summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/volumes.h (follow)
Commit message (Collapse)AuthorAgeFilesLines
* btrfs: remove reada infrastructureQu Wenruo2022-01-071-7/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently there is only one user for btrfs metadata readahead, and that's scrub. But even for the single user, it's not providing the correct functionality it needs, as scrub needs reada for commit root, which current readahead can't provide. (Although it's pretty easy to add such feature). Despite this, there are some extra problems related to metadata readahead: - Duplicated feature with btrfs_path::reada - Partly duplicated feature of btrfs_fs_info::buffer_radix Btrfs already caches its metadata in buffer_radix, while readahead tries to read the tree block no matter if it's already cached. - Poor layer separation Metadata readahead works kinda at device level. This is definitely not the correct layer it should be, since metadata is at btrfs logical address space, it should not bother device at all. This brings extra chance for bugs to sneak in, while brings unnecessary complexity. - Dead code In the very beginning of scrub.c we have #undef DEBUG, rendering all the debug related code useless and unable to test. Thus here I purpose to remove the metadata readahead mechanism completely. [BENCHMARK] There is a full benchmark for the scrub performance difference using the old btrfs_reada_add() and btrfs_path::reada. For the worst case (no dirty metadata, slow HDD), there could be a 5% performance drop for scrub. For other cases (even SATA SSD), there is no distinguishable performance difference. The number is reported scrub speed, in MiB/s. The resolution is limited by the reported duration, which only has a resolution of 1 second. Old New Diff SSD 455.3 466.332 +2.42% HDD 103.927 98.012 -5.69% Comprehensive test methodology is in the cover letter of the patch. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: zoned: sink zone check into btrfs_repair_one_zoneJohannes Thumshirn2022-01-071-1/+1
| | | | | | | | | | | | | | Sink zone check into btrfs_repair_one_zone() so we don't need to do it in all callers. Also as btrfs_repair_one_zone() doesn't return a sensible error, make it a boolean function and return false in case it got called on a non-zoned filesystem and true on a zoned filesystem. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: use btrfs_get_dev_args_from_path in dev removal ioctlsJosef Bacik2021-10-261-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: add a btrfs_get_dev_args_from_path helperJosef Bacik2021-10-261-0/+4
| | | | | | | | | | | | We are going to want to populate our device lookup args outside of any locks and then do the actual device lookup later, so add a helper to do this work and make btrfs_find_device_by_devspec() use this helper for now. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: handle device lookup with btrfs_dev_lookup_argsJosef Bacik2021-10-261-2/+18
| | | | | | | | | | | | We have a lot of device lookup functions that all do something slightly different. Clean this up by adding a struct to hold the different lookup criteria, and then pass this around to btrfs_find_device() so it can do the proper matching based on the lookup criteria. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: add comments for device counts in struct btrfs_fs_devicesAnand Jain2021-10-261-0/+19
| | | | | | | | | | A bug was was checking a wrong device count before we delete the struct btrfs_fs_devices in btrfs_rm_device(). To avoid future confusion and easy reference add a comment about the various device counts that we have in the struct btrfs_fs_devices. Signed-off-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: remove btrfs_bio::logical memberQu Wenruo2021-10-261-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | The member btrfs_bio::logical is only initialized by two call sites: - btrfs_repair_one_sector() No corresponding site to utilize it. - btrfs_submit_direct() The corresponding site to utilize it is btrfs_check_read_dio_bio(). However for btrfs_check_read_dio_bio(), we can grab the file_offset from btrfs_dio_private::file_offset directly. Thus it turns out we don't really need that btrfs_bio::logical member at all. For btrfs_bio, the logical bytenr can be fetched from its bio->bi_iter.bi_sector directly. So let's just remove the member to save 8 bytes for structure btrfs_bio. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: rename struct btrfs_io_bio to btrfs_bioQu Wenruo2021-10-261-15/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | Previously we had "struct btrfs_bio", which records IO context for mirrored IO and RAID56, and "strcut btrfs_io_bio", which records extra btrfs specific info for logical bytenr bio. With "btrfs_bio" renamed to "btrfs_io_context", we are safe to rename "btrfs_io_bio" to "btrfs_bio" which is a more suitable name now. The struct btrfs_bio changes meaning by this commit. There was a suggested name like btrfs_logical_bio but it's a bit long and we'd prefer to use a shorter name. This could be a concern for backports to older kernels where the different meaning could possibly cause confusion or bugs. Comparing the new and old structures, there's no overlap among the struct members so a build would break in case of incorrect backport. We haven't had many backports to bio code anyway so this is more of a theoretical cause of bugs and a matter of precaution but we'll need to keep the semantic change in mind. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: rename btrfs_bio to btrfs_io_contextQu Wenruo2021-10-261-11/+27
| | | | | | | | | | | | | | | | | | | | The structure btrfs_bio is used by two different sites: - bio->bi_private for mirror based profiles For those profiles (SINGLE/DUP/RAID1*/RAID10), this structures records how many mirrors are still pending, and save the original endio function of the bio. - RAID56 code In that case, RAID56 only utilize the stripes info, and no long uses that to trace the pending mirrors. So btrfs_bio is not always bind to a bio, and contains more info for IO context, thus renaming it will make the naming less confusing. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: convert latest_bdev type to btrfs_device and renameAnand Jain2021-10-261-1/+5
| | | | | | | | | | | | | In preparation to fix a bug in btrfs_show_devname(). Convert fs_devices::latest_bdev type from struct block_device to struct btrfs_device and, rename the member to fs_devices::latest_dev. So that btrfs_show_devname() can use fs_devices::latest_dev::name. Tested-by: Su Yue <l@damenly.su> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: rename and switch to bool btrfs_chunk_readonlyAnand Jain2021-10-261-1/+1
| | | | | | | | | | | | | | btrfs_chunk_readonly() checks if the given chunk is writeable. It returns 1 for readonly, and 0 for writeable. So the return argument type bool shall suffice instead of the current type int. Also, rename btrfs_chunk_readonly() to btrfs_chunk_writeable() as we check if the bg is writeable, and helps to keep the logic at the parent function simpler to understand. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: rename btrfs_alloc_chunk to btrfs_create_chunkNikolay Borisov2021-10-251-1/+1
