add bdev holder ops and shutdown methods (Christoph)
- fix the name_to_dev_t() situation and use cases (Christoph)
- decouple the block open flags from fmode_t (Christoph)
- ublk updates and cleanups, including adding user copy support (Ming)
- BFQ sanity checking (Bart)
- convert brd from radix to xarray (Pankaj)
- constify various structures (Thomas, Ivan)
- more fine grained persistent reservation ioctl capability checks
(Jingbo)
- misc fixes and cleanups (Arnd, Azeem, Demi, Ed, Hengqi, Hou, Jan,
Jordy, Li, Min, Yu, Zhong, Waiman)
* tag 'for-6.5/block-2023-06-23' of git://git.kernel.dk/linux: (266 commits)
scsi/sg: don't grab scsi host module reference
ext4: Fix warning in blkdev_put()
block: don't return -EINVAL for not found names in devt_from_devname
cdrom: Fix spectre-v1 gadget
block: Improve kernel-doc headers
blk-mq: don't insert passthrough request into sw queue
bsg: make bsg_class a static const structure
ublk: make ublk_chr_class a static const structure
aoe: make aoe_class a static const structure
block/rnbd: make all 'class' structures const
block: fix the exclusive open mask in disk_scan_partitions
block: add overflow checks for Amiga partition support
block: change all __u32 annotations to __be32 in affs_hardblocks.h
block: fix signed int overflow in Amiga partition support
block: add capacity validation in bdev_add_partition()
block: fine-granular CAP_SYS_ADMIN for Persistent Reservation
block: disallow Persistent Reservation on partitions
reiserfs: fix blkdev_put() warning from release_journal_dev()
block: fix wrong mode for blkdev_get_by_dev() from disk_scan_partitions()
block: document the holder argument to blkdev_get_by_path
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The only overlap between the block open flags mapped into the fmode_t and
other uses of fmode_t are FMODE_READ and FMODE_WRITE. Define a new
blk_mode_t instead for use in blkdev_get_by_{dev,path}, ->open and
->ioctl and stop abusing fmode_t.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jack Wang <jinpu.wang@ionos.com> [rnbd]
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Link: https://lore.kernel.org/r/20230608110258.189493-28-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The current interface for exclusive opens is rather confusing as it
requires both the FMODE_EXCL flag and a holder. Remove the need to pass
FMODE_EXCL and just key off the exclusive open off a non-NULL holder.
For blkdev_put this requires adding the holder argument, which provides
better debug checking that only the holder actually releases the hold,
but at the same time allows removing the now superfluous mode argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Acked-by: Christian Brauner <brauner@kernel.org>
Acked-by: David Sterba <dsterba@suse.com> [btrfs]
Acked-by: Jack Wang <jinpu.wang@ionos.com> [rnbd]
Link: https://lore.kernel.org/r/20230608110258.189493-16-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Add a new blk_holder_ops structure, which is passed to blkdev_get_by_* and
installed in the block_device for exclusive claims. It will be used to
allow the block layer to call back into the user of the block device for
thing like notification of a removed device or a device resize.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Link: https://lore.kernel.org/r/20230601094459.1350643-10-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Now that the old btrfs_map_block is gone, drop the leading underscores
from __btrfs_map_block.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Now that all extent state bit helpers effectively take the GFP_NOFS mask
(and GFP_NOWAIT is encoded in the bits) we can remove the parameter.
This reduces stack consumption in many functions and simplifies a lot of
code.
Net effect on module on a release build:
text data bss dec hex filename
1250432 20985 16088 1287505 13a551 pre/btrfs.ko
1247074 20985 16088 1284147 139833 post/btrfs.ko
DELTA: -3358
Signed-off-by: David Sterba <dsterba@suse.com>
|
|/
|
|
|
|
|
|
|
| |
This helper calls set_extent_bit with two more parameters set to default
values, but otherwise it's purpose is not clear.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[BUG]
If dev-replace failed to re-construct its data/metadata, the kernel
message would be incorrect for the missing device:
BTRFS info (device dm-1): dev_replace from <missing disk> (devid 2) to /dev/mapper/test-scratch2 started
BTRFS error (device dm-1): failed to rebuild valid logical 38862848 for dev (efault)
Note the above "dev (efault)" of the second line.
While the first line is properly reporting "<missing disk>".
[CAUSE]
Although dev-replace is using btrfs_dev_name(), the heavy lifting work
is still done by scrub (scrub is reused by both dev-replace and regular
scrub).
Unfortunately scrub code never uses btrfs_dev_name() helper, as it's
only declared locally inside dev-replace.c.
[FIX]
Fix the output by:
- Move the btrfs_dev_name() helper to volumes.h
- Use btrfs_dev_name() to replace open-coded rcu_str_deref() calls
Only zoned code is not touched, as I'm not familiar with degraded
zoned code.
- Constify return value and parameter
Now the output looks pretty sane:
BTRFS info (device dm-1): dev_replace from <missing disk> (devid 2) to /dev/mapper/test-scratch2 started
BTRFS error (device dm-1): failed to rebuild valid logical 38862848 for dev <missing disk>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is a repeating code section in the parent function after calling
btrfs_alloc_device(), as below:
name = rcu_string_strdup(path, GFP_...);
if (!name) {
btrfs_free_device(device);
return ERR_PTR(-ENOMEM);
}
rcu_assign_pointer(device->name, name);
Except in add_missing_dev() for obvious reasons.
This patch consolidates that repeating code into the btrfs_alloc_device()
itself so that the parent function doesn't have to duplicate code.
This consolidation also helps to review issues regarding RCU lock
violation with device->name.
Parent function device_list_add() and add_missing_dev() use GFP_NOFS for
the allocation, whereas the rest of the parent functions use GFP_KERNEL,
so bring the NOFS allocation context using memalloc_nofs_save() in the
function device_list_add() and add_missing_dev() is already doing it.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
| |
Move these out of ctree.h into scrub.h to cut down on code in ctree.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a large patch, but because they're all macros it's impossible to
split up. Simply copy all of the item accessors in ctree.h and paste
them in accessors.h, and then update any files to include the header so
everything compiles.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reformat comments, style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
We're going to use fs.h to hold fs wide related helpers and definitions,
move the FS_STATE enum and related helpers to fs.h, and then update all
files that need these definitions to include fs.h.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Stop grabbing an extra bio_counter reference for each clone bio in a
mirrored write and instead just release the one original reference in
btrfs_end_bioc once all the bios for a single btrfs_bio have completed
instead of at the end of btrfs_submit_bio once all bios have been
submitted.
This means the reference is now carried by the "upper" btrfs_bio only
instead of each lower bio.
Also remove the now unused btrfs_bio_counter_inc_noblocked helper.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
We use this during device replace for zoned devices, we were simply
taking the lock because it was in a bit field and we needed the lock to
be safe with other modifications in the bitfield. With the bit helpers
we no longer require that locking.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We use a bit field in the btrfs_block_group for different flags, however
this is awkward because we have to hold the block_group->lock for any
modification of any of these fields, and makes the code clunky for a few
of these flags. Convert these to a properly flags setup so we can
utilize the bit helpers.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If the replace target device reappears after the suspended replace is
cancelled, it blocks the mount operation as it can't find the matching
replace-item in the metadata. As shown below,
BTRFS error (device sda5): replace devid present without an active replace item
To overcome this situation, the user can run the command
btrfs device scan --forget <replace target device>
and try the mount command again. And also, to avoid repeating the issue,
superblock on the devid=0 must be wiped.
wipefs -a device-path-to-devid=0.
This patch adds some info when this situation occurs.
Reported-by: Samuel Greiner <samuel@balkonien.org>
Link: https://lore.kernel.org/linux-btrfs/b4f62b10-b295-26ea-71f9-9a5c9299d42c@balkonien.org/T/
CC: stable@vger.kernel.org # 5.0+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If the filesystem mounts with the replace-operation in a suspended state
and try to cancel the suspended replace-operation, we hit the assert. The
assert came from the commit fe97e2e173af ("btrfs: dev-replace: replace's
scrub must not be running in suspended state") that was actually not
required. So just remove it.
$ mount /dev/sda5 /btrfs
BTRFS info (device sda5): cannot continue dev_replace, tgtdev is missing
BTRFS info (device sda5): you may cancel the operation after 'mount -o degraded'
$ mount -o degraded /dev/sda5 /btrfs <-- success.
$ btrfs replace cancel /btrfs
kernel: assertion failed: ret != -ENOTCONN, in fs/btrfs/dev-replace.c:1131
kernel: ------------[ cut here ]------------
kernel: kernel BUG at fs/btrfs/ctree.h:3750!
