| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs
Pull partial readlink cleanups from Miklos Szeredi.
This is the uncontroversial part of the readlink cleanup patch-set that
simplifies the default readlink handling.
Miklos and Al are still discussing the rest of the series.
* git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs:
vfs: make generic_readlink() static
vfs: remove ".readlink = generic_readlink" assignments
vfs: default to generic_readlink()
vfs: replace calling i_op->readlink with vfs_readlink()
proc/self: use generic_readlink
ecryptfs: use vfs_get_link()
bad_inode: add missing i_op initializers
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If .readlink == NULL implies generic_readlink().
Generated by:
to_del="\.readlink.*=.*generic_readlink"
for i in `git grep -l $to_del`; do sed -i "/$to_del"/d $i; done
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull more vfs updates from Al Viro:
"In this pile:
- autofs-namespace series
- dedupe stuff
- more struct path constification"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (40 commits)
ocfs2: implement the VFS clone_range, copy_range, and dedupe_range features
ocfs2: charge quota for reflinked blocks
ocfs2: fix bad pointer cast
ocfs2: always unlock when completing dio writes
ocfs2: don't eat io errors during _dio_end_io_write
ocfs2: budget for extent tree splits when adding refcount flag
ocfs2: prohibit refcounted swapfiles
ocfs2: add newlines to some error messages
ocfs2: convert inode refcount test to a helper
simple_write_end(): don't zero in short copy into uptodate
exofs: don't mess with simple_write_{begin,end}
9p: saner ->write_end() on failing copy into non-uptodate page
fix gfs2_stuffed_write_end() on short copies
fix ceph_write_end()
nfs_write_end(): fix handling of short copies
vfs: refactor clone/dedupe_file_range common functions
fs: try to clone files first in vfs_copy_file_range
vfs: misc struct path constification
namespace.c: constify struct path passed to a bunch of primitives
quota: constify struct path in quota_on
...
|
| |\ \ |
|
| | |/
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
A clone is a perfectly fine implementation of a file copy, so most
file systems just implement the copy that way. Instead of duplicating
this logic move it to the VFS. Currently btrfs and XFS implement copies
the same way as clones and there is no behavior change for them, cifs
only implements clones and grow support for copy_file_range with this
patch. NFS implements both, so this will allow copy_file_range to work
on servers that only implement CLONE and be lot more efficient on servers
that implements CLONE and COPY.
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
| |/
| |
| |
| | |
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
"Jeff Mahoney and Dave Sterba have a really nice set of cleanups in
here, and Christoph pitched in corrections/improvements to make btrfs
use proper helpers for bio walking instead of doing it by hand.
There are some key fixes as well, including some long standing bugs
that took forever to track down in btrfs_drop_extents and during
balance"
* 'for-linus-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (77 commits)
btrfs: limit async_work allocation and worker func duration
Revert "Btrfs: adjust len of writes if following a preallocated extent"
Btrfs: don't WARN() in btrfs_transaction_abort() for IO errors
btrfs: opencode chunk locking, remove helpers
btrfs: remove root parameter from transaction commit/end routines
btrfs: split btrfs_wait_marked_extents into normal and tree log functions
btrfs: take an fs_info directly when the root is not used otherwise
btrfs: simplify btrfs_wait_cache_io prototype
btrfs: convert extent-tree tracepoints to use fs_info
btrfs: root->fs_info cleanup, access fs_info->delayed_root directly
btrfs: root->fs_info cleanup, add fs_info convenience variables
btrfs: root->fs_info cleanup, update_block_group{,flags}
btrfs: root->fs_info cleanup, lock/unlock_chunks
btrfs: root->fs_info cleanup, btrfs_calc_{trans,trunc}_metadata_size
btrfs: pull node/sector/stripe sizes out of root and into fs_info
btrfs: root->fs_info cleanup, io_ctl_init
btrfs: root->fs_info cleanup, use fs_info->dev_root everywhere
btrfs: struct reada_control.root -> reada_control.fs_info
btrfs: struct btrfsic_state->root should be an fs_info
btrfs: alloc_reserved_file_extent trace point should use extent_root
...
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Problem statement: unprivileged user who has read-write access to more than
one btrfs subvolume may easily consume all kernel memory (eventually
triggering oom-killer).