| | | | | | | | | | | | | | | | | | | | | | The user facing function used to allocate new chunks is btrfs_chunk_alloc, unfortunately there is yet another similar sounding function - btrfs_alloc_chunk. This creates confusion, especially since the latter function can be considered "private" in the sense that it implements the first stage of chunk creation and as such is called by btrfs_chunk_alloc. To avoid the awkwardness that comes with having similarly named but distinctly different in their purpose function rename btrfs_alloc_chunk to btrfs_create_chunk, given that the main purpose of this function is to orchestrate the whole process of allocating a chunk - reserving space into devices, deciding on characteristics of the stripe size and creating the in-memory structures. Reviewed-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: delay blkdev_put until after the device removeJosef Bacik2021-09-071-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When removing the device we call blkdev_put() on the device once we've removed it, and because we have an EXCL open we need to take the ->open_mutex on the block device to clean it up. Unfortunately during device remove we are holding the sb writers lock, which results in the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #407 Not tainted ------------------------------------------------------ losetup/11595 is trying to acquire lock: ffff973ac35dd138 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_put+0x3a/0x220 btrfs_rm_device.cold+0x62/0xe5 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11595: #0: ffff973ac9812c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11595 Comm: losetup Not tainted 5.14.0-rc2+ #407 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fc21255d4cb So instead save the bdev and do the put once we've dropped the sb writers lock in order to avoid the lockdep recursion. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: uninline btrfs_bg_flags_to_raid_indexDavid Sterba2021-08-231-26/+1
| | | | | | | | | | | | | | | | | | | | | The helper does a simple translation from block group flags to index to the btrfs_raid_array table. There's no apparent reason to inline the function, the translation happens usually once per function and is not called in a loop. Making it a proper function saves quite some binary code (x86_64, release config): text data bss dec hex filename 1164011 19253 14912 1198176 124860 pre/btrfs.ko 1161559 19253 14912 1195724 123ecc post/btrfs.ko DELTA: -2451 Also add the const attribute as there are no side effects, this could help compiler to optimize a few things without the function body. Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: make btrfs_finish_chunk_alloc private to block-group.cNikolay Borisov2021-08-231-2/+0
| | | | | | | | | | | | | | | | | | One of the final things that must be done to add a new chunk is inserting its device extent items in the device tree. They describe the portion of allocated device physical space during phase 1 of chunk allocation. This is currently done in btrfs_finish_chunk_alloc whose name isn't very informative. What's more, this function is only used in block-group.c but is defined as public. There isn't anything special about it that would warrant it being defined in volumes.c. Just move btrfs_finish_chunk_alloc and alloc_chunk_dev_extent to block-group.c, make the former static and rename both functions to insert_dev_extents and insert_dev_extent respectively. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: rework chunk allocation to avoid exhaustion of the system chunk arrayFilipe Manana2021-07-071-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: remove the unused parameter @len for btrfs_bio_fits_in_stripe()Qu Wenruo2021-06-211-1/+1
| | | | | | | | | | | | | | The parameter @len is not really used in btrfs_bio_fits_in_stripe(), just remove it. It got removed in 420343131970 ("btrfs: let callers of btrfs_get_io_geometry pass the em"), before that btrfs_get_chunk_map utilized it. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: scrub: per-device bandwidth controlDavid Sterba2021-06-211-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add sysfs interface to limit io during scrub. We relied on the ionice interface to do that, eg. the idle class let the system usable while scrub was running. This has changed when mq-deadline got widespread and did not implement the scheduling classes. That was a CFQ thing that got deleted. We've got numerous complaints from users about degraded performance. Currently only BFQ supports that but it's not a common scheduler and we can't ask everybody to switch to it. Alternatively the cgroup io limiting can be used but that also a non-trivial setup (v2 required, the controller must be enabled on the system). This can still be used if desired. Other ideas that have been explored: piggy-back on ionice (that is set per-process and is accessible) and interpret the class and classdata as bandwidth limits, but this does not have enough flexibility as there are only 8 allowed and we'd have to map fixed limits to each value. Also adjusting the value would need to lookup the process that currently runs scrub on the given device, and the value is not sticky so would have to be adjusted each time scrub runs. Running out of options, sysfs does not look that bad: - it's accessible from scripts, or udev rules - the name is similar to what MD-RAID has (/proc/sys/dev/raid/speed_limit_max or /sys/block/mdX/md/sync_speed_max) - the value is sticky at least for filesystem mount time - adjusting the value has immediate effect - sysfs is available in constrained environments (eg. system rescue) - the limit also applies to device replace Sysfs: - raw value is in bytes - values written to the file accept suffixes like K, M - file is in the per-device directory /sys/fs/btrfs/FSID/devinfo/DEVID/scrub_speed_max - 0 means use default priority of IO The scheduler is a simple deadline one and the accuracy is up to nearest 128K. Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: zoned: automatically reclaim zonesJohannes Thumshirn2021-04-201-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | When a file gets deleted on a zoned file system, the space freed is not returned back into the block group's free space, but is migrated to zone_unusable. As this zone_unusable space is behind the current write pointer it is not possible to use it for new allocations. In the current implementation a zone is reset once all of the block group's space is accounted as zone unusable. This behaviour can lead to premature ENOSPC errors on a busy file system. Instead of only reclaiming the zone once it is completely unusable, kick off a reclaim job once the amount of unusable bytes exceeds a user configurable threshold between 51% and 100%. It can be set per mounted filesystem via the sysfs tunable bg_reclaim_threshold which is set to 75% by default. Similar to reclaiming unused block groups, these dirty block groups are added to a to_reclaim list and then on a transaction commit, the reclaim process is triggered but after we deleted unused block groups, which will free space for the relocation process. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: zoned: relocate block group to repair IO failure in zoned filesystemsNaohiro Aota2021-02-091-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When a bad checksum is found and if the filesystem has a mirror of the damaged data, we read the correct data from the mirror and writes it to damaged blocks. This however, violates the sequential write constraints of a zoned block device. We can consider three methods to repair an IO failure in zoned filesystems: (1) Reset and rewrite the damaged zone (2) Allocate new device extent and replace the damaged device extent to the new extent (3) Relocate the corresponding block group Method (1) is most similar to a behavior done with regular devices. However, it also wipes non-damaged data in the same device extent, and so it unnecessary degrades non-damaged data. Method (2) is much like device replacing but done in the same device. It is safe because it keeps the device extent until the replacing finish. However, extending device replacing is non-trivial. It assumes "src_dev->physical == dst_dev->physical". Also, the extent mapping replacing function should be extended to support replacing device extent position in one device. Method (3) invokes relocation of the damaged block group and is straightforward to implement. It relocates all the mirrored device extents, so it potentially is a more costly operation than method (1) or (2). But it relocates only used extents which reduce the total IO size. Let's apply method (3) for now. In the future, we can extend device-replace and apply method (2). For protecting a block group gets relocated multiple time with multiple IO errors, this commit introduces "relocating_repair" bit to show it's now relocating to repair IO failures. Also it uses a new kthread "btrfs-relocating-repair", not to block IO path with relocating process. This commit also supports repairing in the scrub process. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: zoned: handle REQ_OP_ZONE_APPEND as writingNaohiro Aota2021-02-091-0/+1