After the patch:
$ btrfs replace cancel /btrfs
BTRFS info (device sda5): suspended dev_replace from /dev/sda5 (devid 1) to <missing disk> canceled
Fixes: fe97e2e173af ("btrfs: dev-replace: replace's scrub must not be running in suspended state")
CC: stable@vger.kernel.org # 5.0+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The chained assignments may be convenient to write, but make readability
a bit worse as it's too easy to overlook that there are several values
set on the same line while this is rather an exception. Making it
consistent everywhere avoids surprises.
The pattern where inode times are initialized reuses the first value and
the order is mtime, ctime. In other blocks the assignments are expanded
so the order of variables is similar to the neighboring code.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
btrfs_dev_replace_finishing
In the function btrfs_dev_replace_finishing, we dereferenced
fs_info->fs_devices 6 times. Use keep local variable for that.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
This function can be simplified by refactoring to use the new iterator
macro. No functional changes.
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Signed-off-by: Gabriel Niebler <gniebler@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During a scrub, or device replace, we can race with block group removal
and allocation and trigger the following assertion failure:
[7526.385524] assertion failed: cache->start == chunk_offset, in fs/btrfs/scrub.c:3817
[7526.387351] ------------[ cut here ]------------
[7526.387373] kernel BUG at fs/btrfs/ctree.h:3599!
[7526.388001] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
[7526.388970] CPU: 2 PID: 1158150 Comm: btrfs Not tainted 5.17.0-rc8-btrfs-next-114 #4
[7526.390279] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[7526.392430] RIP: 0010:assertfail.constprop.0+0x18/0x1a [btrfs]
[7526.393520] Code: f3 48 c7 c7 20 (...)
[7526.396926] RSP: 0018:ffffb9154176bc40 EFLAGS: 00010246
[7526.397690] RAX: 0000000000000048 RBX: ffffa0db8a910000 RCX: 0000000000000000
[7526.398732] RDX: 0000000000000000 RSI: ffffffff9d7239a2 RDI: 00000000ffffffff
[7526.399766] RBP: ffffa0db8a911e10 R08: ffffffffa71a3ca0 R09: 0000000000000001
[7526.400793] R10: 0000000000000001 R11: 0000000000000000 R12: ffffa0db4b170800
[7526.401839] R13: 00000003494b0000 R14: ffffa0db7c55b488 R15: ffffa0db8b19a000
[7526.402874] FS: 00007f6c99c40640(0000) GS:ffffa0de6d200000(0000) knlGS:0000000000000000
[7526.404038] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[7526.405040] CR2: 00007f31b0882160 CR3: 000000014b38c004 CR4: 0000000000370ee0
[7526.406112] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[7526.407148] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[7526.408169] Call Trace:
[7526.408529] <TASK>
[7526.408839] scrub_enumerate_chunks.cold+0x11/0x79 [btrfs]
[7526.409690] ? do_wait_intr_irq+0xb0/0xb0
[7526.410276] btrfs_scrub_dev+0x226/0x620 [btrfs]
[7526.410995] ? preempt_count_add+0x49/0xa0
[7526.411592] btrfs_ioctl+0x1ab5/0x36d0 [btrfs]
[7526.412278] ? __fget_files+0xc9/0x1b0
[7526.412825] ? kvm_sched_clock_read+0x14/0x40
[7526.413459] ? lock_release+0x155/0x4a0
[7526.414022] ? __x64_sys_ioctl+0x83/0xb0
[7526.414601] __x64_sys_ioctl+0x83/0xb0
[7526.415150] do_syscall_64+0x3b/0xc0
[7526.415675] entry_SYSCALL_64_after_hwframe+0x44/0xae
[7526.416408] RIP: 0033:0x7f6c99d34397
[7526.416931] Code: 3c 1c e8 1c ff (...)
[7526.419641] RSP: 002b:00007f6c99c3fca8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[7526.420735] RAX: ffffffffffffffda RBX: 00005624e1e007b0 RCX: 00007f6c99d34397
[7526.421779] RDX: 00005624e1e007b0 RSI: 00000000c400941b RDI: 0000000000000003
[7526.422820] RBP: 0000000000000000 R08: 00007f6c99c40640 R09: 0000000000000000
[7526.423906] R10: 00007f6c99c40640 R11: 0000000000000246 R12: 00007fff746755de
[7526.424924] R13: 00007fff746755df R14: 0000000000000000 R15: 00007f6c99c40640
[7526.425950] </TASK>
That assertion is relatively new, introduced with commit d04fbe19aefd2
("btrfs: scrub: cleanup the argument list of scrub_chunk()").
The block group we get at scrub_enumerate_chunks() can actually have a
start address that is smaller then the chunk offset we extracted from a
device extent item we got from the commit root of the device tree.
This is very rare, but it can happen due to a race with block group
removal and allocation. For example, the following steps show how this
can happen:
1) We are at transaction T, and we have the following blocks groups,
sorted by their logical start address:
[ bg A, start address A, length 1G (data) ]
[ bg B, start address B, length 1G (data) ]
(...)
[ bg W, start address W, length 1G (data) ]
--> logical address space hole of 256M,
there used to be a 256M metadata block group here
[ bg Y, start address Y, length 256M (metadata) ]
--> Y matches W's end offset + 256M
Block group Y is the block group with the highest logical address in
the whole filesystem;
2) Block group Y is deleted and its extent mapping is removed by the call
to remove_extent_mapping() made from btrfs_remove_block_group().
So after this point, the last element of the mapping red black tree,
its rightmost node, is the mapping for block group W;
3) While still at transaction T, a new data block group is allocated,
with a length of 1G. When creating the block group we do a call to
find_next_chunk(), which returns the logical start address for the
new block group. This calls returns X, which corresponds to the
end offset of the last block group, the rightmost node in the mapping
red black tree (fs_info->mapping_tree), plus one.
So we get a new block group that starts at logical address X and with
a length of 1G. It spans over the whole logical range of the old block
group Y, that was previously removed in the same transaction.
However the device extent allocated to block group X is not the same
device extent that was used by block group Y, and it also does not
overlap that extent, which must be always the case because we allocate
extents by searching through the commit root of the device tree
(otherwise it could corrupt a filesystem after a power failure or
an unclean shutdown in general), so the extent allocator is behaving
as expected;
4) We have a task running scrub, currently at scrub_enumerate_chunks().
There it searches for device extent items in the device tree, using
its commit root. It finds a device extent item that was used by
block group Y, and it extracts the value Y from that item into the
local variable 'chunk_offset', using btrfs_dev_extent_chunk_offset();
It then calls btrfs_lookup_block_group() to find block group for
the logical address Y - since there's currently no block group that
starts at that logical address, it returns block group X, because
its range contains Y.
This results in triggering the assertion:
ASSERT(cache->start == chunk_offset);
right before calling scrub_chunk(), as cache->start is X and
chunk_offset is Y.
This is more likely to happen of filesystems not larger than 50G, because
for these filesystems we use a 256M size for metadata block groups and
a 1G size for data block groups, while for filesystems larger than 50G,
we use a 1G size for both data and metadata block groups (except for
zoned filesystems). It could also happen on any filesystem size due to
the fact that system block groups are always smaller (32M) than both
data and metadata block groups, but these are not frequently deleted, so
much less likely to trigger the race.
So make scrub skip any block group with a start offset that is less than
the value we expect, as that means it's a new block group that was created
in the current transaction. It's pointless to continue and try to scrub
its extents, because scrub searches for extents using the commit root, so
it won't find any. For a device replace, skip it as well for the same
reasons, and we don't need to worry about the possibility of extents of
the new block group not being to the new device, because we have the write
duplication setup done through btrfs_map_block().
Fixes: d04fbe19aefd ("btrfs: scrub: cleanup the argument list of scrub_chunk()")
CC: stable@vger.kernel.org # 5.17
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Internally it is common to use the major-minor number to identify a
device and, at a few locations in btrfs, we use the major-minor number
to match the device.
So when we identify a new btrfs device through device add or device
replace or device-scan/ready save the device's major-minor (dev_t) in the
struct btrfs_device so that we don't have to call lookup_bdev() again.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
| |
In btrfs_init_dev_replace_tgtdev() we dereference fs_info to get
fs_devices many times, instead save a point to the fs_devices.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently there is only one user for btrfs metadata readahead, and
that's scrub.
But even for the single user, it's not providing the correct
functionality it needs, as scrub needs reada for commit root, which
current readahead can't provide. (Although it's pretty easy to add such
feature).
Despite this, there are some extra problems related to metadata
readahead:
- Duplicated feature with btrfs_path::reada
- Partly duplicated feature of btrfs_fs_info::buffer_radix
Btrfs already caches its metadata in buffer_radix, while readahead
tries to read the tree block no matter if it's already cached.
- Poor layer separation
Metadata readahead works kinda at device level.
This is definitely not the correct layer it should be, since metadata
is at btrfs logical address space, it should not bother device at all.
This brings extra chance for bugs to sneak in, while brings
unnecessary complexity.