Reproducer (./mkrmdir below essentially loops over mkdir/rmdir):
[root@kteam1 ~]# cat prep.sh
DEV=/dev/sdb
mkfs.btrfs -f $DEV
mount $DEV /mnt
for i in `seq 1 16`
do
mkdir /mnt/$i
btrfs subvolume create /mnt/SV_$i
ID=`btrfs subvolume list /mnt |grep "SV_$i$" |cut -d ' ' -f 2`
mount -t btrfs -o subvolid=$ID $DEV /mnt/$i
chmod a+rwx /mnt/$i
done
[root@kteam1 ~]# sh prep.sh
[maxim@kteam1 ~]$ for i in `seq 1 16`; do ./mkrmdir /mnt/$i 2000 2000 & done
[root@kteam1 ~]# for i in `seq 1 4`; do grep "kmalloc-128" /proc/slabinfo | grep -v dma; sleep 60; done
kmalloc-128 10144 10144 128 32 1 : tunables 0 0 0 : slabdata 317 317 0
kmalloc-128 9992352 9992352 128 32 1 : tunables 0 0 0 : slabdata 312261 312261 0
kmalloc-128 24226752 24226752 128 32 1 : tunables 0 0 0 : slabdata 757086 757086 0
kmalloc-128 42754240 42754240 128 32 1 : tunables 0 0 0 : slabdata 1336070 1336070 0
The huge numbers above come from insane number of async_work-s allocated
and queued by btrfs_wq_run_delayed_node.
The problem is caused by btrfs_wq_run_delayed_node() queuing more and more
works if the number of delayed items is above BTRFS_DELAYED_BACKGROUND. The
worker func (btrfs_async_run_delayed_root) processes at least
BTRFS_DELAYED_BATCH items (if they are present in the list). So, the machinery
works as expected while the list is almost empty. As soon as it is getting
bigger, worker func starts to process more than one item at a time, it takes
longer, and the chances to have async_works queued more than needed is getting
higher.
The problem above is worsened by another flaw of delayed-inode implementation:
if async_work was queued in a throttling branch (number of items >=
BTRFS_DELAYED_WRITEBACK), corresponding worker func won't quit until
the number of items < BTRFS_DELAYED_BACKGROUND / 2. So, it is possible that
the func occupies CPU infinitely (up to 30sec in my experiments): while the
func is trying to drain the list, the user activity may add more and more
items to the list.
The patch fixes both problems in straightforward way: refuse queuing too
many works in btrfs_wq_run_delayed_node and bail out of worker func if
at least BTRFS_DELAYED_WRITEBACK items are processed.
Changed in v2: remove support of thresh == NO_THRESHOLD.
Signed-off-by: Maxim Patlasov <mpatlasov@virtuozzo.com>
Signed-off-by: Chris Mason <clm@fb.com>
Cc: stable@vger.kernel.org # v3.15+
|
| |\ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.10
Patches queued up by Filipe:
The most important change is still the fix for the extent tree
corruption that happens due to balance when qgroups are enabled (a
regression introduced in 4.7 by a fix for a regression from the last
qgroups rework). This has been hitting SLE and openSUSE users and QA
very badly, where transactions keep getting aborted when running
delayed references leaving the root filesystem in RO mode and nearly
unusable. There are fixes here that allow us to run xfstests again
with the integrity checker enabled, which has been impossible since 4.8
(apparently I'm the only one running xfstests with the integrity
checker enabled, which is useful to validate dirtied leafs, like
checking if there are keys out of order, etc). The rest are just some
trivial fixes, most of them tagged for stable, and two cleanups.
Signed-off-by: Chris Mason <clm@fb.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
If a log tree has a layout like the following:
leaf N:
...
item 240 key (282 DIR_LOG_ITEM 0) itemoff 8189 itemsize 8
dir log end 1275809046
leaf N + 1:
item 0 key (282 DIR_LOG_ITEM 3936149215) itemoff 16275 itemsize 8
dir log end 18446744073709551615
...