| | | | | | | | | | | | | | Zoned filesystems use REQ_OP_ZONE_APPEND bios for writing to actual devices. Let btrfs_end_bio() and btrfs_op be aware of it, by mapping REQ_OP_ZONE_APPEND to BTRFS_MAP_WRITE and using btrfs_op() instead of bio_op(). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: zoned: implement zoned chunk allocatorNaohiro Aota2021-02-091-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Implement a zoned chunk and device extent allocator. One device zone becomes a device extent so that a zone reset affects only this device extent and does not change the state of blocks in the neighbor device extents. To implement the allocator, we need to extend the following functions for a zoned filesystem. - init_alloc_chunk_ctl - dev_extent_search_start - dev_extent_hole_check - decide_stripe_size init_alloc_chunk_ctl_zoned() is mostly the same as regular one. It always set the stripe_size to the zone size and aligns the parameters to the zone size. dev_extent_search_start() only aligns the start offset to zone boundaries. We don't care about the first 1MB like in regular filesystem because we anyway reserve the first two zones for superblock logging. dev_extent_hole_check_zoned() checks if zones in given hole are either conventional or empty sequential zones. Also, it skips zones reserved for superblock logging. With the change to the hole, the new hole may now contain pending extents. So, in this case, loop again to check that. Finally, decide_stripe_size_zoned() should shrink the number of devices instead of stripe size because we need to honor stripe_size == zone_size. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: let callers of btrfs_get_io_geometry pass the emMichal Rostecki2021-02-081-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Before this change, the btrfs_get_io_geometry() function was calling btrfs_get_chunk_map() to get the extent mapping, necessary for calculating the I/O geometry. It was using that extent mapping only internally and freeing the pointer after its execution. That resulted in calling btrfs_get_chunk_map() de facto twice by the __btrfs_map_block() function. It was calling btrfs_get_io_geometry() first and then calling btrfs_get_chunk_map() directly to get the extent mapping, used by the rest of the function. Change that to passing the extent mapping to the btrfs_get_io_geometry() function as an argument. This could improve performance in some cases. For very large filesystems, i.e. several thousands of allocated chunks, not only this avoids searching two times the rbtree, saving time, it may also help reducing contention on the lock that protects the tree - thinking of writeback starting for multiple inodes, other tasks allocating or removing chunks, and anything else that requires access to the rbtree. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Michal Rostecki <mrostecki@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add Filipe's analysis ] Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: fix lockdep warning due to seqcount_mutex on 32bit archSu Yue2021-01-251-5/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This effectively reverts commit d5c8238849e7 ("btrfs: convert data_seqcount to seqcount_mutex_t"). While running fstests on 32 bits test box, many tests failed because of warnings in dmesg. One of those warnings (btrfs/003): [66.441317] WARNING: CPU: 6 PID: 9251 at include/linux/seqlock.h:279 btrfs_remove_chunk+0x58b/0x7b0 [btrfs] [66.441446] CPU: 6 PID: 9251 Comm: btrfs Tainted: G O 5.11.0-rc4-custom+ #5 [66.441449] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ArchLinux 1.14.0-1 04/01/2014 [66.441451] EIP: btrfs_remove_chunk+0x58b/0x7b0 [btrfs] [66.441472] EAX: 00000000 EBX: 00000001 ECX: c576070c EDX: c6b15803 [66.441475] ESI: 10000000 EDI: 00000000 EBP: c56fbcfc ESP: c56fbc70 [66.441477] DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068 EFLAGS: 00010246 [66.441481] CR0: 80050033 CR2: 05c8da20 CR3: 04b20000 CR4: 00350ed0 [66.441485] Call Trace: [66.441510] btrfs_relocate_chunk+0xb1/0x100 [btrfs] [66.441529] ? btrfs_lookup_block_group+0x17/0x20 [btrfs] [66.441562] btrfs_balance+0x8ed/0x13b0 [btrfs] [66.441586] ? btrfs_ioctl_balance+0x333/0x3c0 [btrfs] [66.441619] ? __this_cpu_preempt_check+0xf/0x11 [66.441643] btrfs_ioctl_balance+0x333/0x3c0 [btrfs] [66.441664] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs] [66.441683] btrfs_ioctl+0x414/0x2ae0 [btrfs] [66.441700] ? __lock_acquire+0x35f/0x2650 [66.441717] ? lockdep_hardirqs_on+0x87/0x120 [66.441720] ? lockdep_hardirqs_on_prepare+0xd0/0x1e0 [66.441724] ? call_rcu+0x2d3/0x530 [66.441731] ? __might_fault+0x41/0x90 [66.441736] ? kvm_sched_clock_read+0x15/0x50 [66.441740] ? sched_clock+0x8/0x10 [66.441745] ? sched_clock_cpu+0x13/0x180 [66.441750] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs] [66.441750] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs] [66.441768] __ia32_sys_ioctl+0x165/0x8a0 [66.441773] ? __this_cpu_preempt_check+0xf/0x11 [66.441785] ? __might_fault+0x89/0x90 [66.441791] __do_fast_syscall_32+0x54/0x80 [66.441796] do_fast_syscall_32+0x32/0x70 [66.441801] do_SYSENTER_32+0x15/0x20 [66.441805] entry_SYSENTER_32+0x9f/0xf2 [66.441808] EIP: 0xab7b5549 [66.441814] EAX: ffffffda EBX: 00000003 ECX: c4009420 EDX: bfa91f5c [66.441816] ESI: 00000003 EDI: 00000001 EBP: 00000000 ESP: bfa91e98 [66.441818] DS: 007b ES: 007b FS: 0000 GS: 0033 SS: 007b EFLAGS: 00000292 [66.441833] irq event stamp: 42579 [66.441835] hardirqs last enabled at (42585): [<c60eb065>] console_unlock+0x495/0x590 [66.441838] hardirqs last disabled at (42590): [<c60eafd5>] console_unlock+0x405/0x590 [66.441840] softirqs last enabled at (41698): [<c601b76c>] call_on_stack+0x1c/0x60 [66.441843] softirqs last disabled at (41681): [<c601b76c>] call_on_stack+0x1c/0x60 ======================================================================== btrfs_remove_chunk+0x58b/0x7b0: __seqprop_mutex_assert at linux/./include/linux/seqlock.h:279 (inlined by) btrfs_device_set_bytes_used at linux/fs/btrfs/volumes.h:212 (inlined by) btrfs_remove_chunk at linux/fs/btrfs/volumes.c:2994 ======================================================================== The warning is produced by lockdep_assert_held() in __seqprop_mutex_assert() if CONFIG_LOCKDEP is enabled. And "olumes.c:2994 is btrfs_device_set_bytes_used() with mutex lock fs_info->chunk_mutex held already. After adding some debug prints, the cause was found that many __alloc_device() are called with NULL @fs_info (during scanning ioctl). Inside the function, btrfs_device_data_ordered_init() is expanded to seqcount_mutex_init(). In this scenario, its second parameter info->chunk_mutex is &NULL->chunk_mutex which equals to offsetof(struct btrfs_fs_info, chunk_mutex) unexpectedly. Thus, seqcount_mutex_init() is called in wrong way. And later btrfs_device_get/set helpers trigger lockdep warnings. The device and filesystem object lifetimes are different and we'd have to synchronize initialization of the btrfs_device::data_seqcount with the fs_info, possibly using some additional synchronization. It would still not prevent concurrent access to the seqcount lock when it's used for read and initialization. Commit d5c8238849e7 ("btrfs: convert data_seqcount to seqcount_mutex_t") does not mention a particular problem being fixed so revert should not cause any harm and we'll get the lockdep warning fixed. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=210139 Reported-by: Erhard F <erhard_f@mailbox.org> Fixes: d5c8238849e7 ("btrfs: convert data_seqcount to seqcount_mutex_t") CC: stable@vger.kernel.org # 5.10 CC: Davidlohr Bueso <dbueso@suse.de> Signed-off-by: Su Yue <l@damenly.su> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: get zone information of zoned block devicesNaohiro Aota2020-12-091-0/+4