- Dead code
In the very beginning of scrub.c we have #undef DEBUG, rendering all
the debug related code useless and unable to test.
Thus here I purpose to remove the metadata readahead mechanism
completely.
[BENCHMARK]
There is a full benchmark for the scrub performance difference using the
old btrfs_reada_add() and btrfs_path::reada.
For the worst case (no dirty metadata, slow HDD), there could be a 5%
performance drop for scrub.
For other cases (even SATA SSD), there is no distinguishable performance
difference.
The number is reported scrub speed, in MiB/s.
The resolution is limited by the reported duration, which only has a
resolution of 1 second.
Old New Diff
SSD 455.3 466.332 +2.42%
HDD 103.927 98.012 -5.69%
Comprehensive test methodology is in the cover letter of the patch.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When mounting a device, we are reporting the zones twice: once for
checking the zone attributes in btrfs_get_dev_zone_info and once for
loading block groups' zone info in
btrfs_load_block_group_zone_info(). With a lot of block groups, that
leads to a lot of REPORT ZONE commands and slows down the mount
process.
This patch introduces a zone info cache in struct
btrfs_zoned_device_info. The cache is populated while in
btrfs_get_dev_zone_info() and used for
btrfs_load_block_group_zone_info() to reduce the number of REPORT ZONE
commands. The zone cache is then released after loading the block
groups, as it will not be much effective during the run time.
Benchmark: Mount an HDD with 57,007 block groups
Before patch: 171.368 seconds
After patch: 64.064 seconds
While it still takes a minute due to the slowness of loading all the
block groups, the patch reduces the mount time by 1/3.
Link: https://lore.kernel.org/linux-btrfs/CAHQ7scUiLtcTqZOMMY5kbWUBOhGRwKo6J6wYPT5WY+C=cD49nQ@mail.gmail.com/
Fixes: 5b316468983d ("btrfs: get zone information of zoned block devices")
CC: stable@vger.kernel.org
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Now that all call sites are using the slot number to modify item values,
rename the SETGET helpers to raw_item_*(), and then rework the _nr()
helpers to be the btrfs_item_*() btrfs_set_item_*() helpers, and then
rename all of the callers to the new helpers.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"The updates this time are more under the hood and enhancing existing
features (subpage with compression and zoned namespaces).
Performance related:
- misc small inode logging improvements (+3% throughput, -11% latency
on sample dbench workload)
- more efficient directory logging: bulk item insertion, less tree
searches and locking
- speed up bulk insertion of items into a b-tree, which is used when
logging directories, when running delayed items for directories
(fsync and transaction commits) and when running the slow path
(full sync) of an fsync (bulk creation run time -4%, deletion -12%)
Core:
- continued subpage support
- make defragmentation work
- make compression write work
- zoned mode
- support ZNS (zoned namespaces), zone capacity is number of
usable blocks in each zone
- add dedicated block group (zoned) for relocation, to prevent
out of order writes in some cases
- greedy block group reclaim, pick the ones with least usable
space first
- preparatory work for send protocol updates
- error handling improvements
- cleanups and refactoring
Fixes:
- lockdep warnings
- in show_devname callback, on seeding device
- device delete on loop device due to conversions to workqueues
- fix deadlock between chunk allocation and chunk btree modifications
- fix tracking of missing device count and status"
* tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (140 commits)
btrfs: remove root argument from check_item_in_log()
btrfs: remove root argument from add_link()
btrfs: remove root argument from btrfs_unlink_inode()
btrfs: remove root argument from drop_one_dir_item()
btrfs: clear MISSING device status bit in btrfs_close_one_device
btrfs: call btrfs_check_rw_degradable only if there is a missing device
btrfs: send: prepare for v2 protocol
btrfs: fix comment about sector sizes supported in 64K systems
btrfs: update device path inode time instead of bd_inode
fs: export an inode_update_time helper
btrfs: fix deadlock when defragging transparent huge pages
btrfs: sysfs: convert scnprintf and snprintf to sysfs_emit
btrfs: make btrfs_super_block size match BTRFS_SUPER_INFO_SIZE
btrfs: update comments for chunk allocation -ENOSPC cases
btrfs: fix deadlock between chunk allocation and chunk btree modifications
btrfs: zoned: use greedy gc for auto reclaim
btrfs: check-integrity: stop storing the block device name in btrfsic_dev_state
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls
btrfs: add a btrfs_get_dev_args_from_path helper
btrfs: handle device lookup with btrfs_dev_lookup_args
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We have a lot of device lookup functions that all do something slightly
different. Clean this up by adding a struct to hold the different
lookup criteria, and then pass this around to btrfs_find_device() so it
can do the proper matching based on the lookup criteria.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|/
|
|
|
|
|
|
|
|
|
|
| |
Use the proper helper to read the block device size.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Acked-by: David Sterba <dsterba@suse.com>
Link: https://lore.kernel.org/r/20211018101130.1838532-13-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
|
|
|
|
| |
Fix typos that have snuck in since the last round. Found by codespell.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
While helping Neal fix his broken file system I added a debug patch to
catch if we were calling btrfs_search_slot with a NULL root, and this
stack trace popped:
we tried to search with a NULL root
CPU: 0 PID: 1760 Comm: mount Not tainted 5.11.0-155.nealbtrfstest.1.fc34.x86_64 #1
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/22/2020
Call Trace:
dump_stack+0x6b/0x83
btrfs_search_slot.cold+0x11/0x1b
? btrfs_init_dev_replace+0x36/0x450
btrfs_init_dev_replace+0x71/0x450
open_ctree+0x1054/0x1610
btrfs_mount_root.cold+0x13/0xfa
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
vfs_kern_mount.part.0+0x71/0xb0
btrfs_mount+0x131/0x3d0
? legacy_get_tree+0x27/0x40
? btrfs_show_options+0x640/0x640
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
path_mount+0x441/0xa80
__x64_sys_mount+0xf4/0x130
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f644730352e
Fix this by not starting the device replace stuff if we do not have a
NULL dev root.
Reported-by: Neal Gompa <ngompa13@gmail.com>
CC: stable@vger.kernel.org # 5.11+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the 1/4 patch to support device-replace on zoned filesystems.
We have two types of IOs during the device replace process. One is an IO
to "copy" (by the scrub functions) all the device extents from the source
device to the destination device. The other one is an IO to "clone" (by
handle_ops_on_dev_replace()) new incoming write IOs from users to the
source device into the target device.
Cloning incoming IOs can break the sequential write rule in on target
device. When a write is mapped in the middle of a block group, the IO is
directed to the middle of a target device zone, which breaks the
sequential write requirement.
However, the cloning function cannot be disabled since incoming IOs
targeting already copied device extents must be cloned so that the IO is
executed on the target device.
We cannot use dev_replace->cursor_{left,right} to determine whether a bio
is going to a not yet copied region. Since we have a time gap between
finishing btrfs_scrub_dev() and rewriting the mapping tree in
btrfs_dev_replace_finishing(), we can have a newly allocated device extent
which is never cloned nor copied.
So the point is to copy only already existing device extents. This patch
introduces mark_block_group_to_copy() to mark existing block groups as a
target of copying. Then, handle_ops_on_dev_replace() and dev-replace can
check the flag to do their job.
Also, btrfs_finish_block_group_to_copy() will check if the copied stripe
is the last stripe in the block group. With the last stripe copied,
the to_copy flag is finally disabled. Afterwards we can safely clone
incoming IOs on this block group.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It's currently u64 which gets instantly translated either to LONG_MAX
(if U64_MAX is passed) or cast to an unsigned long (which is in fact,
wrong because writeback_control::nr_to_write is a signed, long type).
Just convert the function's argument to be long time which obviates the
need to manually convert u64 value to a long. Adjust all call sites
which pass U64_MAX to pass LONG_MAX. Finally ensure that in
shrink_delalloc the u64 is converted to a long without overflowing,
resulting in a negative number.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When cloning an inline extent there are cases where we can not just copy
the inline extent from the source range to the target range (e.g. when the
target range starts at an offset greater than zero). In such cases we copy
the inline extent's data into a page of the destination inode and then
dirty that page. However, after that we will need to start a transaction
for each processed extent and, if we are ever low on available metadata
space, we may need to flush existing delalloc for all dirty inodes in an
attempt to release metadata space - if that happens we may deadlock:
* the async reclaim task queued a delalloc work to flush delalloc for
the destination inode of the clone operation;
* the task executing that delalloc work gets blocked waiting for the
range with the dirty page to be unlocked, which is currently locked
by the task doing the clone operation;
* the async reclaim task blocks waiting for the delalloc work to complete;
* the cloning task is waiting on the waitqueue of its reservation ticket
while holding the range with the dirty page locked in the inode's
io_tree;
* if metadata space is not released by some other task (like delalloc for
some other inode completing for example), the clone task waits forever
and as a consequence the delalloc work and async reclaim tasks will hang
forever as well. Releasing more space on the other hand may require
starting a transaction, which will hang as well when trying to reserve
metadata space, resulting in a deadlock between all these tasks.