When we pass the value 1275809046 + 1 as the parameter start_ret to the
function tree-log.c:find_dir_range() (done by replay_dir_deletes()), we
end up with path->slots[0] having the value 239 (points to the last item
of leaf N, item 240). Because the dir log item in that position has an
offset value smaller than *start_ret (1275809046 + 1) we need to move on
to the next leaf, however the logic for that is wrong since it compares
the current slot to the number of items in the leaf, which is smaller
and therefore we don't lookup for the next leaf but instead we set the
slot to point to an item that does not exist, at slot 240, and we later
operate on that slot which has unexpected content or in the worst case
can result in an invalid memory access (accessing beyond the last page
of leaf N's extent buffer).
So fix the logic that checks when we need to lookup at the next leaf
by first incrementing the slot and only after to check if that slot
is beyond the last item of the current leaf.
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Fixes: e02119d5a7b4 (Btrfs: Add a write ahead tree log to optimize synchronous operations)
Cc: stable@vger.kernel.org # 2.6.29+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
[Modified changelog for clarity and correctness]
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
While logging new directory entries, at tree-log.c:log_new_dir_dentries(),
after we call btrfs_search_forward() we get a leaf with a read lock on it,
and without unlocking that leaf we can end up calling btrfs_iget() to get
an inode pointer. The later (btrfs_iget()) can end up doing a read-only
search on the same tree again, if the inode is not in memory already, which
ends up causing a deadlock if some other task in the meanwhile started a
write search on the tree and is attempting to write lock the same leaf
that btrfs_search_forward() locked while holding write locks on upper
levels of the tree blocking the read search from btrfs_iget(). In this
scenario we get a deadlock.
So fix this by releasing the search path before calling btrfs_iget() at
tree-log.c:log_new_dir_dentries().
Example trace of such deadlock:
[ 4077.478852] kworker/u24:10 D ffff88107fc90640 0 14431 2 0x00000000
[ 4077.486752] Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs]
[ 4077.494346] ffff880ffa56bad0 0000000000000046 0000000000009000 ffff880ffa56bfd8
[ 4077.502629] ffff880ffa56bfd8 ffff881016ce21c0 ffffffffa06ecb26 ffff88101a5d6138
[ 4077.510915] ffff880ebb5173b0 ffff880ffa56baf8 ffff880ebb517410 ffff881016ce21c0
[ 4077.519202] Call Trace:
[ 4077.528752] [<ffffffffa06ed5ed>] ? btrfs_tree_lock+0xdd/0x2f0 [btrfs]
[ 4077.536049] [<ffffffff81053680>] ? wake_up_atomic_t+0x30/0x30
[ 4077.542574] [<ffffffffa068cc1f>] ? btrfs_search_slot+0x79f/0xb10 [btrfs]
[ 4077.550171] [<ffffffffa06a5073>] ? btrfs_lookup_file_extent+0x33/0x40 [btrfs]
[ 4077.558252] [<ffffffffa06c600b>] ? __btrfs_drop_extents+0x13b/0xdf0 [btrfs]
[ 4077.566140] [<ffffffffa06fc9e2>] ? add_delayed_data_ref+0xe2/0x150 [btrfs]
[ 4077.573928] [<ffffffffa06fd629>] ? btrfs_add_delayed_data_ref+0x149/0x1d0 [btrfs]
[ 4077.582399] [<ffffffffa06cf3c0>] ? __set_extent_bit+0x4c0/0x5c0 [btrfs]
[ 4077.589896] [<ffffffffa06b4a64>] ? insert_reserved_file_extent.constprop.75+0xa4/0x320 [btrfs]
[ 4077.599632] [<ffffffffa06b206d>] ? start_transaction+0x8d/0x470 [btrfs]
