| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
"Outside of our usual batch of fixes, this integrates the subvolume
quota updates that Qu Wenruo from Fujitsu has been working on for a
few releases now. He gets an extra gold star for making btrfs smaller
this time, and fixing a number of quota corners in the process.
Dave Sterba tested and integrated Anand Jain's sysfs improvements.
Outside of exporting a symbol (ack'd by Greg) these are all internal
to btrfs and it's mostly cleanups and fixes. Anand also attached some
of our sysfs objects to our internal device management structs instead
of an object off the super block. It will make device management
easier overall and it's a better fit for how the sysfs files are used.
None of the existing sysfs files are moved around.
Thanks for all the fixes everyone"
* 'for-linus-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (87 commits)
btrfs: delayed-ref: double free in btrfs_add_delayed_tree_ref()
Btrfs: Check if kobject is initialized before put
lib: export symbol kobject_move()
Btrfs: sysfs: add support to show replacing target in the sysfs
Btrfs: free the stale device
Btrfs: use received_uuid of parent during send
Btrfs: fix use-after-free in btrfs_replay_log
btrfs: wait for delayed iputs on no space
btrfs: qgroup: Make snapshot accounting work with new extent-oriented qgroup.
btrfs: qgroup: Add the ability to skip given qgroup for old/new_roots.
btrfs: ulist: Add ulist_del() function.
btrfs: qgroup: Cleanup the old ref_node-oriented mechanism.
btrfs: qgroup: Switch self test to extent-oriented qgroup mechanism.
btrfs: qgroup: Switch to new extent-oriented qgroup mechanism.
btrfs: qgroup: Switch rescan to new mechanism.
btrfs: qgroup: Add new qgroup calculation function btrfs_qgroup_account_extents().
btrfs: backref: Add special time_seq == (u64)-1 case for btrfs_find_all_roots().
btrfs: qgroup: Add new function to record old_roots.
btrfs: qgroup: Record possible quota-related extent for qgroup.
btrfs: qgroup: Add function qgroup_update_counters().
...
|
| |
| |
| |
| |
| |
| |
| | |
adds fs_info pointer with struct btrfs_fs_devices.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
|
| |
| |
| |
| |
| | |
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
btrfs_fs_devices
This patch will provide a framework and help to create attributes
from the structure btrfs_fs_devices which are available even before
fs_info is created. So by moving the parent kobject super_kobj from
fs_info to btrfs_fs_devices, it will help to create attributes
from the btrfs_fs_devices as well.
Patches on top of this patch now will be able to create the
sys/fs/btrfs/fsid kobject and attributes from btrfs_fs_devices
when devices are scanned and registered to the kernel.
Just to note, this does not change any of the existing btrfs sysfs
external kobject names and its attributes and not even the life
cycle of them. Changes are internal only. And to ensure the same,
this path has been tested with various device operations and,
checking and comparing the sysfs kobjects and attributes with
sysfs kobject and attributes with out this patch, and they remain
same.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit c4cf5261 ("bio: skip atomic inc/dec of ->bi_remaining for
non-chains") regressed all existing callers that followed this pattern:
1) saving a bio's original bi_end_io
2) wiring up an intermediate bi_end_io
3) restoring the original bi_end_io from intermediate bi_end_io
4) calling bio_endio() to execute the restored original bi_end_io
The regression was due to BIO_CHAIN only ever getting set if
bio_inc_remaining() is called. For the above pattern it isn't set until
step 3 above (step 2 would've needed to establish BIO_CHAIN). As such
the first bio_endio(), in step 2 above, never decremented __bi_remaining
before calling the intermediate bi_end_io -- leaving __bi_remaining with
the value 1 instead of 0. When bio_inc_remaining() occurred during step
3 it brought it to a value of 2. When the second bio_endio() was
called, in step 4 above, it should've called the original bi_end_io but
it didn't because there was an extra reference that wasn't dropped (due
to atomic operations being optimized away since BIO_CHAIN wasn't set
upfront).