| | | | | | | | | | | | | | | | | | | | If a zoned block device is found, get its zone information (number of zones and zone size). To avoid costly run-time zone report commands to test the device zones type during block allocation, attach the seq_zones bitmap to the device structure to indicate if a zone is sequential or accept random writes. Also it attaches the empty_zones bitmap to indicate if a zone is empty or not. This patch also introduces the helper function btrfs_dev_is_sequential() to test if the zone storing a block is a sequential write required zone and btrfs_dev_is_empty_zone() to test if the zone is a empty zone. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: remove unused argument seed from btrfs_find_deviceAnand Jain2020-12-081-1/+1
| | | | | | | | | | | | | | | | | | Commit 343694eee8d8 ("btrfs: switch seed device to list api"), missed to check if the parameter seed is true in the function btrfs_find_device(). This tells it whether to traverse the seed device list or not. After this commit, the argument is unused and can be removed. In device_list_add() it's not necessary because fs_devices always points to the device's fs_devices. So with the devid+uuid matching, it will find the right device and return, thus not needing to traverse seed devices. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: drop unused argument step from btrfs_free_extra_devidsAnand Jain2020-12-081-1/+1
| | | | | | | | | | | | Commit cf89af146b7e ("btrfs: dev-replace: fail mount if we don't have replace item with target device") dropped the multi stage operation of btrfs_free_extra_devids() that does not need to check replace target anymore and we can remove the 'step' argument. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: create read policy frameworkAnand Jain2020-12-081-0/+13
| | | | | | | | | | | | | | | | | | | As of now, we use the pid method to read striped mirrored data, which means process id determines the stripe id to read. This type of routing typically helps in a system with many small independent processes tying to read random data. On the other hand, the pid based read IO policy is inefficient because if there is a single process trying to read a large file, the overall disk bandwidth remains underutilized. So this patch introduces a read policy framework so that we could add more read policies, such as IO routing based on the device's wait-queue or manual when we have a read-preferred device or a policy based on the target storage caching. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: convert data_seqcount to seqcount_mutex_tDavidlohr Bueso2020-10-271-6/+5
| | | | | | | | | | | | | By doing so we can associate the sequence counter to the chunk_mutex for lockdep purposes (compiled-out otherwise), the mutex is otherwise used on the write side. Also avoid explicitly disabling preemption around the write region as it will now be done automatically by the seqcount machinery based on the lock type. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: fix readahead hang and use-after-free after removing a deviceFilipe Manana2020-10-261-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Very sporadically I had test case btrfs/069 from fstests hanging (for years, it is not a recent regression), with the following traces in dmesg/syslog: [162301.160628] BTRFS info (device sdc): dev_replace from /dev/sdd (devid 2) to /dev/sdg started [162301.181196] BTRFS info (device sdc): scrub: finished on devid 4 with status: 0 [162301.287162] BTRFS info (device sdc): dev_replace from /dev/sdd (devid 2) to /dev/sdg finished [162513.513792] INFO: task btrfs-transacti:1356167 blocked for more than 120 seconds. [162513.514318] Not tainted 5.9.0-rc6-btrfs-next-69 #1 [162513.514522] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [162513.514747] task:btrfs-transacti state:D stack: 0 pid:1356167 ppid: 2 flags:0x00004000 [162513.514751] Call Trace: [162513.514761] __schedule+0x5ce/0xd00 [162513.514765] ? _raw_spin_unlock_irqrestore+0x3c/0x60 [162513.514771] schedule+0x46/0xf0 [162513.514844] wait_current_trans+0xde/0x140 [btrfs] [162513.514850] ? finish_wait+0x90/0x90 [162513.514864] start_transaction+0x37c/0x5f0 [btrfs] [162513.514879] transaction_kthread+0xa4/0x170 [btrfs] [162513.514891] ? btrfs_cleanup_transaction+0x660/0x660 [btrfs] [162513.514894] kthread+0x153/0x170 [162513.514897] ? kthread_stop+0x2c0/0x2c0 [162513.514902] ret_from_fork+0x22/0x30 [162513.514916] INFO: task fsstress:1356184 blocked for more than 120 seconds. [162513.515192] Not tainted 5.9.0-rc6-btrfs-next-69 #1 [162513.515431] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [162513.515680] task:fsstress state:D stack: 0 pid:1356184 ppid:1356177 flags:0x00004000 [162513.515682] Call Trace: [162513.515688] __schedule+0x5ce/0xd00 [162513.515691] ? _raw_spin_unlock_irqrestore+0x3c/0x60 [162513.515697] schedule+0x46/0xf0 [162513.515712] wait_current_trans+0xde/0x140 [btrfs] [162513.515716] ? finish_wait+0x90/0x90 [162513.515729] start_transaction+0x37c/0x5f0 [btrfs] [162513.515743] btrfs_attach_transaction_barrier+0x1f/0x50 [btrfs] [162513.515753] btrfs_sync_fs+0x61/0x1c0 [btrfs] [162513.515758] ? __ia32_sys_fdatasync+0x20/0x20 [162513.515761] iterate_supers+0x87/0xf0 [162513.515765] ksys_sync+0x60/0xb0 [162513.515768] __do_sys_sync+0xa/0x10 [162513.515771] do_syscall_64+0x33/0x80 [162513.515774] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [162513.515781] RIP: 0033:0x7f5238f50bd7 [162513.515782] Code: Bad RIP value. [162513.515784] RSP: 002b:00007fff67b978e8 EFLAGS: 00000206 ORIG_RAX: 00000000000000a2 [162513.515786] RAX: ffffffffffffffda RBX: 000055b1fad2c560 RCX: 00007f5238f50bd7 [162513.515788] RDX: 00000000ffffffff RSI: 000000000daf0e74 RDI: 000000000000003a [162513.515789] RBP: 0000000000000032 R08: 000000000000000a R09: 00007f5239019be0 [162513.515791] R10: fffffffffffff24f R11: 0000000000000206 R12: 000000000000003a [162513.515792] R13: 00007fff67b97950 R14: 00007fff67b97906 R15: 000055b1fad1a340 [162513.515804] INFO: task fsstress:1356185 blocked for more than 120 seconds. [162513.516064] Not tainted 5.9.0-rc6-btrfs-next-69 #1 [162513.516329] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [162513.516617] task:fsstress state:D stack: 0 pid:1356185 ppid:1356177 flags:0x00000000 [162513.516620] Call Trace: [162513.516625] __schedule+0x5ce/0xd00 [162513.516628] ? _raw_spin_unlock_irqrestore+0x3c/0x60 [162513.516634] schedule+0x46/0xf0 [162513.516647] wait_current_trans+0xde/0x140 [btrfs] [162513.516650] ? finish_wait+0x90/0x90 [162513.516662] start_transaction+0x4d7/0x5f0 [btrfs] [162513.516679] btrfs_setxattr_trans+0x3c/0x100 [btrfs] [162513.516686] __vfs_setxattr+0x66/0x80 [162513.516691] __vfs_setxattr_noperm+0x70/0x200 [162513.516697] vfs_setxattr+0x6b/0x120 [162513.516703] setxattr+0x125/0x240 [162513.516709] ? lock_acquire+0xb1/0x480 [162513.516712] ? mnt_want_write+0x20/0x50 [162513.516721] ? rcu_read_lock_any_held+0x8e/0xb0 [162513.516723] ? preempt_count_add+0x49/0xa0 [162513.516725] ? __sb_start_write+0x19b/0x290 [162513.516727] ? preempt_count_add+0x49/0xa0 [162513.516732] path_setxattr+0xba/0xd0 [162513.516739] __x64_sys_setxattr+0x27/0x30 [162513.516741] do_syscall_64+0x33/0x80 [162513.516743] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [162513.516745] RIP: 0033:0x7f5238f56d5a [162513.516746] Code: Bad RIP value. [162513.516748] RSP: 002b:00007fff67b97868 EFLAGS: 00000202 ORIG_RAX: 00000000000000bc [162513.516750] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f5238f56d5a [162513.516751] RDX: 000055b1fbb0d5a0 RSI: 00007fff67b978a0 RDI: 000055b1fbb0d470 [162513.516753] RBP: 000055b1fbb0d5a0 R08: 0000000000000001 R09: 00007fff67b97700 [162513.516754] R10: 0000000000000004 R11: 0000000000000202 R12: 0000000000000004 [162513.516756] R13: 0000000000000024 R14: 0000000000000001 R15: 00007fff67b978a0 [162513.516767] INFO: task fsstress:1356196 blocked for more than 120 seconds. [162513.517064] Not