[ 4077.607134] [<ffffffffa06bab57>] ? btrfs_finish_ordered_io+0x2e7/0x600 [btrfs]
[ 4077.615329] [<ffffffff8104cbc2>] ? process_one_work+0x142/0x3d0
[ 4077.622043] [<ffffffff8104d729>] ? worker_thread+0x109/0x3b0
[ 4077.628459] [<ffffffff8104d620>] ? manage_workers.isra.26+0x270/0x270
[ 4077.635759] [<ffffffff81052b0f>] ? kthread+0xaf/0xc0
[ 4077.641404] [<ffffffff81052a60>] ? kthread_create_on_node+0x110/0x110
[ 4077.648696] [<ffffffff814a9ac8>] ? ret_from_fork+0x58/0x90
[ 4077.654926] [<ffffffff81052a60>] ? kthread_create_on_node+0x110/0x110
[ 4078.358087] kworker/u24:15 D ffff88107fcd0640 0 14436 2 0x00000000
[ 4078.365981] Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs]
[ 4078.373574] ffff880ffa57fad0 0000000000000046 0000000000009000 ffff880ffa57ffd8
[ 4078.381864] ffff880ffa57ffd8 ffff88103004d0a0 ffffffffa06ecb26 ffff88101a5d6138
[ 4078.390163] ffff880fbeffc298 ffff880ffa57faf8 ffff880fbeffc2f8 ffff88103004d0a0
[ 4078.398466] Call Trace:
[ 4078.408019] [<ffffffffa06ed5ed>] ? btrfs_tree_lock+0xdd/0x2f0 [btrfs]
[ 4078.415322] [<ffffffff81053680>] ? wake_up_atomic_t+0x30/0x30
[ 4078.421844] [<ffffffffa068cc1f>] ? btrfs_search_slot+0x79f/0xb10 [btrfs]
[ 4078.429438] [<ffffffffa06a5073>] ? btrfs_lookup_file_extent+0x33/0x40 [btrfs]
[ 4078.437518] [<ffffffffa06c600b>] ? __btrfs_drop_extents+0x13b/0xdf0 [btrfs]
[ 4078.445404] [<ffffffffa06fc9e2>] ? add_delayed_data_ref+0xe2/0x150 [btrfs]
[ 4078.453194] [<ffffffffa06fd629>] ? btrfs_add_delayed_data_ref+0x149/0x1d0 [btrfs]
[ 4078.461663] [<ffffffffa06cf3c0>] ? __set_extent_bit+0x4c0/0x5c0 [btrfs]
[ 4078.469161] [<ffffffffa06b4a64>] ? insert_reserved_file_extent.constprop.75+0xa4/0x320 [btrfs]
[ 4078.478893] [<ffffffffa06b206d>] ? start_transaction+0x8d/0x470 [btrfs]
[ 4078.486388] [<ffffffffa06bab57>] ? btrfs_finish_ordered_io+0x2e7/0x600 [btrfs]
[ 4078.494561] [<ffffffff8104cbc2>] ? process_one_work+0x142/0x3d0
[ 4078.501278] [<ffffffff8104a507>] ? pwq_activate_delayed_work+0x27/0x40
[ 4078.508673] [<ffffffff8104d729>] ? worker_thread+0x109/0x3b0
[ 4078.515098] [<ffffffff8104d620>] ? manage_workers.isra.26+0x270/0x270
[ 4078.522396] [<ffffffff81052b0f>] ? kthread+0xaf/0xc0
[ 4078.528032] [<ffffffff81052a60>] ? kthread_create_on_node+0x110/0x110
[ 4078.535325] [<ffffffff814a9ac8>] ? ret_from_fork+0x58/0x90
[ 4078.541552] [<ffffffff81052a60>] ? kthread_create_on_node+0x110/0x110
[ 4079.355824] user-space-program D ffff88107fd30640 0 32020 1 0x00000000
[ 4079.363716] ffff880eae8eba10 0000000000000086 0000000000009000 ffff880eae8ebfd8
[ 4079.372003] ffff880eae8ebfd8 ffff881016c162c0 ffffffffa06ecb26 ffff88101a5d6138
[ 4079.380294] ffff880fbed4b4c8 ffff880eae8eba38 ffff880fbed4b528 ffff881016c162c0
[ 4079.388586] Call Trace:
[ 4079.398134] [<ffffffffa06ed595>] ? btrfs_tree_lock+0x85/0x2f0 [btrfs]
[ 4079.405431] [<ffffffff81053680>] ? wake_up_atomic_t+0x30/0x30
[ 4079.411955] [<ffffffffa06876fb>] ? btrfs_lock_root_node+0x2b/0x40 [btrfs]
[ 4079.419644] [<ffffffffa068ce83>] ? btrfs_search_slot+0xa03/0xb10 [btrfs]
[ 4079.427237] [<ffffffffa06aba52>] ? btrfs_buffer_uptodate+0x52/0x70 [btrfs]
[ 4079.435041] [<ffffffffa0689b60>] ? generic_bin_search.constprop.38+0x80/0x190 [btrfs]
[ 4079.443897] [<ffffffffa068ea44>] ? btrfs_insert_empty_items+0x74/0xd0 [btrfs]
[ 4079.451975] [<ffffffffa072c443>] ? copy_items+0x128/0x850 [btrfs]