Fix this issue by removing the __bi_remaining management complexity for
all callers that use the above pattern -- bio_chain() is the only
interface that _needs_ to be concerned with __bi_remaining. For the
above pattern callers just expect the bi_end_io they set to get called!
Remove bio_endio_nodec() and also remove all bio_inc_remaining() calls
that aren't associated with the bio_chain() interface.
Also, the bio_inc_remaining() interface has been moved local to bio.c.
Fixes: c4cf5261 ("bio: skip atomic inc/dec of ->bi_remaining for non-chains")
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
|
|
|
|
|
|
|
|
|
| |
The commit:
8dabb74 Btrfs: change core code of btrfs to support the
device replace operations
added the fs_info argument, but never used it -
just remove it again.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Corrent code use many kinds of "clever" way to determine operation
target's raid type, as:
raid_map != NULL
or
raid_map[MAX_NR] == RAID[56]_Q_STRIPE
To make code easy to maintenance, this patch put raid type into
bbio, and we can always get raid type from bbio with a "stupid"
way.
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1: ref_count is simple than current RBIO_HOLD_BBIO_MAP_BIT flag
to keep btrfs_bio's memory in raid56 recovery implement.
2: free function for bbio will make code clean and flexible, plus
forced data type checking in compile.
Changelog v1->v2:
Rename following by David Sterba's suggestion:
put_btrfs_bio() -> btrfs_put_bio()
get_btrfs_bio() -> btrfs_get_bio()
bbio->ref_count -> bbio->refs
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
|
|
|
|
| |
It can make code more simple and clear, we need not care about
free bbio and raid_map together.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|\
| |
| |
| | |
into for-linus
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The implementation is simple:
- In order to avoid changing the code logic of btrfs_map_bio and
RAID56, we add the stripes of the replace target devices at the
end of the stripe array in btrfs bio, and we sort those target
device stripes in the array. And we keep the number of the target
device stripes in the btrfs bio.
- Except write operation on RAID56, all the other operation don't
take the target device stripes into account.
- When we do write operation, we read the data from the common devices
and calculate the parity. Then write the dirty data and new parity
out, at this time, we will find the relative replace target stripes
and wirte the relative data into it.
Note: The function that copying old data on the source device to
the target device was implemented in the past, it is similar to
the other RAID type.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This patch implement the RAID5/6 common data repair function, the
implementation is similar to the scrub on the other RAID such as
RAID1, the differentia is that we don't read the data from the
mirror, we use the data repair function of RAID5/6.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Our fs trim operation, which is completely transactionless (doesn't start
or joins an existing transaction) consists of visiting all block groups
and then for each one to iterate its free space entries and perform a
discard operation against the space range represented by the free space
entries. However before performing a discard, the corresponding free space
entry is removed from the free space rbtree, and when the discard completes
it is added back to the free space rbtree.
If a block group remove operation happens while the discard is ongoing (or
before it starts and after a free space entry is hidden), we end up not
waiting for the discard to complete, remove the extent map that maps
logical address to physical addresses and the corresponding chunk metadata
from the the chunk and device trees. After that and before the discard
completes, the current running transaction can finish and a new one start,
allowing for new block groups that map to the same physical addresses to
be allocated and written to.
So fix this by keeping the extent map in memory until the discard completes
so that the same physical addresses aren't reused before it completes.