When this happens, traces like the following show up in dmesg/syslog:
[87452.323003] INFO: task kworker/u16:11:1810830 blocked for more than 120 seconds.
[87452.323644] Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
[87452.324248] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[87452.324852] task:kworker/u16:11 state:D stack: 0 pid:1810830 ppid: 2 flags:0x00004000
[87452.325520] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs]
[87452.326136] Call Trace:
[87452.326737] __schedule+0x5d1/0xcf0
[87452.327390] schedule+0x45/0xe0
[87452.328174] lock_extent_bits+0x1e6/0x2d0 [btrfs]
[87452.328894] ? finish_wait+0x90/0x90
[87452.329474] btrfs_invalidatepage+0x32c/0x390 [btrfs]
[87452.330133] ? __mod_memcg_state+0x8e/0x160
[87452.330738] __extent_writepage+0x2d4/0x400 [btrfs]
[87452.331405] extent_write_cache_pages+0x2b2/0x500 [btrfs]
[87452.332007] ? lock_release+0x20e/0x4c0
[87452.332557] ? trace_hardirqs_on+0x1b/0xf0
[87452.333127] extent_writepages+0x43/0x90 [btrfs]
[87452.333653] ? lock_acquire+0x1a3/0x490
[87452.334177] do_writepages+0x43/0xe0
[87452.334699] ? __filemap_fdatawrite_range+0xa4/0x100
[87452.335720] __filemap_fdatawrite_range+0xc5/0x100
[87452.336500] btrfs_run_delalloc_work+0x17/0x40 [btrfs]
[87452.337216] btrfs_work_helper+0xf1/0x600 [btrfs]
[87452.337838] process_one_work+0x24e/0x5e0
[87452.338437] worker_thread+0x50/0x3b0
[87452.339137] ? process_one_work+0x5e0/0x5e0
[87452.339884] kthread+0x153/0x170
[87452.340507] ? kthread_mod_delayed_work+0xc0/0xc0
[87452.341153] ret_from_fork+0x22/0x30
[87452.341806] INFO: task kworker/u16:1:2426217 blocked for more than 120 seconds.
[87452.342487] Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1
[87452.343274] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[87452.344049] task:kworker/u16:1 state:D stack: 0 pid:2426217 ppid: 2 flags:0x00004000
[87452.344974] Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
[87452.345655] Call Trace:
[87452.346305] __schedule+0x5d1/0xcf0
[87452.346947] ? kvm_clock_read+0x14/0x30
[87452.347676] ? wait_for_completion+0x81/0x110
[87452.348389] schedule+0x45/0xe0
[87452.349077] schedule_timeout+0x30c/0x580
[87452.349718] ? _raw_spin_unlock_irqrestore+0x3c/0x60
[87452.350340] ? lock_acquire+0x1a3/0x490
[87452.351006] ? try_to_wake_up+0x7a/0xa20
[87452.351541] ? lock_release+0x20e/0x4c0
[87452.352040] ? lock_acquired+0x199/0x490
[87452.352517] ? wait_for_completion+0x81/0x110
[87452.353000] wait_for_completion+0xab/0x110
[87452.353490] start_delalloc_inodes+0x2af/0x390 [btrfs]
[87452.353973] btrfs_start_delalloc_roots+0x12d/0x250 [btrfs]
[87452.354455] flush_space+0x24f/0x660 [btrfs]
[87452.355063] btrfs_async_reclaim_metadata_space+0x1bb/0x480 [btrfs]
[87452.355565] process_one_work+0x24e/0x5e0
[87452.356024] worker_thread+0x20f/0x3b0
[87452.356487] ? process_one_work+0x5e0/0x5e0
[87452.356973] kthread+0x153/0x170
[87452.357434] ? kthread_mod_delayed_work+0xc0/0xc0
[87452.357880] ret_from_fork+0x22/0x30
(...)
< stack traces of several tasks waiting for the locks of the inodes of the
clone operation >
(...)
[92867.444138] RSP: 002b:00007ffc3371bbe8 EFLAGS: 00000246 ORIG_RAX: 0000000000000052
[92867.444624] RAX: ffffffffffffffda RBX: 00007ffc3371bea0 RCX: 00007f61efe73f97
[92867.445116] RDX: 0000000000000000 RSI: 0000560fbd5d7a40 RDI: 0000560fbd5d8960
[92867.445595] RBP: 00007ffc3371beb0 R08: 0000000000000001 R09: 0000000000000003
[92867.446070] R10: 00007ffc3371b996 R11: 0000000000000246 R12: 0000000000000000
[92867.446820] R13: 000000000000001f R14: 00007ffc3371bea0 R15: 00007ffc3371beb0
[92867.447361] task:fsstress state:D stack: 0 pid:2508238 ppid:2508153 flags:0x00004000
[92867.447920] Call Trace:
[92867.448435] __schedule+0x5d1/0xcf0
[92867.448934] ? _raw_spin_unlock_irqrestore+0x3c/0x60
[92867.449423] schedule+0x45/0xe0
[92867.449916] __reserve_bytes+0x4a4/0xb10 [btrfs]
[92867.450576] ? finish_wait+0x90/0x90
[92867.451202] btrfs_reserve_metadata_bytes+0x29/0x190 [btrfs]
[92867.451815] btrfs_block_rsv_add+0x1f/0x50 [btrfs]
[92867.452412] start_transaction+0x2d1/0x760 [btrfs]
[92867.453216] clone_copy_inline_extent+0x333/0x490 [btrfs]
[92867.453848] ? lock_release+0x20e/0x4c0
[92867.454539] ? btrfs_search_slot+0x9a7/0xc30 [btrfs]
[92867.455218] btrfs_clone+0x569/0x7e0 [btrfs]
[92867.455952] btrfs_clone_files+0xf6/0x150 [btrfs]
[92867.456588] btrfs_remap_file_range+0x324/0x3d0 [btrfs]
[92867.457213] do_clone_file_range+0xd4/0x1f0
[92867.457828] vfs_clone_file_range+0x4d/0x230
[92867.458355] ? lock_release+0x20e/0x4c0
[92867.458890] ioctl_file_clone+0x8f/0xc0
[92867.459377] do_vfs_ioctl+0x342/0x750
[92867.459913] __x64_sys_ioctl+0x62/0xb0
[92867.460377] do_syscall_64+0x33/0x80
[92867.460842] entry_SYSCALL_64_after_hwframe+0x44/0xa9
(...)
< stack traces of more tasks blocked on metadata reservation like the clone
task above, because the async reclaim task has deadlocked >
(...)
Another thing to notice is that the worker task that is deadlocked when
trying to flush the destination inode of the clone operation is at
btrfs_invalidatepage(). This is simply because the clone operation has a
destination offset greater than the i_size and we only update the i_size
of the destination file after cloning an extent (just like we do in the
buffered write path).
Since the async reclaim path uses btrfs_start_delalloc_roots() to trigger
the flushing of delalloc for all inodes that have delalloc, add a runtime
flag to an inode to signal it should not be flushed, and for inodes with
that flag set, start_delalloc_inodes() will simply skip them. When the
cloning code needs to dirty a page to copy an inline extent, set that flag
on the inode and then clear it when the clone operation finishes.
This could be sporadically triggered with test case generic/269 from
fstests, which exercises many fsstress processes running in parallel with
several dd processes filling up the entire filesystem.
CC: stable@vger.kernel.org # 5.9+
Fixes: 05a5a7621ce6 ("Btrfs: implement full reflink support for inline extents")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce function btrfs_check_zoned_mode() to check if ZONED flag is
enabled on the file system and if the file system consists of zoned
devices with equal zone size.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If a zoned block device is found, get its zone information (number of
zones and zone size). To avoid costly run-time zone report
commands to test the device zones type during block allocation, attach
the seq_zones bitmap to the device structure to indicate if a zone is
sequential or accept random writes. Also it attaches the empty_zones
bitmap to indicate if a zone is empty or not.
This patch also introduces the helper function btrfs_dev_is_sequential()
to test if the zone storing a block is a sequential write required zone
and btrfs_dev_is_empty_zone() to test if the zone is a empty zone.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 343694eee8d8 ("btrfs: switch seed device to list api"), missed to
check if the parameter seed is true in the function btrfs_find_device().
This tells it whether to traverse the seed device list or not.
After this commit, the argument is unused and can be removed.
In device_list_add() it's not necessary because fs_devices always points
to the device's fs_devices. So with the devid+uuid matching, it will
find the right device and return, thus not needing to traverse seed
devices.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If there is a device BTRFS_DEV_REPLACE_DEVID without the device replace
item, then it means the filesystem is inconsistent state. This is either
corruption or a crafted image. Fail the mount as this needs a closer
look what is actually wrong.