[ 4079.458890] [<ffffffffa072da10>] ? btrfs_log_inode+0x629/0xbf3 [btrfs]
[ 4079.466292] [<ffffffffa06f34a1>] ? btrfs_log_inode_parent+0xc61/0xf30 [btrfs]
[ 4079.474373] [<ffffffffa06f45a9>] ? btrfs_log_dentry_safe+0x59/0x80 [btrfs]
[ 4079.482161] [<ffffffffa06c298d>] ? btrfs_sync_file+0x20d/0x330 [btrfs]
[ 4079.489558] [<ffffffff8112777c>] ? do_fsync+0x4c/0x80
[ 4079.495300] [<ffffffff81127a0a>] ? SyS_fdatasync+0xa/0x10
[ 4079.501422] [<ffffffff814a9b72>] ? system_call_fastpath+0x16/0x1b
[ 4079.508334] user-space-program D ffff88107fc30640 0 32021 1 0x00000004
[ 4079.516226] ffff880eae8efbf8 0000000000000086 0000000000009000 ffff880eae8effd8
[ 4079.524513] ffff880eae8effd8 ffff881030279610 ffffffffa06ecb26 ffff88101a5d6138
[ 4079.532802] ffff880ebb671d88 ffff880eae8efc20 ffff880ebb671de8 ffff881030279610
[ 4079.541092] Call Trace:
[ 4079.550642] [<ffffffffa06ed595>] ? btrfs_tree_lock+0x85/0x2f0 [btrfs]
[ 4079.557941] [<ffffffff81053680>] ? wake_up_atomic_t+0x30/0x30
[ 4079.564463] [<ffffffffa068cc1f>] ? btrfs_search_slot+0x79f/0xb10 [btrfs]
[ 4079.572058] [<ffffffffa06bb7d8>] ? btrfs_truncate_inode_items+0x168/0xb90 [btrfs]
[ 4079.580526] [<ffffffffa06b04be>] ? join_transaction.isra.15+0x1e/0x3a0 [btrfs]
[ 4079.588701] [<ffffffffa06b206d>] ? start_transaction+0x8d/0x470 [btrfs]
[ 4079.596196] [<ffffffffa0690ac6>] ? block_rsv_add_bytes+0x16/0x50 [btrfs]
[ 4079.603789] [<ffffffffa06bc2e9>] ? btrfs_truncate+0xe9/0x2e0 [btrfs]
[ 4079.610994] [<ffffffffa06bd00b>] ? btrfs_setattr+0x30b/0x410 [btrfs]
[ 4079.618197] [<ffffffff81117c1c>] ? notify_change+0x1dc/0x680
[ 4079.624625] [<ffffffff8123c8a4>] ? aa_path_perm+0xd4/0x160
[ 4079.630854] [<ffffffff810f4fcb>] ? do_truncate+0x5b/0x90
[ 4079.636889] [<ffffffff810f59fa>] ? do_sys_ftruncate.constprop.15+0x10a/0x160
[ 4079.644869] [<ffffffff8110d87b>] ? SyS_fcntl+0x5b/0x570
[ 4079.650805] [<ffffffff814a9b72>] ? system_call_fastpath+0x16/0x1b
[ 4080.410607] user-space-program D ffff88107fc70640 0 32028 12639 0x00000004
[ 4080.418489] ffff880eaeccbbe0 0000000000000086 0000000000009000 ffff880eaeccbfd8
[ 4080.426778] ffff880eaeccbfd8 ffff880f317ef1e0 ffffffffa06ecb26 ffff88101a5d6138
[ 4080.435067] ffff880ef7e93928 ffff880f317ef1e0 ffff880eaeccbc08 ffff880f317ef1e0
[ 4080.443353] Call Trace:
[ 4080.452920] [<ffffffffa06ed15d>] ? btrfs_tree_read_lock+0xdd/0x190 [btrfs]
[ 4080.460703] [<ffffffff81053680>] ? wake_up_atomic_t+0x30/0x30
[ 4080.467225] [<ffffffffa06876bb>] ? btrfs_read_lock_root_node+0x2b/0x40 [btrfs]
[ 4080.475400] [<ffffffffa068cc81>] ? btrfs_search_slot+0x801/0xb10 [btrfs]
[ 4080.482994] [<ffffffffa06b2df0>] ? btrfs_clean_one_deleted_snapshot+0xe0/0xe0 [btrfs]
[ 4080.491857] [<ffffffffa06a70a6>] ? btrfs_lookup_inode+0x26/0x90 [btrfs]
[ 4080.499353] [<ffffffff810ec42f>] ? kmem_cache_alloc+0xaf/0xc0
[ 4080.505879] [<ffffffffa06bd905>] ? btrfs_iget+0xd5/0x5d0 [btrfs]
[ 4080.512696] [<ffffffffa06caf04>] ? btrfs_get_token_64+0x104/0x120 [btrfs]
[ 4080.520387] [<ffffffffa06f341f>] ? btrfs_log_inode_parent+0xbdf/0xf30 [btrfs]
[ 4080.528469] [<ffffffffa06f45a9>] ? btrfs_log_dentry_safe+0x59/0x80 [btrfs]
[ 4080.536258] [<ffffffffa06c298d>] ? btrfs_sync_file+0x20d/0x330 [btrfs]
[ 4080.543657] [<ffffffff8112777c>] ? do_fsync+0x4c/0x80
[ 4080.549399] [<ffffffff81127a0a>] ? SyS_fdatasync+0xa/0x10
[ 4080.555534] [<ffffffff814a9b72>] ? system_call_fastpath+0x16/0x1b