If the physical locations that are under a discard operation end up being
used for a new metadata block group for example, and dirty metadata extents
are written before the discard finishes (the VM might call writepages() of
our btree inode's i_mapping for example, or an fsync log commit happens) we
end up overwriting metadata with zeroes, which leads to errors from fsck
like the following:
checking extents
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
read block failed check_tree_block
owner ref check failed [833912832 16384]
Errors found in extent allocation tree or chunk allocation
checking free space cache
checking fs roots
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
Check tree block failed, want=833912832, have=0
read block failed check_tree_block
root 5 root dir 256 error
root 5 inode 260 errors 2001, no inode item, link count wrong
unresolved ref dir 256 index 0 namelen 8 name foobar_3 filetype 1 errors 6, no dir index, no inode ref
root 5 inode 262 errors 2001, no inode item, link count wrong
unresolved ref dir 256 index 0 namelen 8 name foobar_5 filetype 1 errors 6, no dir index, no inode ref
root 5 inode 263 errors 2001, no inode item, link count wrong
(...)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The following lockdep warning is triggered during xfstests:
[ 1702.980872] =========================================================
[ 1702.981181] [ INFO: possible irq lock inversion dependency detected ]
[ 1702.981482] 3.18.0-rc1 #27 Not tainted
[ 1702.981781] ---------------------------------------------------------
[ 1702.982095] kswapd0/77 just changed the state of lock:
[ 1702.982415] (&delayed_node->mutex){+.+.-.}, at: [<ffffffffa03b0b51>] __btrfs_release_delayed_node+0x41/0x1f0 [btrfs]
[ 1702.982794] but this lock took another, RECLAIM_FS-unsafe lock in the past:
[ 1702.983160] (&fs_info->dev_replace.lock){+.+.+.}
and interrupts could create inverse lock ordering between them.
[ 1702.984675]
other info that might help us debug this:
[ 1702.985524] Chain exists of:
&delayed_node->mutex --> &found->groups_sem --> &fs_info->dev_replace.lock
[ 1702.986799] Possible interrupt unsafe locking scenario:
[ 1702.987681] CPU0 CPU1
[ 1702.988137] ---- ----
[ 1702.988598] lock(&fs_info->dev_replace.lock);
[ 1702.989069] local_irq_disable();
[ 1702.989534] lock(&delayed_node->mutex);
[ 1702.990038] lock(&found->groups_sem);
[ 1702.990494] <Interrupt>
[ 1702.990938] lock(&delayed_node->mutex);
[ 1702.991407]
*** DEADLOCK ***
It is because the btrfs_kobj_{add/rm}_device() will call memory
allocation with GFP_KERNEL,
which may flush fs page cache to free space, waiting for it self to do
the commit, causing the deadlock.
To solve the problem, move btrfs_kobj_{add/rm}_device() out of the
dev_replace lock range, also involing split the
btrfs_rm_dev_replace_srcdev() function into remove and free parts.
Now only btrfs_rm_dev_replace_remove_srcdev() is called in dev_replace
lock range, and kobj_{add/rm} and btrfs_rm_dev_replace_free_srcdev() are
called out of the lock range.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
One problem that has plagued us is that a user will use up all of his space with
data, remove a bunch of that data, and then try to create a bunch of small files
and run out of space. This happens because all the chunks were allocated for
data since the metadata requirements were so low. But now there's a bunch of
empty data block groups and not enough metadata space to do anything. This
patch solves this problem by automatically deleting empty block groups. If we
notice the used count go down to 0 when deleting or on mount notice that a block
group has a used count of 0 then we will queue it to be deleted.
When the cleaner thread runs we will double check to make sure the block group
is still empty and then we will delete it. This patch has the side effect of no
longer having a bunch of BUG_ON()'s in the chunk delete code, which will be
helpful for both this and relocate. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Direct IO splits the original bio to several sub-bios because of the limit of
raid stripe, and the filesystem will wait for all sub-bios and then run final
end io process.
But it was very hard to implement the data repair when dio read failure happens,
because at the final end io function, we didn't know which mirror the data was
read from. So in order to implement the data repair, we have to move the file data
check in the final end io function to the sub-bio end io function, in which we can
get the mirror number of the device we access. This patch did this work as the
first step of the direct io data repair implementation.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The problem is:
Task0(device scan task) Task1(device replace task)
scan_one_device()
mutex_lock(&uuid_mutex)
device = find_device()
mutex_lock(&device_list_mutex)
lock_chunk()
rm_and_free_source_device
unlock_chunk()
mutex_unlock(&device_list_mutex)
check device
Destroying the target device if device replace fails also has the same problem.
We fix this problem by locking uuid_mutex during destroying source device or
target device, just like the device remove operation.