As of now if BTRFS_DEV_REPLACE_DEVID is present without the replace
item, in __btrfs_free_extra_devids() we determine that there is an
extra device, and free those extra devices but continue to mount the
device.
However, we were wrong in keeping tack of the rw_devices so the syzbot
testcase failed:
WARNING: CPU: 1 PID: 3612 at fs/btrfs/volumes.c:1166 close_fs_devices.part.0+0x607/0x800 fs/btrfs/volumes.c:1166
Kernel panic - not syncing: panic_on_warn set ...
CPU: 1 PID: 3612 Comm: syz-executor.2 Not tainted 5.9.0-rc4-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x198/0x1fd lib/dump_stack.c:118
panic+0x347/0x7c0 kernel/panic.c:231
__warn.cold+0x20/0x46 kernel/panic.c:600
report_bug+0x1bd/0x210 lib/bug.c:198
handle_bug+0x38/0x90 arch/x86/kernel/traps.c:234
exc_invalid_op+0x14/0x40 arch/x86/kernel/traps.c:254
asm_exc_invalid_op+0x12/0x20 arch/x86/include/asm/idtentry.h:536
RIP: 0010:close_fs_devices.part.0+0x607/0x800 fs/btrfs/volumes.c:1166
RSP: 0018:ffffc900091777e0 EFLAGS: 00010246
RAX: 0000000000040000 RBX: ffffffffffffffff RCX: ffffc9000c8b7000
RDX: 0000000000040000 RSI: ffffffff83097f47 RDI: 0000000000000007
RBP: dffffc0000000000 R08: 0000000000000001 R09: ffff8880988a187f
R10: 0000000000000000 R11: 0000000000000001 R12: ffff88809593a130
R13: ffff88809593a1ec R14: ffff8880988a1908 R15: ffff88809593a050
close_fs_devices fs/btrfs/volumes.c:1193 [inline]
btrfs_close_devices+0x95/0x1f0 fs/btrfs/volumes.c:1179
open_ctree+0x4984/0x4a2d fs/btrfs/disk-io.c:3434
btrfs_fill_super fs/btrfs/super.c:1316 [inline]
btrfs_mount_root.cold+0x14/0x165 fs/btrfs/super.c:1672
The fix here is, when we determine that there isn't a replace item
then fail the mount if there is a replace target device (devid 0).
CC: stable@vger.kernel.org # 4.19+
Reported-by: syzbot+4cfe71a4da060be47502@syzkaller.appspotmail.com
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Very sporadically I had test case btrfs/069 from fstests hanging (for
years, it is not a recent regression), with the following traces in
dmesg/syslog:
[162301.160628] BTRFS info (device sdc): dev_replace from /dev/sdd (devid 2) to /dev/sdg started
[162301.181196] BTRFS info (device sdc): scrub: finished on devid 4 with status: 0
[162301.287162] BTRFS info (device sdc): dev_replace from /dev/sdd (devid 2) to /dev/sdg finished
[162513.513792] INFO: task btrfs-transacti:1356167 blocked for more than 120 seconds.
[162513.514318] Not tainted 5.9.0-rc6-btrfs-next-69 #1
[162513.514522] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[162513.514747] task:btrfs-transacti state:D stack: 0 pid:1356167 ppid: 2 flags:0x00004000
[162513.514751] Call Trace:
[162513.514761] __schedule+0x5ce/0xd00
[162513.514765] ? _raw_spin_unlock_irqrestore+0x3c/0x60
[162513.514771] schedule+0x46/0xf0
[162513.514844] wait_current_trans+0xde/0x140 [btrfs]
[162513.514850] ? finish_wait+0x90/0x90
[162513.514864] start_transaction+0x37c/0x5f0 [btrfs]
[162513.514879] transaction_kthread+0xa4/0x170 [btrfs]
[162513.514891] ? btrfs_cleanup_transaction+0x660/0x660 [btrfs]
[162513.514894] kthread+0x153/0x170
[162513.514897] ? kthread_stop+0x2c0/0x2c0
[162513.514902] ret_from_fork+0x22/0x30
[162513.514916] INFO: task fsstress:1356184 blocked for more than 120 seconds.
[162513.515192] Not tainted 5.9.0-rc6-btrfs-next-69 #1
[162513.515431] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[162513.515680] task:fsstress state:D stack: 0 pid:1356184 ppid:1356177 flags:0x00004000
[162513.515682] Call Trace:
[162513.515688] __schedule+0x5ce/0xd00
[162513.515691] ? _raw_spin_unlock_irqrestore+0x3c/0x60
[162513.515697] schedule+0x46/0xf0
[162513.515712] wait_current_trans+0xde/0x140 [btrfs]
[162513.515716] ? finish_wait+0x90/0x90
[162513.515729] start_transaction+0x37c/0x5f0 [btrfs]
[162513.515743] btrfs_attach_transaction_barrier+0x1f/0x50 [btrfs]
[162513.515753] btrfs_sync_fs+0x61/0x1c0 [btrfs]
[162513.515758] ? __ia32_sys_fdatasync+0x20/0x20
[162513.515761] iterate_supers+0x87/0xf0
[162513.515765] ksys_sync+0x60/0xb0
[162513.515768] __do_sys_sync+0xa/0x10
[162513.515771] do_syscall_64+0x33/0x80
[162513.515774] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[162513.515781] RIP: 0033:0x7f5238f50bd7
[162513.515782] Code: Bad RIP value.
[162513.515784] RSP: 002b:00007fff67b978e8 EFLAGS: 00000206 ORIG_RAX: 00000000000000a2
[162513.515786] RAX: ffffffffffffffda RBX: 000055b1fad2c560 RCX: 00007f5238f50bd7
[162513.515788] RDX: 00000000ffffffff RSI: 000000000daf0e74 RDI: 000000000000003a
[162513.515789] RBP: 0000000000000032 R08: 000000000000000a R09: 00007f5239019be0
[162513.515791] R10: fffffffffffff24f R11: 0000000000000206 R12: 000000000000003a
[162513.515792] R13: 00007fff67b97950 R14: 00007fff67b97906 R15: 000055b1fad1a340
[162513.515804] INFO: task fsstress:1356185 blocked for more than 120 seconds.
[162513.516064] Not tainted 5.9.0-rc6-btrfs-next-69 #1
[162513.516329] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[162513.516617] task:fsstress state:D stack: 0 pid:1356185 ppid:1356177 flags:0x00000000
[162513.516620] Call Trace:
[162513.516625] __schedule+0x5ce/0xd00
[162513.516628] ? _raw_spin_unlock_irqrestore+0x3c/0x60
[162513.516634] schedule+0x46/0xf0
[162513.516647] wait_current_trans+0xde/0x140 [btrfs]
[162513.516650] ? finish_wait+0x90/0x90
[162513.516662] start_transaction+0x4d7/0x5f0 [btrfs]
[162513.516679] btrfs_setxattr_trans+0x3c/0x100 [btrfs]
[162513.516686] __vfs_setxattr+0x66/0x80
[162513.516691] __vfs_setxattr_noperm+0x70/0x200
[162513.516697] vfs_setxattr+0x6b/0x120
[162513.516703] setxattr+0x125/0x240
[162513.516709] ? lock_acquire+0xb1/0x480
[162513.516712] ? mnt_want_write+0x20/0x50
[162513.516721] ? rcu_read_lock_any_held+0x8e/0xb0
[162513.516723] ? preempt_count_add+0x49/0xa0
[162513.516725] ? __sb_start_write+0x19b/0x290
[162513.516727] ? preempt_count_add+0x49/0xa0
[162513.516732] path_setxattr+0xba/0xd0
[162513.516739] __x64_sys_setxattr+0x27/0x30
[162513.516741] do_syscall_64+0x33/0x80
[162513.516743] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[162513.516745] RIP: 0033:0x7f5238f56d5a
[162513.516746] Code: Bad RIP value.
[162513.516748] RSP: 002b:00007fff67b97868 EFLAGS: 00000202 ORIG_RAX: 00000000000000bc
[162513.516750] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f5238f56d5a
[162513.516751] RDX: 000055b1fbb0d5a0 RSI: 00007fff67b978a0 RDI: 000055b1fbb0d470
[162513.516753] RBP: 000055b1fbb0d5a0 R08: 0000000000000001 R09: 00007fff67b97700
[162513.516754] R10: 0000000000000004 R11: 0000000000000202 R12: 0000000000000004
[162513.516756] R13: 0000000000000024 R14: 0000000000000001 R15: 00007fff67b978a0
[162513.516767] INFO: task fsstress:1356196 blocked for more than 120 seconds.