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Fixes: 2f2ff0ee5e43 (Btrfs: fix metadata inconsistencies after directory fsync)
Cc: stable@vger.kernel.org # 4.1+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
[Modified changelog for clarity and correctness]
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The hole punching can result in adding new leafs (and as a consequence
new nodes) to the tree because when we find file extent items that span
beyond the hole range we may end up not deleting them (just adjusting
them, reducing their range by reducing their length or increasing their
offset field) and add new file extent items representing holes.
So after splitting a leaf (therefore creating a new one) to insert a new
file extent item representing a hole, a new node might be added to each
level of the tree in the worst case scenario (since there's a new key
and every parent node was full).
For example if a file has an extent item representing the range 0 to 64Mb
and we punch a hole in the range 1Mb to 20Mb, the existing extent item is
duplicated and one of the copies is adjusted to represent the range 0 to
1Mb, the other copy adjusted to represent the range 20Mb to 64Mb, and a
new file extent item representing a hole in the range 1Mb to 20Mb is
inserted.
Fix this by using btrfs_calc_trans_metadata_size() instead of
btrfs_calc_trunc_metadata_size(), so that enough metadata space is
reserved for the worst possible case.
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
[Modified changelog for clarity and correctness]
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
We were setting the qgroup_rescan_running flag to true only after the
rescan worker started (which is a task run by a queue). So if a user
space task starts a rescan and immediately after asks to wait for the
rescan worker to finish, this second call might happen before the rescan
worker task starts running, in which case the rescan wait ioctl returns
immediatley, not waiting for the rescan worker to finish.
This was making the fstest btrfs/022 fail very often.
Fixes: d2c609b834d6 (btrfs: properly track when rescan worker is running)
Cc: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
We can not simply use the owner field from an extent buffer's header to
get the id of the respective tree when the extent buffer is from a
relocation tree. When we create the root for a relocation tree we leave
(on purpose) the owner field with the same value as the subvolume's tree
root (we do this at ctree.c:btrfs_copy_root()). So we must ignore extent
buffers from relocation trees, which have the BTRFS_HEADER_FLAG_RELOC
flag set, because otherwise we will always consider the extent buffer
as not being the root of the tree (the root of original subvolume tree
is always different from the root of the respective relocation tree).
This lead to assertion failures when running with the integrity checker
enabled (CONFIG_BTRFS_FS_CHECK_INTEGRITY=y) such as the following:
[ 643.393409] BTRFS critical (device sdg): corrupt leaf, non-root leaf's nritems is 0: block=38506496, root=260, slot=0
[ 643.397609] BTRFS info (device sdg): leaf 38506496 total ptrs 0 free space 3995
[ 643.407075] assertion failed: 0, file: fs/btrfs/disk-io.c, line: 4078
[ 643.408425] ------------[ cut here ]------------
[ 643.409112] kernel BUG at fs/btrfs/ctree.h:3419!