It is a temporary solution, we can fix this problem and make the code more
clear by atomic counter in the future.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
|
|
|
|
|
| |
->total_bytes,->disk_total_bytes,->bytes_used is protected by chunk
lock when we change them, but sometimes we read them without any lock,
and we might get unexpected value. We fix this problem like inode's
i_size.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
device->bytes_used will be changed when allocating a new chunk, and
disk_total_size will be changed if resizing is successful.
Meanwhile, the on-disk super blocks of the previous transaction
might not be updated. Considering the consistency of the metadata
in the previous transaction, We should use the size in the previous
transaction to check if the super block is beyond the boundary
of the device.
Though it is not big problem because we don't use it now, but anyway
it is better that we make it be consistent with the common metadata,
maybe we will use it in the future.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
total_size will be changed when resizing a device, and disk_total_size
will be changed if resizing is successful. Meanwhile, the on-disk super
blocks of the previous transaction might not be updated. Considering
the consistency of the metadata in the previous transaction, We should
use the size in the previous transaction to check if the super block is
beyond the boundary of the device. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
We didn't protect the assignment of the target device, it might cause the
problem that the super block update was skipped because we might find wrong
size of the target device during the assignment. Fix it by moving the
assignment sentences into the initialization function of the target device.
And there is another merit that we can check if the target device is suitable
more early.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
|
|
|
| |
The member variants - num_can_discard - of fs_devices structure
are set, but no one use them to do anything. so remove them.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
|
|
|
| |
The member variants - latest_devid and latest_trans - of fs_devices structure
are set, but no one use them to do anything. so remove them.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
| |
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
|
|
|
|
|
|
| |
The io error might happen during writing out the device stats, and the
device stats information and dirty flag would be update at that time,
but the current code didn't consider this case, just clear the dirty
flag, it would cause that we forgot to write out the new device stats
information. Fix it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
|
|
|
| |
The lock in btrfs_device structure was far away from its protected data, it would
make CPU load the cache line twice when we accessed them, move them together.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The deadlock happened when we mount degraded filesystem, the reproduced
steps are following:
# mkfs.btrfs -f -m raid1 -d raid1 <dev0> <dev1>
# echo 1 > /sys/block/`basename <dev0>`/device/delete
# mount -o degraded <dev1> <mnt>
The reason was that the counter -- bi_remaining was wrong. If the missing
or unwriteable device was the last device in the mapping array, we would
not submit the original bio, so we shouldn't increase bi_remaining of it
in btrfs_end_bio(), or we would skip the final endio handle.
Fix this problem by adding a flag into btrfs bio structure. If we submit
the original bio, we will set the flag, and we increase bi_remaining counter,
or we don't.
Though there is another way to fix it -- decrease bi_remaining counter of the
original bio when we make sure the original bio is not submitted, this method
need add more check and is easy to make mistake.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This started as debugging helper, to watch the effects of converting
between raid levels on multiple devices, but could be useful standalone.
In my case the usage filter was not finegrained enough and led to
converting too many chunks at once. Another example use is in connection
with drange+devid or vrange filters that allow to work with a specific
chunk or even with a chunk on a given device.
The limit filter applies last, the value of 0 means no limiting.
CC: Ilya Dryomov <idryomov@gmail.com>
CC: Hugo Mills <hugo@carfax.org.uk>
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since the "_struct" suffix is mainly used for distinguish the differnt
btrfs_work between the original and the newly created one,
there is no need using the suffix since all btrfs_workers are changed
into btrfs_workqueue.
Also this patch fixed some codes whose code style is changed due to the
too long "_struct" suffix.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
|
|
|
|
|
|
|
|
|
| |
Much like the fs_info->workers, replace the fs_info->submit_workers
use the same btrfs_workqueue.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Tested-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Josef Bacik <jbacik@fb.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During device replace test, we hit a null pointer deference (It was very easy
to reproduce it by running xfstests' btrfs/011 on the devices with the virtio
scsi driver). There were two bugs that caused this problem:
- We might allocate new chunks on the replaced device after we updated
the mapping tree. And we forgot to replace the source device in those
mapping of the new chunks.