tainted 5.9.0-rc6-btrfs-next-69 #1 [162513.517365] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [162513.517763] task:fsstress state:D stack: 0 pid:1356196 ppid:1356177 flags:0x00004000 [162513.517780] Call Trace: [162513.517786] __schedule+0x5ce/0xd00 [162513.517789] ? _raw_spin_unlock_irqrestore+0x3c/0x60 [162513.517796] schedule+0x46/0xf0 [162513.517810] wait_current_trans+0xde/0x140 [btrfs] [162513.517814] ? finish_wait+0x90/0x90 [162513.517829] start_transaction+0x37c/0x5f0 [btrfs] [162513.517845] btrfs_attach_transaction_barrier+0x1f/0x50 [btrfs] [162513.517857] btrfs_sync_fs+0x61/0x1c0 [btrfs] [162513.517862] ? __ia32_sys_fdatasync+0x20/0x20 [162513.517865] iterate_supers+0x87/0xf0 [162513.517869] ksys_sync+0x60/0xb0 [162513.517872] __do_sys_sync+0xa/0x10 [162513.517875] do_syscall_64+0x33/0x80 [162513.517878] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [162513.517881] RIP: 0033:0x7f5238f50bd7 [162513.517883] Code: Bad RIP value. [162513.517885] RSP: 002b:00007fff67b978e8 EFLAGS: 00000206 ORIG_RAX: 00000000000000a2 [162513.517887] RAX: ffffffffffffffda RBX: 000055b1fad2c560 RCX: 00007f5238f50bd7 [162513.517889] RDX: 0000000000000000 RSI: 000000007660add2 RDI: 0000000000000053 [162513.517891] RBP: 0000000000000032 R08: 0000000000000067 R09: 00007f5239019be0 [162513.517893] R10: fffffffffffff24f R11: 0000000000000206 R12: 0000000000000053 [162513.517895] R13: 00007fff67b97950 R14: 00007fff67b97906 R15: 000055b1fad1a340 [162513.517908] INFO: task fsstress:1356197 blocked for more than 120 seconds. [162513.518298] Not tainted 5.9.0-rc6-btrfs-next-69 #1 [162513.518672] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [162513.519157] task:fsstress state:D stack: 0 pid:1356197 ppid:1356177 flags:0x00000000 [162513.519160] Call Trace: [162513.519165] __schedule+0x5ce/0xd00 [162513.519168] ? _raw_spin_unlock_irqrestore+0x3c/0x60 [162513.519174] schedule+0x46/0xf0 [162513.519190] wait_current_trans+0xde/0x140 [btrfs] [162513.519193] ? finish_wait+0x90/0x90 [162513.519206] start_transaction+0x4d7/0x5f0 [btrfs] [162513.519222] btrfs_create+0x57/0x200 [btrfs] [162513.519230] lookup_open+0x522/0x650 [162513.519246] path_openat+0x2b8/0xa50 [162513.519270] do_filp_open+0x91/0x100 [162513.519275] ? find_held_lock+0x32/0x90 [162513.519280] ? lock_acquired+0x33b/0x470 [162513.519285] ? do_raw_spin_unlock+0x4b/0xc0 [162513.519287] ? _raw_spin_unlock+0x29/0x40 [162513.519295] do_sys_openat2+0x20d/0x2d0 [162513.519300] do_sys_open+0x44/0x80 [162513.519304] do_syscall_64+0x33/0x80 [162513.519307] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [162513.519309] RIP: 0033:0x7f5238f4a903 [162513.519310] Code: Bad RIP value. [162513.519312] RSP: 002b:00007fff67b97758 EFLAGS: 00000246 ORIG_RAX: 0000000000000055 [162513.519314] RAX: ffffffffffffffda RBX: 00000000ffffffff RCX: 00007f5238f4a903 [162513.519316] RDX: 0000000000000000 RSI: 00000000000001b6 RDI: 000055b1fbb0d470 [162513.519317] RBP: 00007fff67b978c0 R08: 0000000000000001 R09: 0000000000000002 [162513.519319] R10: 00007fff67b974f7 R11: 0000000000000246 R12: 0000000000000013 [162513.519320] R13: 00000000000001b6 R14: 00007fff67b97906 R15: 000055b1fad1c620 [162513.519332] INFO: task btrfs:1356211 blocked for more than 120 seconds. [162513.519727] Not tainted 5.9.0-rc6-btrfs-next-69 #1 [162513.520115] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [162513.520508] task:btrfs state:D stack: 0 pid:1356211 ppid:1356178 flags:0x00004002 [162513.520511] Call Trace: [162513.520516] __schedule+0x5ce/0xd00 [162513.520519] ? _raw_spin_unlock_irqrestore+0x3c/0x60 [162513.520525] schedule+0x46/0xf0 [162513.520544] btrfs_scrub_pause+0x11f/0x180 [btrfs] [162513.520548] ? finish_wait+0x90/0x90 [162513.520562] btrfs_commit_transaction+0x45a/0xc30 [btrfs] [162513.520574] ? start_transaction+0xe0/0x5f0 [btrfs] [162513.520596] btrfs_dev_replace_finishing+0x6d8/0x711 [btrfs] [162513.520619] btrfs_dev_replace_by_ioctl.cold+0x1cc/0x1fd [btrfs] [162513.520639] btrfs_ioctl+0x2a25/0x36f0 [btrfs] [162513.520643] ? do_sigaction+0xf3/0x240 [162513.520645] ? find_held_lock+0x32/0x90 [162513.520648] ? do_sigaction+0xf3/0x240 [162513.520651] ? lock_acquired+0x33b/0x470 [162513.520655] ? _raw_spin_unlock_irq+0x24/0x50 [162513.520657] ? lockdep_hardirqs_on+0x7d/0x100 [162513.520660] ? _raw_spin_unlock_irq+0x35/0x50 [162513.520662] ? do_sigaction+0xf3/0x240 [162513.520671] ? __x64_sys_ioctl+0x83/0xb0 [162513.520672] __x64_sys_ioctl+0x83/0xb0 [162513.520677] do_syscall_64+0x33/0x80 [162513.520679] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [162513.520681] RIP: 0033:0x7fc3cd307d87 [162513.520682] Code: Bad RIP value. [162513.520684] RSP: 002b:00007ffe30a56bb8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [162513.520686] RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007fc3cd307d87 [162513.520687] RDX: 00007ffe30a57a30 RSI: 00000000ca289435 RDI: 0000000000000003 [162513.520689] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 [162513.520690] R10: 0000000000000008 R11: 0000000000000202 R12: 0000000000000003 [162513.520692] R13: 0000557323a212e0 R14: 00007ffe30a5a520 R15: 0000000000000001 [162513.520703] Showing all locks held in the system: [162513.520712] 1 lock held by khungtaskd/54: [162513.520713] #0: ffffffffb40a91a0 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x15/0x197 [162513.520728] 1 lock held by in:imklog/596: [162513.520729] #0: ffff8f3f0d781400 (&f->f_pos_lock){+.+.}-{3:3}, at: __fdget_pos+0x4d/0x60 [162513.520782] 1 lock held by btrfs-transacti/1356167: [162513.520784] #0: ffff8f3d810cc848 (&fs_info->transaction_kthread_mutex){+.+.}-{3:3}, at: transaction_kthread+0x4a/0x170 [btrfs] [162513.520798] 1 lock held by btrfs/1356190: [162513.520800] #0: ffff8f3d57644470 (sb_writers#15){.+.+}-{0:0}, at: mnt_want_write_file+0x22/0x60 [162513.520805] 1 lock held by fsstress/1356184: [162513.520806] #0: ffff8f3d576440e8 (&type->s_umount_key#62){++++}-{3:3}, at: iterate_supers+0x6f/0xf0 [162513.520811] 3 locks held by fsstress/1356185: [162513.520812] #0: ffff8f3d57644470 (sb_writers#15){.+.+}-{0:0}, at: mnt_want_write+0x20/0x50 [162513.520815] #1: ffff8f3d80a650b8 (&type->i_mutex_dir_key#10){++++}-{3:3}, at: vfs_setxattr+0x50/0x120 [162513.520820] #2: ffff8f3d57644690 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x40e/0x5f0 [btrfs] [162513.520833] 1 lock held by fsstress/1356196: [162513.520834] #0: ffff8f3d576440e8 (&type->s_umount_key#62){++++}-{3:3}, at: iterate_supers+0x6f/0xf0 [162513.520838] 3 locks held by fsstress/1356197: [162513.520839] #0: ffff8f3d57644470 (sb_writers#15){.+.+}-{0:0}, at: mnt_want_write+0x20/0x50 [162513.520843] #1: ffff8f3d506465e8 (&type->i_mutex_dir_key#10){++++}-{3:3}, at: path_openat+0x2a7/0xa50 [162513.520846] #2: ffff8f3d57644690 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x40e/0x5f0 [btrfs] [162513.520858] 2 locks held by btrfs/1356211: [162513.520859] #0: ffff8f3d810cde30 (&fs_info->dev_replace.lock_finishing_cancel_unmount){+.+.