[ 643.409773] invalid opcode: 0000 [#1] PREEMPT SMP
[ 643.410447] Modules linked in: dm_flakey dm_mod crc32c_generic btrfs xor raid6_pq ppdev psmouse acpi_cpufreq parport_pc evdev parport tpm_tis tpm_tis_core pcspkr serio_raw i2c_piix4 sg tpm i2c_core button processor loop autofs4 ext4 crc16 jbd2 mbcache sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring scsi_mod virtio e1000 floppy
[ 643.414356] CPU: 11 PID: 32726 Comm: btrfs Not tainted 4.8.0-rc8-btrfs-next-35+ #1
[ 643.414356] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 643.414356] task: ffff880145e95b00 task.stack: ffff88014826c000
[ 643.414356] RIP: 0010:[<ffffffffa0352759>] [<ffffffffa0352759>] assfail.constprop.41+0x1c/0x1e [btrfs]
[ 643.414356] RSP: 0018:ffff88014826fa28 EFLAGS: 00010292
[ 643.414356] RAX: 0000000000000039 RBX: ffff88014e2d7c38 RCX: 0000000000000001
[ 643.414356] RDX: ffff88023f4d2f58 RSI: ffffffff81806c63 RDI: 00000000ffffffff
[ 643.414356] RBP: ffff88014826fa28 R08: 0000000000000001 R09: 0000000000000000
[ 643.414356] R10: ffff88014826f918 R11: ffffffff82f3c5ed R12: ffff880172910000
[ 643.414356] R13: ffff880233992230 R14: ffff8801a68a3310 R15: fffffffffffffff8
[ 643.414356] FS: 00007f9ca305e8c0(0000) GS:ffff88023f4c0000(0000) knlGS:0000000000000000
[ 643.414356] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 643.414356] CR2: 00007f9ca3071000 CR3: 000000015d01b000 CR4: 00000000000006e0
[ 643.414356] Stack:
[ 643.414356] ffff88014826fa50 ffffffffa02d655a 000000000000000a ffff88014e2d7c38
[ 643.414356] 0000000000000000 ffff88014826faa8 ffffffffa02b72f3 ffff88014826fab8
[ 643.414356] 00ffffffa03228e4 0000000000000000 0000000000000000 ffff8801bbd4e000
[ 643.414356] Call Trace:
[ 643.414356] [<ffffffffa02d655a>] btrfs_mark_buffer_dirty+0xdf/0xe5 [btrfs]
[ 643.414356] [<ffffffffa02b72f3>] btrfs_copy_root+0x18a/0x1d1 [btrfs]
[ 643.414356] [<ffffffffa0322921>] create_reloc_root+0x72/0x1ba [btrfs]
[ 643.414356] [<ffffffffa03267c2>] btrfs_init_reloc_root+0x7b/0xa7 [btrfs]
[ 643.414356] [<ffffffffa02d9e44>] record_root_in_trans+0xdf/0xed [btrfs]
[ 643.414356] [<ffffffffa02db04e>] btrfs_record_root_in_trans+0x50/0x6a [btrfs]
[ 643.414356] [<ffffffffa030ad2b>] create_subvol+0x472/0x773 [btrfs]
[ 643.414356] [<ffffffffa030b406>] btrfs_mksubvol+0x3da/0x463 [btrfs]
[ 643.414356] [<ffffffffa030b406>] ? btrfs_mksubvol+0x3da/0x463 [btrfs]
[ 643.414356] [<ffffffff810781ac>] ? preempt_count_add+0x65/0x68
[ 643.414356] [<ffffffff811a6e97>] ? __mnt_want_write+0x62/0x77
[ 643.414356] [<ffffffffa030b55d>] btrfs_ioctl_snap_create_transid+0xce/0x187 [btrfs]
[ 643.414356] [<ffffffffa030b67d>] btrfs_ioctl_snap_create+0x67/0x81 [btrfs]
[ 643.414356] [<ffffffffa030ecfd>] btrfs_ioctl+0x508/0x20dd [btrfs]
[ 643.414356] [<ffffffff81293e39>] ? __this_cpu_preempt_check+0x13/0x15
[ 643.414356] [<ffffffff81155eca>] ? handle_mm_fault+0x976/0x9ab
[ 643.414356] [<ffffffff81091300>] ? arch_local_irq_save+0x9/0xc
[ 643.414356] [<ffffffff8119a2b0>] vfs_ioctl+0x18/0x34
[ 643.414356] [<ffffffff8119a8e8>] do_vfs_ioctl+0x581/0x600
[ 643.414356] [<ffffffff814b9552>] ? entry_SYSCALL_64_fastpath+0x5/0xa8
[ 643.414356] [<ffffffff81093fe9>] ? trace_hardirqs_on_caller+0x17b/0x197
[ 643.414356] [<ffffffff8119a9be>] SyS_ioctl+0x57/0x79
[ 643.414356] [<ffffffff814b9565>] entry_SYSCALL_64_fastpath+0x18/0xa8
[ 643.414356] [<ffffffff81091b08>] ? trace_hardirqs_off_caller+0x3f/0xaa