[162513.517064] Not tainted 5.9.0-rc6-btrfs-next-69 #1
[162513.517365] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[162513.517763] task:fsstress state:D stack: 0 pid:1356196 ppid:1356177 flags:0x00004000
[162513.517780] Call Trace:
[162513.517786] __schedule+0x5ce/0xd00
[162513.517789] ? _raw_spin_unlock_irqrestore+0x3c/0x60
[162513.517796] schedule+0x46/0xf0
[162513.517810] wait_current_trans+0xde/0x140 [btrfs]
[162513.517814] ? finish_wait+0x90/0x90
[162513.517829] start_transaction+0x37c/0x5f0 [btrfs]
[162513.517845] btrfs_attach_transaction_barrier+0x1f/0x50 [btrfs]
[162513.517857] btrfs_sync_fs+0x61/0x1c0 [btrfs]
[162513.517862] ? __ia32_sys_fdatasync+0x20/0x20
[162513.517865] iterate_supers+0x87/0xf0
[162513.517869] ksys_sync+0x60/0xb0
[162513.517872] __do_sys_sync+0xa/0x10
[162513.517875] do_syscall_64+0x33/0x80
[162513.517878] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[162513.517881] RIP: 0033:0x7f5238f50bd7
[162513.517883] Code: Bad RIP value.
[162513.517885] RSP: 002b:00007fff67b978e8 EFLAGS: 00000206 ORIG_RAX: 00000000000000a2
[162513.517887] RAX: ffffffffffffffda RBX: 000055b1fad2c560 RCX: 00007f5238f50bd7
[162513.517889] RDX: 0000000000000000 RSI: 000000007660add2 RDI: 0000000000000053
[162513.517891] RBP: 0000000000000032 R08: 0000000000000067 R09: 00007f5239019be0
[162513.517893] R10: fffffffffffff24f R11: 0000000000000206 R12: 0000000000000053
[162513.517895] R13: 00007fff67b97950 R14: 00007fff67b97906 R15: 000055b1fad1a340
[162513.517908] INFO: task fsstress:1356197 blocked for more than 120 seconds.
[162513.518298] Not tainted 5.9.0-rc6-btrfs-next-69 #1
[162513.518672] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[162513.519157] task:fsstress state:D stack: 0 pid:1356197 ppid:1356177 flags:0x00000000
[162513.519160] Call Trace:
[162513.519165] __schedule+0x5ce/0xd00
[162513.519168] ? _raw_spin_unlock_irqrestore+0x3c/0x60
[162513.519174] schedule+0x46/0xf0
[162513.519190] wait_current_trans+0xde/0x140 [btrfs]
[162513.519193] ? finish_wait+0x90/0x90
[162513.519206] start_transaction+0x4d7/0x5f0 [btrfs]
[162513.519222] btrfs_create+0x57/0x200 [btrfs]
[162513.519230] lookup_open+0x522/0x650
[162513.519246] path_openat+0x2b8/0xa50
[162513.519270] do_filp_open+0x91/0x100
[162513.519275] ? find_held_lock+0x32/0x90
[162513.519280] ? lock_acquired+0x33b/0x470
[162513.519285] ? do_raw_spin_unlock+0x4b/0xc0
[162513.519287] ? _raw_spin_unlock+0x29/0x40
[162513.519295] do_sys_openat2+0x20d/0x2d0
[162513.519300] do_sys_open+0x44/0x80
[162513.519304] do_syscall_64+0x33/0x80
[162513.519307] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[162513.519309] RIP: 0033:0x7f5238f4a903
[162513.519310] Code: Bad RIP value.
[162513.519312] RSP: 002b:00007fff67b97758 EFLAGS: 00000246 ORIG_RAX: 0000000000000055
[162513.519314] RAX: ffffffffffffffda RBX: 00000000ffffffff RCX: 00007f5238f4a903
[162513.519316] RDX: 0000000000000000 RSI: 00000000000001b6 RDI: 000055b1fbb0d470
[162513.519317] RBP: 00007fff67b978c0 R08: 0000000000000001 R09: 0000000000000002
[162513.519319] R10: 00007fff67b974f7 R11: 0000000000000246 R12: 0000000000000013
[162513.519320] R13: 00000000000001b6 R14: 00007fff67b97906 R15: 000055b1fad1c620
[162513.519332] INFO: task btrfs:1356211 blocked for more than 120 seconds.
[162513.519727] Not tainted 5.9.0-rc6-btrfs-next-69 #1
[162513.520115] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[162513.520508] task:btrfs state:D stack: 0 pid:1356211 ppid:1356178 flags:0x00004002
[162513.520511] Call Trace:
[162513.520516] __schedule+0x5ce/0xd00
[162513.520519] ? _raw_spin_unlock_irqrestore+0x3c/0x60
[162513.520525] schedule+0x46/0xf0
[162513.520544] btrfs_scrub_pause+0x11f/0x180 [btrfs]
[162513.520548] ? finish_wait+0x90/0x90
[162513.520562] btrfs_commit_transaction+0x45a/0xc30 [btrfs]
[162513.520574] ? start_transaction+0xe0/0x5f0 [btrfs]
[162513.520596] btrfs_dev_replace_finishing+0x6d8/0x711 [btrfs]
[162513.520619] btrfs_dev_replace_by_ioctl.cold+0x1cc/0x1fd [btrfs]
[162513.520639] btrfs_ioctl+0x2a25/0x36f0 [btrfs]
[162513.520643] ? do_sigaction+0xf3/0x240
[162513.520645] ? find_held_lock+0x32/0x90
[162513.520648] ? do_sigaction+0xf3/0x240
[162513.520651] ? lock_acquired+0x33b/0x470
[162513.520655] ? _raw_spin_unlock_irq+0x24/0x50
[162513.520657] ? lockdep_hardirqs_on+0x7d/0x100
[162513.520660] ? _raw_spin_unlock_irq+0x35/0x50
[162513.520662] ? do_sigaction+0xf3/0x240
[162513.520671] ? __x64_sys_ioctl+0x83/0xb0
[162513.520672] __x64_sys_ioctl+0x83/0xb0
[162513.520677] do_syscall_64+0x33/0x80
[162513.520679] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[162513.520681] RIP: 0033:0x7fc3cd307d87
[162513.520682] Code: Bad RIP value.
[162513.520684] RSP: 002b:00007ffe30a56bb8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[162513.520686] RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007fc3cd307d87
[162513.520687] RDX: 00007ffe30a57a30 RSI: 00000000ca289435 RDI: 0000000000000003
[162513.520689] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
[162513.520690] R10: 0000000000000008 R11: 0000000000000202 R12: 0000000000000003
[162513.520692] R13: 0000557323a212e0 R14: 00007ffe30a5a520 R15: 0000000000000001
[162513.520703]
Showing all locks held in the system:
[162513.520712] 1 lock held by khungtaskd/54:
[162513.520713] #0: ffffffffb40a91a0 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x15/0x197
[162513.520728] 1 lock held by in:imklog/596:
[162513.520729] #0: ffff8f3f0d781400 (&f->f_pos_lock){+.+.}-{3:3}, at: __fdget_pos+0x4d/0x60
[162513.520782] 1 lock held by btrfs-transacti/1356167:
[162513.520784] #0: ffff8f3d810cc848 (&fs_info->transaction_kthread_mutex){+.+.}-{3:3}, at: transaction_kthread+0x4a/0x170 [btrfs]
[162513.520798] 1 lock held by btrfs/1356190:
[162513.520800] #0: ffff8f3d57644470 (sb_writers#15){.+.+}-{0:0}, at: mnt_want_write_file+0x22/0x60
[162513.520805] 1 lock held by fsstress/1356184:
[162513.520806] #0: ffff8f3d576440e8 (&type->s_umount_key#62){++++}-{3:3}, at: iterate_supers+0x6f/0xf0
[162513.520811] 3 locks held by fsstress/1356185:
[162513.520812] #0: ffff8f3d57644470 (sb_writers#15){.+.+}-{0:0}, at: mnt_want_write+0x20/0x50
[162513.520815] #1: ffff8f3d80a650b8 (&type->i_mutex_dir_key#10){++++}-{3:3}, at: vfs_setxattr+0x50/0x120
[162513.520820] #2: ffff8f3d57644690 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x40e/0x5f0 [btrfs]
[162513.520833] 1 lock held by fsstress/1356196:
[162513.520834] #0: ffff8f3d576440e8 (&type->s_umount_key#62){++++}-{3:3}, at: iterate_supers+0x6f/0xf0
[162513.520838] 3 locks held by fsstress/1356197:
[162513.520839] #0: ffff8f3d57644470 (sb_writers#15){.+.+}-{0:0}, at: mnt_want_write+0x20/0x50
[162513.520843] #1: ffff8f3d506465e8 (&type->i_mutex_dir_key#10){++++}-{3:3}, at: path_openat+0x2a7/0xa50
[162513.520846] #2: ffff8f3d57644690 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x40e/0x5f0 [btrfs]
[162513.520858] 2 locks held by btrfs/1356211:
[162513.520859] #0: ffff8f3d810cde30 (&fs_info->dev_replace.lock_finishing_cancel_unmount){+.+.}-{3:3}, at: btrfs_dev_replace_finishing+0x52/0x711 [btrfs]
[162513.520877] #1: ffff8f3d57644690 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x40e/0x5f0 [btrfs]
This was weird because the stack traces show that a transaction commit,
triggered by a device replace operation, is blocking trying to pause any
running scrubs but there are no stack traces of blocked tasks doing a
scrub.