}-{3:3}, at: btrfs_dev_replace_finishing+0x52/0x711 [btrfs] [162513.520877] #1: ffff8f3d57644690 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x40e/0x5f0 [btrfs] This was weird because the stack traces show that a transaction commit, triggered by a device replace operation, is blocking trying to pause any running scrubs but there are no stack traces of blocked tasks doing a scrub. After poking around with drgn, I noticed there was a scrub task that was constantly running and blocking for shorts periods of time: >>> t = find_task(prog, 1356190) >>> prog.stack_trace(t) #0 __schedule+0x5ce/0xcfc #1 schedule+0x46/0xe4 #2 schedule_timeout+0x1df/0x475 #3 btrfs_reada_wait+0xda/0x132 #4 scrub_stripe+0x2a8/0x112f #5 scrub_chunk+0xcd/0x134 #6 scrub_enumerate_chunks+0x29e/0x5ee #7 btrfs_scrub_dev+0x2d5/0x91b #8 btrfs_ioctl+0x7f5/0x36e7 #9 __x64_sys_ioctl+0x83/0xb0 #10 do_syscall_64+0x33/0x77 #11 entry_SYSCALL_64+0x7c/0x156 Which corresponds to: int btrfs_reada_wait(void *handle) { struct reada_control *rc = handle; struct btrfs_fs_info *fs_info = rc->fs_info; while (atomic_read(&rc->elems)) { if (!atomic_read(&fs_info->reada_works_cnt)) reada_start_machine(fs_info); wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0, (HZ + 9) / 10); } (...) So the counter "rc->elems" was set to 1 and never decreased to 0, causing the scrub task to loop forever in that function. Then I used the following script for drgn to check the readahead requests: $ cat dump_reada.py import sys import drgn from drgn import NULL, Object, cast, container_of, execscript, \ reinterpret, sizeof from drgn.helpers.linux import * mnt_path = b"/home/fdmanana/btrfs-tests/scratch_1" mnt = None for mnt in for_each_mount(prog, dst = mnt_path): pass if mnt is None: sys.stderr.write(f'Error: mount point {mnt_path} not found\n') sys.exit(1) fs_info = cast('struct btrfs_fs_info *', mnt.mnt.mnt_sb.s_fs_info) def dump_re(re): nzones = re.nzones.value_() print(f're at {hex(re.value_())}') print(f'\t logical {re.logical.value_()}') print(f'\t refcnt {re.refcnt.value_()}') print(f'\t nzones {nzones}') for i in range(nzones): dev = re.zones[i].device name = dev.name.str.string_() print(f'\t\t dev id {dev.devid.value_()} name {name}') print() for _, e in radix_tree_for_each(fs_info.reada_tree): re = cast('struct reada_extent *', e) dump_re(re) $ drgn dump_reada.py re at 0xffff8f3da9d25ad8 logical 38928384 refcnt 1 nzones 1 dev id 0 name b'/dev/sdd' $ So there was one readahead extent with a single zone corresponding to the source device of that last device replace operation logged in dmesg/syslog. Also the ID of that zone's device was 0 which is a special value set in the source device of a device replace operation when the operation finishes (constant BTRFS_DEV_REPLACE_DEVID set at btrfs_dev_replace_finishing()), confirming again that device /dev/sdd was the source of a device replace operation. Normally there should be as many zones in the readahead extent as there are devices, and I wasn't expecting the extent to be in a block group with a 'single' profile, so I went and confirmed with the following drgn script that there weren't any single profile block groups: $ cat dump_block_groups.py import sys import drgn from drgn import NULL, Object, cast, container_of, execscript, \ reinterpret, sizeof from drgn.helpers.linux import * mnt_path = b"/home/fdmanana/btrfs-tests/scratch_1" mnt = None for mnt in for_each_mount(prog, dst = mnt_path): pass if mnt is None: sys.stderr.write(f'Error: mount point {mnt_path} not found\n') sys.exit(1) fs_info = cast('struct btrfs_fs_info *', mnt.mnt.mnt_sb.s_fs_info) BTRFS_BLOCK_GROUP_DATA = (1 << 0) BTRFS_BLOCK_GROUP_SYSTEM = (1 << 1) BTRFS_BLOCK_GROUP_METADATA = (1 << 2) BTRFS_BLOCK_GROUP_RAID0 = (1 << 3) BTRFS_BLOCK_GROUP_RAID1 = (1 << 4) BTRFS_BLOCK_GROUP_DUP = (1 << 5) BTRFS_BLOCK_GROUP_RAID10 = (1 << 6) BTRFS_BLOCK_GROUP_RAID5 = (1 << 7) BTRFS_BLOCK_GROUP_RAID6 = (1 << 8) BTRFS_BLOCK_GROUP_RAID1C3 = (1 << 9) BTRFS_BLOCK_GROUP_RAID1C4 = (1 << 10) def bg_flags_string(bg): flags = bg.flags.value_() ret = '' if flags & BTRFS_BLOCK_GROUP_DATA: ret = 'data' if flags & BTRFS_BLOCK_GROUP_METADATA: if len(ret) > 0: ret += '|' ret += 'meta' if flags & BTRFS_BLOCK_GROUP_SYSTEM: if len(ret) > 0: ret += '|' ret += 'system' if flags & BTRFS_BLOCK_GROUP_RAID0: ret += ' raid0' elif flags & BTRFS_BLOCK_GROUP_RAID1: ret += ' raid1' elif flags & BTRFS_BLOCK_GROUP_DUP: ret += ' dup' elif flags & BTRFS_BLOCK_GROUP_RAID10: ret += ' raid10' elif flags & BTRFS_BLOCK_GROUP_RAID5: ret += ' raid5' elif flags & BTRFS_BLOCK_GROUP_RAID6: ret += ' raid6' elif flags & BTRFS_BLOCK_GROUP_RAID1C3: ret += ' raid1c3' elif flags & BTRFS_BLOCK_GROUP_RAID1C4: ret += ' raid1c4' else: ret += ' single' return ret def dump_bg(bg): print() print(f'block group at {hex(bg.value_())}') print(f'\t start {bg.start.value_()} length {bg.length.value_()}') print(f'\t flags {bg.flags.value_()} - {bg_flags_string(bg)}') bg_root = fs_info.block_group_cache_tree.address_of_() for bg in rbtree_inorder_for_each_entry('struct btrfs_block_group', bg_root, 'cache_node'): dump_bg(bg) $ drgn dump_block_groups.py block group at 0xffff8f3d673b0400 start 22020096 length 16777216 flags 258 - system raid6 block group at 0xffff8f3d53ddb400 start 38797312 length 536870912 flags 260 - meta raid6 block group at 0xffff8f3d5f4d9c00 start 575668224 length 2147483648 flags 257 - data raid6 block group at 0xffff8f3d08189000 start 2723151872 length 67108864 flags 258 - system raid6 block group at 0xffff8f3db70ff000 start 2790260736 length 1073741824 flags 260 - meta raid6 block group at 0xffff8f3d5f4dd800 start 3864002560 length 67108864 flags 258 - system raid6 block group at 0xffff8f3d67037000 start 3931111424 length 2147483648 flags 257 - data raid6 $ So there were only 2 reasons left for having a readahead extent with a single zone: reada_find_zone(), called when creating a readahead extent, returned NULL either because we failed to find the corresponding block group or because a memory allocation failed. With some additional and custom tracing I figured out that on every further ocurrence of the problem the block group had just been deleted when we were looping to create the zones for the readahead extent (at reada_find_extent()), so we ended up with only one zone in the readahead extent, corresponding to a device that ends up getting replaced. So after figuring that out it became obvious why the hang happens: 1) Task A starts a scrub on any device of the filesystem, except for device /dev/sdd; 2) Task B starts a device replace with /dev/sdd as the source device; 3) Task A calls btrfs_reada_add() from scrub_stripe() and it is currently starting to scrub a stripe from block group X. This call to btrfs_reada_add() is the one for the extent tree. When btrfs_reada_add() calls reada_add_block(), it passes the logical address of the extent tree's root node as its 'logical' argument - a value of 38928384; 4) Task A then enters reada_find_extent(), called from reada_add_block(). It finds there isn't any existing readahead extent for the logical address 38928384, so it proceeds to the path of creating a new one. It calls btrfs_map_block() to find out which stripes exist for the block group X. On the first iteration of the for loop that iterates over the stripes, it finds the stripe for device /dev/sdd, so it creates one zone for that device and adds it to the readahead extent. Before getting into the second iteration of the loop, the cleanup kthread deletes block group X because it was empty. So in the iterations for the remaining stripes it does not add more zones to the readahead extent, because the calls to reada_find_zone() returned NULL because they couldn't find block group X anymore. As a result the new readahead extent has a single zone, corresponding to the device /dev/sdd; 4) Before task A returns to btrfs_reada_add() and queues the readahead job for the readahead work queue, task B finishes the device replace and at btrfs_dev_replace_finishing() swaps the device /dev/sdd with the new device /dev/sdg; 5) Task A returns to reada_add_block(), which increments the counter "->elems" of the reada_control structure allocated at btrfs_reada_add(). Then it returns back to btrfs_reada_add() and calls reada_start_machine(). This queues a job in the readahead work queue to run the function reada_start_machine_worker(), which calls __reada_start_machine(). At __reada_start_machine() we take the device list mutex and for each device found in the current device list, we call reada_start_machine_dev() to start the readahead work. However at this point the device /dev/sdd was already freed and is not in the device list anymore. This means the corresponding readahead for the extent at 38928384 is never started, and therefore the "->elems" counter of the reada_control structure allocated at btrfs_reada_add() never goes down to 0, causing the call to btrfs_reada_wait(), done by the scrub task, to wait forever. Note that the readahead request can be made either after the device replace started or before it started, however in pratice it is very unlikely that a device replace is able to start after a readahead request is made and is