- We might get the mapping information which including the source device
before the mapping information update. And then submit the bio which was
based on that mapping information after we freed the source device.
For the first bug, we can fix it by doing mapping tree update and source
device remove in the same context of the chunk mutex. The chunk mutex is
used to protect the allocable device list, the above method can avoid
the new chunk allocation, and after we remove the source device, all
the new chunks will be allocated on the new device. So it can fix
the first bug.
For the second bug, we need make sure all flighting bios are finished and
no new bios are produced during we are removing the source device. To fix
this problem, we introduced a global @bio_counter, we not only inc/dec
@bio_counter outsize of map_blocks, but also inc it before submitting bio
and dec @bio_counter when ending bios.
Since Raid56 is a little different and device replace dosen't support raid56
yet, it is not addressed in the patch and I add comments to make sure we will
fix it in the future.
Reported-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
|
|
|
|
|
|
|
|
|
|
| |
Pack the structure btrfs_device in volumes.h to eliminate holes detected
by pahole, thus reducing binary memory footprint.
Signed-off-by: Dulshani Gunawardhana <dulshani.gunawardhana89@gmail.com>
Reviewed-by: Zach Brown <zab@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Originally, we introduced scrub_super_lock to synchronize
tree log code with scrubbing super.
However we can replace scrub_super_lock with device_list_mutex,
because writing super will hold this mutex, this will reduce an extra
lock holding when writing supers in sync log code.
Signed-off-by: Wang Shilong <wangsl.fnst@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently btrfs_device is allocated ad-hoc in a few different places,
and as a result not all fields are initialized properly. In particular,
readahead state is only initialized in device_list_add (at scan time),
and not in btrfs_init_new_device (when the new device is added with
'btrfs dev add'). Fix this by adding an allocation helper and switch
everybody but __btrfs_close_devices to it. (__btrfs_close_devices is
dealt with in a later commit.)
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If the filesystem was mounted with an old kernel that was not
aware of the UUID tree, this is detected by looking at the
uuid_tree_generation field of the superblock (similar to how
the free space cache is doing it). If a mismatch is detected
at mount time, a thread is started that does two things:
1. Iterate through the UUID tree, check each entry, delete those
entries that are not valid anymore (i.e., the subvol does not
exist anymore or the value changed).
2. Iterate through the root tree, for each found subvolume, add
the UUID tree entries for the subvolume (if they are not
already there).
This mechanism is also used to handle and repair errors that
happened during the initial creation and filling of the tree.
The update of the uuid_tree_generation field (which indicates
that the state of the UUID tree is up to date) is blocked until
all create and repair operations are successfully completed.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
This tree is not created by mkfs.btrfs. Therefore when a filesystem
is mounted writable and the UUID tree does not exist, this tree is
created if required. The tree is also added to the fs_info structure
and initialized, but this commit does not yet read or write UUID tree
elements.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before applying this patch, we cached the csum value into the extent state
tree when reading some data from the disk, this operation increased the lock
contention of the state tree.
Now, we just store the csum value into the bio structure or other unshared
structure, so we can reduce the lock contention.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When adjusting the enospc rules for relocation I ran into a deadlock because we
were relocating the only system chunk and that forced us to try and allocate a
new system chunk while holding locks in the chunk tree, which caused us to
deadlock. To fix this I've moved all of the dev extent addition and chunk
addition out to the delayed chunk completion stuff. We still keep the in-memory
stuff which makes sure everything is consistent.