After poking around with drgn, I noticed there was a scrub task that was
constantly running and blocking for shorts periods of time:
>>> t = find_task(prog, 1356190)
>>> prog.stack_trace(t)
#0 __schedule+0x5ce/0xcfc
#1 schedule+0x46/0xe4
#2 schedule_timeout+0x1df/0x475
#3 btrfs_reada_wait+0xda/0x132
#4 scrub_stripe+0x2a8/0x112f
#5 scrub_chunk+0xcd/0x134
#6 scrub_enumerate_chunks+0x29e/0x5ee
#7 btrfs_scrub_dev+0x2d5/0x91b
#8 btrfs_ioctl+0x7f5/0x36e7
#9 __x64_sys_ioctl+0x83/0xb0
#10 do_syscall_64+0x33/0x77
#11 entry_SYSCALL_64+0x7c/0x156
Which corresponds to:
int btrfs_reada_wait(void *handle)
{
struct reada_control *rc = handle;
struct btrfs_fs_info *fs_info = rc->fs_info;
while (atomic_read(&rc->elems)) {
if (!atomic_read(&fs_info->reada_works_cnt))
reada_start_machine(fs_info);
wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
(HZ + 9) / 10);
}
(...)
So the counter "rc->elems" was set to 1 and never decreased to 0, causing
the scrub task to loop forever in that function. Then I used the following
script for drgn to check the readahead requests:
$ cat dump_reada.py
import sys
import drgn
from drgn import NULL, Object, cast, container_of, execscript, \
reinterpret, sizeof
from drgn.helpers.linux import *
mnt_path = b"/home/fdmanana/btrfs-tests/scratch_1"
mnt = None
for mnt in for_each_mount(prog, dst = mnt_path):
pass
if mnt is None:
sys.stderr.write(f'Error: mount point {mnt_path} not found\n')
sys.exit(1)
fs_info = cast('struct btrfs_fs_info *', mnt.mnt.mnt_sb.s_fs_info)
def dump_re(re):
nzones = re.nzones.value_()
print(f're at {hex(re.value_())}')
print(f'\t logical {re.logical.value_()}')
print(f'\t refcnt {re.refcnt.value_()}')
print(f'\t nzones {nzones}')
for i in range(nzones):
dev = re.zones[i].device
name = dev.name.str.string_()
print(f'\t\t dev id {dev.devid.value_()} name {name}')
print()
for _, e in radix_tree_for_each(fs_info.reada_tree):
re = cast('struct reada_extent *', e)
dump_re(re)
$ drgn dump_reada.py
re at 0xffff8f3da9d25ad8
logical 38928384
refcnt 1
nzones 1
dev id 0 name b'/dev/sdd'
$
So there was one readahead extent with a single zone corresponding to the
source device of that last device replace operation logged in dmesg/syslog.
Also the ID of that zone's device was 0 which is a special value set in
the source device of a device replace operation when the operation finishes
(constant BTRFS_DEV_REPLACE_DEVID set at btrfs_dev_replace_finishing()),
confirming again that device /dev/sdd was the source of a device replace
operation.
Normally there should be as many zones in the readahead extent as there are
devices, and I wasn't expecting the extent to be in a block group with a
'single' profile, so I went and confirmed with the following drgn script
that there weren't any single profile block groups:
$ cat dump_block_groups.py
import sys
import drgn
from drgn import NULL, Object, cast, container_of, execscript, \
reinterpret, sizeof
from drgn.helpers.linux import *
mnt_path = b"/home/fdmanana/btrfs-tests/scratch_1"
mnt = None
for mnt in for_each_mount(prog, dst = mnt_path):
pass
if mnt is None:
sys.stderr.write(f'Error: mount point {mnt_path} not found\n')
sys.exit(1)
fs_info = cast('struct btrfs_fs_info *', mnt.mnt.mnt_sb.s_fs_info)
BTRFS_BLOCK_GROUP_DATA = (1 << 0)
BTRFS_BLOCK_GROUP_SYSTEM = (1 << 1)
BTRFS_BLOCK_GROUP_METADATA = (1 << 2)
BTRFS_BLOCK_GROUP_RAID0 = (1 << 3)
BTRFS_BLOCK_GROUP_RAID1 = (1 << 4)
BTRFS_BLOCK_GROUP_DUP = (1 << 5)
BTRFS_BLOCK_GROUP_RAID10 = (1 << 6)
BTRFS_BLOCK_GROUP_RAID5 = (1 << 7)
BTRFS_BLOCK_GROUP_RAID6 = (1 << 8)
BTRFS_BLOCK_GROUP_RAID1C3 = (1 << 9)
BTRFS_BLOCK_GROUP_RAID1C4 = (1 << 10)
def bg_flags_string(bg):
flags = bg.flags.value_()
ret = ''
if flags & BTRFS_BLOCK_GROUP_DATA:
ret = 'data'
if flags & BTRFS_BLOCK_GROUP_METADATA:
if len(ret) > 0:
ret += '|'
ret += 'meta'
if flags & BTRFS_BLOCK_GROUP_SYSTEM:
if len(ret) > 0:
ret += '|'
ret += 'system'
if flags & BTRFS_BLOCK_GROUP_RAID0:
ret += ' raid0'
elif flags & BTRFS_BLOCK_GROUP_RAID1:
ret += ' raid1'
elif flags & BTRFS_BLOCK_GROUP_DUP:
ret += ' dup'
elif flags & BTRFS_BLOCK_GROUP_RAID10:
ret += ' raid10'
elif flags & BTRFS_BLOCK_GROUP_RAID5:
ret += ' raid5'
elif flags & BTRFS_BLOCK_GROUP_RAID6:
ret += ' raid6'
elif flags & BTRFS_BLOCK_GROUP_RAID1C3:
ret += ' raid1c3'
elif flags & BTRFS_BLOCK_GROUP_RAID1C4:
ret += ' raid1c4'
else:
ret += ' single'
return ret
def dump_bg(bg):
print()
print(f'block group at {hex(bg.value_())}')
print(f'\t start {bg.start.value_()} length {bg.length.value_()}')
print(f'\t flags {bg.flags.value_()} - {bg_flags_string(bg)}')
bg_root = fs_info.block_group_cache_tree.address_of_()
for bg in rbtree_inorder_for_each_entry('struct btrfs_block_group', bg_root, 'cache_node'):
dump_bg(bg)
$ drgn dump_block_groups.py
block group at 0xffff8f3d673b0400
start 22020096 length 16777216
flags 258 - system raid6
block group at 0xffff8f3d53ddb400
start 38797312 length 536870912
flags 260 - meta raid6
block group at 0xffff8f3d5f4d9c00
start 575668224 length 2147483648
flags 257 - data raid6
block group at 0xffff8f3d08189000
start 2723151872 length 67108864
flags 258 - system raid6
block group at 0xffff8f3db70ff000
start 2790260736 length 1073741824
flags 260 - meta raid6
block group at 0xffff8f3d5f4dd800
start 3864002560 length 67108864
flags 258 - system raid6
block group at 0xffff8f3d67037000
start 3931111424 length 2147483648
flags 257 - data raid6
$
So there were only 2 reasons left for having a readahead extent with a
single zone: reada_find_zone(), called when creating a readahead extent,
returned NULL either because we failed to find the corresponding block
group or because a memory allocation failed. With some additional and
custom tracing I figured out that on every further ocurrence of the
problem the block group had just been deleted when we were looping to
create the zones for the readahead extent (at reada_find_extent()), so we
ended up with only one zone in the readahead extent, corresponding to a
device that ends up getting replaced.
So after figuring that out it became obvious why the hang happens:
1) Task A starts a scrub on any device of the filesystem, except for
device /dev/sdd;
2) Task B starts a device replace with /dev/sdd as the source device;
3) Task A calls btrfs_reada_add() from scrub_stripe() and it is currently
starting to scrub a stripe from block group X. This call to
btrfs_reada_add() is the one for the extent tree. When btrfs_reada_add()
calls reada_add_block(), it passes the logical address of the extent
tree's root node as its 'logical' argument - a value of 38928384;
4) Task A then enters reada_find_extent(), called from reada_add_block().
It finds there isn't any existing readahead extent for the logical
address 38928384, so it proceeds to the path of creating a new one.