able to complete before the readahead request completes - maybe only on a very small and nearly empty filesystem. This hang however is not the only problem we can have with readahead and device removals. When the readahead extent has other zones other than the one corresponding to the device that is being removed (either by a device replace or a device remove operation), we risk having a use-after-free on the device when dropping the last reference of the readahead extent. For example if we create a readahead extent with two zones, one for the device /dev/sdd and one for the device /dev/sde: 1) Before the readahead worker starts, the device /dev/sdd is removed, and the corresponding btrfs_device structure is freed. However the readahead extent still has the zone pointing to the device structure; 2) When the readahead worker starts, it only finds device /dev/sde in the current device list of the filesystem; 3) It starts the readahead work, at reada_start_machine_dev(), using the device /dev/sde; 4) Then when it finishes reading the extent from device /dev/sde, it calls __readahead_hook() which ends up dropping the last reference on the readahead extent through the last call to reada_extent_put(); 5) At reada_extent_put() it iterates over each zone of the readahead extent and attempts to delete an element from the device's 'reada_extents' radix tree, resulting in a use-after-free, as the device pointer of the zone for /dev/sdd is now stale. We can also access the device after dropping the last reference of a zone, through reada_zone_release(), also called by reada_extent_put(). And a device remove suffers the same problem, however since it shrinks the device size down to zero before removing the device, it is very unlikely to still have readahead requests not completed by the time we free the device, the only possibility is if the device has a very little space allocated. While the hang problem is exclusive to scrub, since it is currently the only user of btrfs_reada_add() and btrfs_reada_wait(), the use-after-free problem affects any path that triggers readhead, which includes btree_readahead_hook() and __readahead_hook() (a readahead worker can trigger readahed for the children of a node) for example - any path that ends up calling reada_add_block() can trigger the use-after-free after a device is removed. So fix this by waiting for any readahead requests for a device to complete before removing a device, ensuring that while waiting for existing ones no new ones can be made. This problem has been around for a very long time - the readahead code was added in 2011, device remove exists since 2008 and device replace was introduced in 2013, hard to pick a specific commit for a git Fixes tag. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: annotate device name rcu_string with __rcuMadhuparna Bhowmik2020-10-071-1/+1
| | | | | | | | | | | | | | | | | | | | | This patch fixes the following sparse errors in fs/btrfs/super.c in function btrfs_show_devname() fs/btrfs/super.c: error: incompatible types in comparison expression (different address spaces): fs/btrfs/super.c: struct rcu_string [noderef] <asn:4> * fs/btrfs/super.c: struct rcu_string * The error was because of the following line in function btrfs_show_devname(): if (first_dev) seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); Annotating the btrfs_device::name member with __rcu fixes the sparse error. Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Madhuparna Bhowmik <madhuparnabhowmik04@gmail.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: switch seed device to list apiNikolay Borisov2020-10-071-1/+1
| | | | | | | | | | | | | | | | | | | | | While this patch touches a bunch of files the conversion is straighforward. Instead of using the implicit linked list anchored at btrfs_fs_devices::seed the code is switched to using list_for_each_entry. Previous patches in the series already factored out code that processed both main and seed devices so in those cases the factored out functions are called on the main fs_devices and then on every seed dev inside list_for_each_entry. Using list api also allows to simplify deletion from the seed dev list performed in btrfs_rm_device and btrfs_rm_dev_replace_free_srcdev by substituting a while() loop with a simple list_del_init. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: simplify setting/clearing fs_info to btrfs_fs_devicesNikolay Borisov2020-10-071-2/+0
| | | | | | | | | | | | | | | | | | It makes no sense to have sysfs-related routines be responsible for properly initialising the fs_info pointer of struct btrfs_fs_device. Instead this can be streamlined by making it the responsibility of btrfs_init_devices_late to initialize it. That function already initializes fs_info of every individual device in btrfs_fs_devices. As far as clearing it is concerned it makes sense to move it to close_fs_devices. That function is only called when struct btrfs_fs_devices is no longer in use - either for holding seeds or main devices for a mounted filesystem. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: make close_fs_devices return voidNikolay Borisov2020-10-071-1/+1
| | | | | | | | | | | | | The return value of this function conveys absolutely no information. All callers already check the state of fs_devices->opened to decide how to proceed. So convert the function to returning void. While at it make btrfs_close_devices also return void. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: move btrfs_scratch_superblocks into btrfs_dev_replace_finishingJosef Bacik2020-09-251-0/+3
| | | | | | | | | | | | | We need to move the closing of the src_device out of all the device replace locking, but we definitely want to zero out the superblock before we commit the last time to make sure the device is properly removed. Handle this by pushing btrfs_scratch_superblocks into btrfs_dev_replace_finishing, and then later on we'll move the src_device closing and freeing stuff where we need it to be. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: record btrfs_device directly in btrfs_io_bioNikolay Borisov2020-07-271-1/+1
| | | | | | | | | | | | Instead of recording stripe_index and using that to access correct btrfs_device from btrfs_bio::stripes record the btrfs_device in btrfs_io_bio. This will enable endio handlers to increment device error counters on checksum errors. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: convert comments to fallthrough annotationsMarcos Paulo de Souza2020-07-021-1/+1
| | | | | | | | | Convert fall through comments to the pseudo-keyword which is now the preferred way. Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: introduce chunk allocation policyNaohiro Aota2020-03-231-0/+6
| | | | | | | | | | | Introduce chunk allocation policy for btrfs. This policy controls how chunks and device extents are allocated from devices. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: make btrfs_check_uuid_tree private to disk-io.cNikolay Borisov2020-03-231-1/+1
| | | | | | | | | | | It's used only during filesystem mount as such it can be made private to disk-io.c file. Also use the occasion to move btrfs_uuid_rescan_kthread as btrfs_check_uuid_tree is its sole caller. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: use the page cache for super block readingJohannes Thumshirn2020-03-231-3/+1
| | | | | | | | | | | | | | | | | | Super-block reading in BTRFS is done using buffer_heads. Buffer_heads have some drawbacks, like not being able to propagate errors from the lower layers. Directly use the page cache for reading the super blocks from disk or invalidating an on-disk super block. We have to use the page cache so to avoid races between mkfs and udev. See also 6f60cbd3ae44 ("btrfs: access superblock via pagecache in scan_one_device"). This patch unwraps the buffer head API and does not change the way the super block is actually read. Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: reduce scope of btrfs_scratch_superblocks()Johannes Thumshirn2020-03-231-1/+0