One change I had to make was to search the commit root of the device tree to
find a free dev extent, and hold onto any chunk em's that we allocated in that
transaction so we do not allocate the same dev extent twice. This has the side
effect of fixing a bug with balance that has been there ever since balance
existed. Basically you can free a block group and it's dev extent and then
immediately allocate that dev extent for a new block group and write stuff to
that dev extent, all within the same transaction. So if you happen to crash
during a balance you could come back to a completely broken file system. This
patch should keep these sort of things from happening in the future since we
won't be able to allocate free'd dev extents until after the transaction
commits. This has passed all of the xfstests and my super annoying stress test
followed by a balance. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are several functions whose code is similar, such as
btrfs_find_last_root()
btrfs_read_fs_root_no_radix()
Besides that, some functions are invoked twice, it is unnecessary,
for example, we are sure that all roots which is found in
btrfs_find_orphan_roots()
have their orphan items, so it is unnecessary to check the orphan
item again.
So cleanup it.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Btrfs has been pointer tagging bi_private and using bi_bdev
to store the stripe index and mirror number of failed IOs.
As bios bubble back up through the call chain, we use these
to decide if and how to retry our IOs. They are also used
to count IO failures on a per device basis.
Recently a bio tracepoint was added lead to crashes because
we were abusing bi_bdev.
This commit adds a btrfs bioset, and creates explicit fields
for the mirror number and stripe index. The plan is to
extend this structure for all of the fields currently in
struct btrfs_bio, which will mean one less kmalloc in
our IO path.
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Reported-by: Tejun Heo <tj@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Big patch, but all it does is add statics to functions which
are in fact static, then remove the associated dead-code fallout.
removed functions:
btrfs_iref_to_path()
__btrfs_lookup_delayed_deletion_item()
__btrfs_search_delayed_insertion_item()
__btrfs_search_delayed_deletion_item()
find_eb_for_page()
btrfs_find_block_group()
range_straddles_pages()
extent_range_uptodate()
btrfs_file_extent_length()
btrfs_scrub_cancel_devid()
btrfs_start_transaction_lflush()
btrfs_print_tree() is left because it is used for debugging.
btrfs_start_transaction_lflush() and btrfs_reada_detach() are
left for symmetry.
ulist.c functions are left, another patch will take care of those.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Conflicts:
fs/btrfs/ctree.h
fs/btrfs/extent-tree.c
fs/btrfs/inode.c
fs/btrfs/volumes.c
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This builds on David Woodhouse's original Btrfs raid5/6 implementation.
The code has changed quite a bit, blame Chris Mason for any bugs.
Read/modify/write is done after the higher levels of the filesystem have
prepared a given bio. This means the higher layers are not responsible
for building full stripes, and they don't need to query for the topology
of the extents that may get allocated during delayed allocation runs.
It also means different files can easily share the same stripe.
But, it does expose us to incorrect parity if we crash or lose power
while doing a read/modify/write cycle. This will be addressed in a
later commit.
Scrub is unable to repair crc errors on raid5/6 chunks.
Discard does not work on raid5/6 (yet)
The stripe size is fixed at 64KiB per disk. This will be tunable
in a later commit.
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|/
|
|
|
|
|
|
|
| |
The header file will then be installed under /usr/include/linux so that
userspace applications can refer to Btrfs ioctls by name and use the same
structs used internally in the kernel.
Signed-off-by: Filipe Brandenburger <filbranden@google.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
|
|
|
|
|
|
|
|
| |
Raid properties can be shared among raid calculation code, we can put
them into a global table to keep it simple.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
|
|
|
|
|
|
| |
This commit contains all the essential changes to the core code
of Btrfs for support of the device replace procedure.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
|
|
|
|
|
|
|
|
| |
This adds a new file to the sources together with the header file
and the changes to ioctl.h and ctree.h that are required by the
new C source file. Additionally, 4 new functions are added to
volume.c that deal with device creation and destruction.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
|
|
|
|
|
|
| |
This patch adds some code to disallow operations on the device that
is used as the target for the device replace operation.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
A small number of functions that are used in a device replace
procedure when the operation is resumed at mount time are unable
to pass the same root pointer that would be used in the regular
(ioctl) context. And since the root pointer is not required, only
the fs_info is, the root pointer argument is replaced with the
fs_info pointer argument.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|
|
|
|
|
|
|
|
| |
This new function is used by the device replace procedure in
a later patch.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
|