It calls btrfs_map_block() to find out which stripes exist for the block
group X. On the first iteration of the for loop that iterates over the
stripes, it finds the stripe for device /dev/sdd, so it creates one
zone for that device and adds it to the readahead extent. Before getting
into the second iteration of the loop, the cleanup kthread deletes block
group X because it was empty. So in the iterations for the remaining
stripes it does not add more zones to the readahead extent, because the
calls to reada_find_zone() returned NULL because they couldn't find
block group X anymore.
As a result the new readahead extent has a single zone, corresponding to
the device /dev/sdd;
4) Before task A returns to btrfs_reada_add() and queues the readahead job
for the readahead work queue, task B finishes the device replace and at
btrfs_dev_replace_finishing() swaps the device /dev/sdd with the new
device /dev/sdg;
5) Task A returns to reada_add_block(), which increments the counter
"->elems" of the reada_control structure allocated at btrfs_reada_add().
Then it returns back to btrfs_reada_add() and calls
reada_start_machine(). This queues a job in the readahead work queue to
run the function reada_start_machine_worker(), which calls
__reada_start_machine().
At __reada_start_machine() we take the device list mutex and for each
device found in the current device list, we call
reada_start_machine_dev() to start the readahead work. However at this
point the device /dev/sdd was already freed and is not in the device
list anymore.
This means the corresponding readahead for the extent at 38928384 is
never started, and therefore the "->elems" counter of the reada_control
structure allocated at btrfs_reada_add() never goes down to 0, causing
the call to btrfs_reada_wait(), done by the scrub task, to wait forever.
Note that the readahead request can be made either after the device replace
started or before it started, however in pratice it is very unlikely that a
device replace is able to start after a readahead request is made and is
able to complete before the readahead request completes - maybe only on a
very small and nearly empty filesystem.
This hang however is not the only problem we can have with readahead and
device removals. When the readahead extent has other zones other than the
one corresponding to the device that is being removed (either by a device
replace or a device remove operation), we risk having a use-after-free on
the device when dropping the last reference of the readahead extent.
For example if we create a readahead extent with two zones, one for the
device /dev/sdd and one for the device /dev/sde:
1) Before the readahead worker starts, the device /dev/sdd is removed,
and the corresponding btrfs_device structure is freed. However the
readahead extent still has the zone pointing to the device structure;
2) When the readahead worker starts, it only finds device /dev/sde in the
current device list of the filesystem;
3) It starts the readahead work, at reada_start_machine_dev(), using the
device /dev/sde;
4) Then when it finishes reading the extent from device /dev/sde, it calls
__readahead_hook() which ends up dropping the last reference on the
readahead extent through the last call to reada_extent_put();
5) At reada_extent_put() it iterates over each zone of the readahead extent
and attempts to delete an element from the device's 'reada_extents'
radix tree, resulting in a use-after-free, as the device pointer of the
zone for /dev/sdd is now stale. We can also access the device after
dropping the last reference of a zone, through reada_zone_release(),
also called by reada_extent_put().
And a device remove suffers the same problem, however since it shrinks the
device size down to zero before removing the device, it is very unlikely to
still have readahead requests not completed by the time we free the device,
the only possibility is if the device has a very little space allocated.
While the hang problem is exclusive to scrub, since it is currently the
only user of btrfs_reada_add() and btrfs_reada_wait(), the use-after-free
problem affects any path that triggers readhead, which includes
btree_readahead_hook() and __readahead_hook() (a readahead worker can
trigger readahed for the children of a node) for example - any path that
ends up calling reada_add_block() can trigger the use-after-free after a
device is removed.
So fix this by waiting for any readahead requests for a device to complete
before removing a device, ensuring that while waiting for existing ones no
new ones can be made.
This problem has been around for a very long time - the readahead code was
added in 2011, device remove exists since 2008 and device replace was
introduced in 2013, hard to pick a specific commit for a git Fixes tag.
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
| |
The function is short and simple, we can get rid of the declaration as
it's not necessary for a static function. Move it before its first
caller. No functional changes.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
In the function btrfs_init_dev_replace_tgtdev(), the local variable
devices is used only once, we can remove it.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Similar to btrfs_sysfs_add_devices_dir()'s refactoring, split
btrfs_sysfs_remove_devices_dir() so that we don't have to use the device
argument to indicate whether to free all devices or just one device.
Export btrfs_sysfs_remove_device() as device operations outside of
sysfs.c now calls this instead of btrfs_sysfs_remove_devices_dir().
btrfs_sysfs_remove_devices_dir() is renamed to
btrfs_sysfs_remove_fs_devices() to suite its new role.
Now, no one outside of sysfs.c calls btrfs_sysfs_remove_fs_devices()
so it is redeclared s static. And the same function had to be moved
before its first caller.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we add a device we need to add it to sysfs, so instead of using the
btrfs_sysfs_add_devices_dir() fs_devices argument to specify whether to
add a device or all of fs_devices, call the helper function directly
btrfs_sysfs_add_device() and thus make it non-static.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If you replace a seed device in a sprouted fs, it appears to have
successfully replaced the seed device, but if you look closely, it
didn't. Here is an example.
$ mkfs.btrfs /dev/sda
$ btrfstune -S1 /dev/sda
$ mount /dev/sda /btrfs
$ btrfs device add /dev/sdb /btrfs
$ umount /btrfs
$ btrfs device scan --forget
$ mount -o device=/dev/sda /dev/sdb /btrfs
$ btrfs replace start -f /dev/sda /dev/sdc /btrfs
$ echo $?
0
BTRFS info (device sdb): dev_replace from /dev/sda (devid 1) to /dev/sdc started
BTRFS info (device sdb): dev_replace from /dev/sda (devid 1) to /dev/sdc finished
$ btrfs fi show
Label: none uuid: ab2c88b7-be81-4a7e-9849-c3666e7f9f4f
Total devices 2 FS bytes used 256.00KiB
devid 1 size 3.00GiB used 520.00MiB path /dev/sdc
devid 2 size 3.00GiB used 896.00MiB path /dev/sdb
Label: none uuid: 10bd3202-0415-43af-96a8-d5409f310a7e
Total devices 1 FS bytes used 128.00KiB
devid 1 size 3.00GiB used 536.00MiB path /dev/sda
So as per the replace start command and kernel log replace was successful.
Now let's try to clean mount.
$ umount /btrfs
$ btrfs device scan --forget
$ mount -o device=/dev/sdc /dev/sdb /btrfs
mount: /btrfs: wrong fs type, bad option, bad superblock on /dev/sdb, missing codepage or helper program, or other error.
[ 636.157517] BTRFS error (device sdc): failed to read chunk tree: -2
[ 636.180177] BTRFS error (device sdc): open_ctree failed
That's because per dev items it is still looking for the original seed
device.
$ btrfs inspect-internal dump-tree -d /dev/sdb
item 0 key (DEV_ITEMS DEV_ITEM 1) itemoff 16185 itemsize 98
devid 1 total_bytes 3221225472 bytes_used 545259520
io_align 4096 io_width 4096 sector_size 4096 type 0
generation 6 start_offset 0 dev_group 0
seek_speed 0 bandwidth 0
uuid 59368f50-9af2-4b17-91da-8a783cc418d4 <--- seed uuid
fsid 10bd3202-0415-43af-96a8-d5409f310a7e <--- seed fsid
item 1 key (DEV_ITEMS DEV_ITEM 2) itemoff 16087 itemsize 98
devid 2 total_bytes 3221225472 bytes_used 939524096
io_align 4096 io_width 4096 sector_size 4096 type 0
generation 0 start_offset 0 dev_group 0
seek_speed 0 bandwidth 0
uuid 56a0a6bc-4630-4998-8daf-3c3030c4256a <- sprout uuid
fsid ab2c88b7-be81-4a7e-9849-c3666e7f9f4f <- sprout fsid
But the replaced target has the following uuid+fsid in its superblock
which doesn't match with the expected uuid+fsid in its devitem.
$ btrfs in dump-super /dev/sdc | egrep '^generation|dev_item.uuid|dev_item.fsid|devid'
generation 20
dev_item.uuid 59368f50-9af2-4b17-91da-8a783cc418d4
dev_item.fsid ab2c88b7-be81-4a7e-9849-c3666e7f9f4f [match]
dev_item.devid 1
So if you provide the original seed device the mount shall be
successful. Which so long happening in the test case btrfs/163.
$ btrfs device scan --forget
$ mount -o device=/dev/sda /dev/sdb /btrfs
Fix in this patch:
If a seed is not sprouted then there is no replacement of it, because of
its read-only filesystem with a read-only device. Similarly, in the case
of a sprouted filesystem, the seed device is still read only. So, mark
it as you can't replace a seed device, you can only add a new device and
then delete the seed device. If replace is attempted then returns
-EINVAL.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|