| | | | | | | | | | | btrfs_scratch_superblocks() isn't used anywhere outside volumes.c so remove it from the header file and mark it as static. Also move it above it's callers so we don't need a forward declaration. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: Export btrfs_release_disk_superNikolay Borisov2020-03-231-0/+1
| | | | | | | | | Preparatory patch for removal of buffer_head usage in btrfs. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* Merge tag 'for-5.6-rc1-tag' of ↵Linus Torvalds2020-02-161-0/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "Two races fixed, memory leak fix, sysfs directory fixup and two new log messages: - two fixed race conditions: extent map merging and truncate vs fiemap - create the right sysfs directory with device information and move the individual device dirs under it - print messages when the tree-log is replayed at mount time or cannot be replayed on remount" * tag 'for-5.6-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: sysfs, move device id directories to UUID/devinfo btrfs: sysfs, add UUID/devinfo kobject Btrfs: fix race between shrinking truncate and fiemap btrfs: log message when rw remount is attempted with unclean tree-log btrfs: print message when tree-log replay starts Btrfs: fix race between using extent maps and merging them btrfs: ref-verify: fix memory leaks
| * btrfs: sysfs, add UUID/devinfo kobjectAnand Jain2020-02-121-0/+1
| | | | | | | | | | | | | | | | | | Create directory /sys/fs/btrfs/UUID/devinfo to hold devices directories by the id (unlike /devices). Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* | Merge tag 'for-5.6-tag' of ↵Linus Torvalds2020-01-281-5/+5
|\| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "Features, highlights: - async discard - "mount -o discard=async" to enable it - freed extents are not discarded immediatelly, but grouped together and trimmed later, with IO rate limiting - the "sync" mode submits short extents that could have been ignored completely by the device, for SATA prior to 3.1 the requests are unqueued and have a big impact on performance - the actual discard IO requests have been moved out of transaction commit to a worker thread, improving commit latency - IO rate and request size can be tuned by sysfs files, for now enabled only with CONFIG_BTRFS_DEBUG as we might need to add/delete the files and don't have a stable-ish ABI for general use, defaults are conservative - export device state info in sysfs, eg. missing, writeable - no discard of extents known to be untouched on disk (eg. after reservation) - device stats reset is logged with process name and PID that called the ioctl Fixes: - fix missing hole after hole punching and fsync when using NO_HOLES - writeback: range cyclic mode could miss some dirty pages and lead to OOM - two more corner cases for metadata_uuid change after power loss during the change - fix infinite loop during fsync after mix of rename operations Core changes: - qgroup assign returns ENOTCONN when quotas not enabled, used to return EINVAL that was confusing - device closing does not need to allocate memory anymore - snapshot aware code got removed, disabled for years due to performance problems, reimplmentation will allow to select wheter defrag breaks or does not break COW on shared extents - tree-checker: - check leaf chunk item size, cross check against number of stripes - verify location keys for DIR_ITEM, DIR_INDEX and XATTR items - new self test for physical -> logical mapping code, used for super block range exclusion - assertion helpers/macros updated to avoid objtool "unreachable code" reports on older compilers or config option combinations" * tag 'for-5.6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (84 commits) btrfs: free block groups after free'ing fs trees btrfs: Fix split-brain handling when changing FSID to metadata uuid btrfs: Handle another split brain scenario with metadata uuid feature btrfs: Factor out metadata_uuid code from find_fsid. btrfs: Call find_fsid from find_fsid_inprogress Btrfs: fix infinite loop during fsync after rename operations btrfs: set trans->drity in btrfs_commit_transaction btrfs: drop log root for dropped roots btrfs: sysfs, add devid/dev_state kobject and device attributes btrfs: Refactor btrfs_rmap_block to improve readability btrfs: Add self-tests for btrfs_rmap_block btrfs: selftests: Add support for dummy devices btrfs: Move and unexport btrfs_rmap_block btrfs: separate definition of assertion failure handlers btrfs: device stats, log when stats are zeroed btrfs: fix improper setting of scanned for range cyclic write cache pages btrfs: safely advance counter when looking up bio csums btrfs: remove unused member btrfs_device::work btrfs: remove unnecessary wrapper get_alloc_profile btrfs: add correction to handle -1 edge case in async discard ...
| * btrfs: sysfs, add devid/dev_state kobject and device attributesAnand Jain2020-01-231-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | New sysfs attributes that track the filesystem status of devices, stored in the per-filesystem directory in /sys/fs/btrfs/FSID/devinfo . There's a directory for each device, with name corresponding to the numerical device id. in_fs_metadata - device is in the list of fs metadata missing - device is missing (no device node or block device) replace_target - device is target of replace writeable - writes from fs are allowed These attributes reflect the state of the device::dev_state and created at mount time. Sample output: $ pwd /sys/fs/btrfs/6e1961f1-5918-4ecc-a22f-948897b409f7/devinfo/1/ $ ls in_fs_metadata missing replace_target writeable $ cat missing 0 The output from these attributes are 0 or 1. 0 indicates unset and 1 indicates set. These attributes are readonly. It is observed that the device delete thread and sysfs read thread will not race because the delete thread calls sysfs kobject_put() which in turn waits for existing sysfs read to complete. Note for device replace devid swap: During the replace the target device temporarily assumes devid 0 before assigning the devid of the soruce device. In btrfs_dev_replace_finishing() we remove source sysfs devid using the function btrfs_sysfs_remove_devices_attr(), so after that call kobject_rename() to update the devid in the sysfs. This adds and calls btrfs_sysfs_update_devid() helper function to update the device id. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: Move and unexport btrfs_rmap_blockNikolay Borisov2020-01-231-2/+0
| | | | | | | | | | | | | | | | | | | | | | It's used only during initial block group reading to map physical address of super block to a list of logical ones. Make it private to block-group.c, add proper kernel doc and ensure it's exported only for tests. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: remove unused member btrfs_device::workDavid Sterba2020-01-201-2/+0
| | | | | | | | | | | | | | | | This is a leftover from recently removed bio scheduling framework. Fixes: ba8a9d079543 ("Btrfs: delete the entire async bio submission framework") Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: sysfs, rename devices kobject holder to devices_kobjAnand Jain2020-01-201-1/+1
| | | | | | | | | | | | | | | | | | | | The struct member btrfs_device::device_dir_kobj holds the kobj of the sysfs directory /sys/fs/btrfs/UUID/devices, so rename it from device_dir_kobj to devices_kobj. No functional changes. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* | sched/rt, btrfs: Use CONFIG_PREEMPTIONThomas Gleixner2019-12-081-1/+1
|/ | | | | | | | | | | | | | | | | | | | CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by CONFIG_PREEMPT_RT. Both PREEMPT and PREEMPT_RT require the same functionality which today depends on CONFIG_PREEMPT. Switch the btrfs_device_set_…() macro over to use CONFIG_PREEMPTION. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: David Sterba <dsterba@suse.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-btrfs@vger.kernel.org Link: https://lore.kernel.org/r/20191015191821.11479-25-bigeasy@linutronix.de Signed-off-by: Ingo Molnar <mingo@kernel.org>