[ 643.414356] Code: 89 83 88 00 00 00 31 c0 5b 41 5c 41 5d 5d c3 55 89 f1 48 c7 c2 98 bc 35 a0 48 89 fe 48 c7 c7 05 be 35 a0 48 89 e5 e8 13 46 dd e0 <0f> 0b 55 89 f1 48 c7 c2 9f d3 35 a0 48 89 fe 48 c7 c7 7a d5 35
[ 643.414356] RIP [<ffffffffa0352759>] assfail.constprop.41+0x1c/0x1e [btrfs]
[ 643.414356] RSP <ffff88014826fa28>
[ 643.468267] ---[ end trace 6a1b3fb1a9d7d6e3 ]---
This can be easily reproduced by running xfstests with the integrity
checker enabled.
Fixes: 1ba98d086fe3 (Btrfs: detect corruption when non-root leaf has zero item)
Cc: stable@vger.kernel.org # 4.8+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This can only happen with CONFIG_BTRFS_FS_CHECK_INTEGRITY=y.
Commit 1ba98d0 ("Btrfs: detect corruption when non-root leaf has zero item")
assumes that a leaf is its root when leaf->bytenr == btrfs_root_bytenr(root),
however, we should not use btrfs_root_bytenr(root) since it's mainly got
updated during committing transaction. So the check can fail when doing
COW on this leaf while it is a root.
This changes to use "if (leaf == btrfs_root_node(root))" instead, just like
how we check whether leaf is a root in __btrfs_cow_block().
Fixes: 1ba98d086fe3 (Btrfs: detect corruption when non-root leaf has zero item)
Cc: stable@vger.kernel.org # 4.8+
Reported-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
After the last big change in the delayed references code that was needed
for the last qgroups rework, the red black tree node field of struct
btrfs_delayed_ref_node is no longer used, so just remove it, this helps
us save some memory (since struct rb_node is 24 bytes on x86_64) for
these structures.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
In commit 5bc7247ac47c (Btrfs: fix broken nocow after balance) we started
abusing the rtransid and otransid fields of root items from relocation
trees to fix some issues with nodatacow mode. However later in commit
ba8b0289333a (Btrfs: do not reset last_snapshot after relocation) we
dropped the code that made use of those fields but did not remove
the code that sets those fields.
So just remove them to avoid confusion.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
During relocation of a data block group we create a relocation tree
for each fs/subvol tree by making a snapshot of each tree using
btrfs_copy_root() and the tree's commit root, and then setting the last
snapshot field for the fs/subvol tree's root to the value of the current
transaction id minus 1. However this can lead to relocation later
dropping references that it did not create if we have qgroups enabled,
leaving the filesystem in an inconsistent state that keeps aborting
transactions.
Lets consider the following example to explain the problem, which requires
qgroups to be enabled.
We are relocating data block group Y, we have a subvolume with id 258 that
has a root at level 1, that subvolume is used to store directory entries
for snapshots and we are currently at transaction 3404.
When committing transaction 3404, we have a pending snapshot and therefore
we call btrfs_run_delayed_items() at transaction.c:create_pending_snapshot()
in order to create its dentry at subvolume 258. This results in COWing
leaf A from root 258 in order to add the dentry. Note that leaf A
also contains file extent items referring to extents from some other
block group X (we are currently relocating block group Y). Later on, still
at create_pending_snapshot() we call qgroup_account_snapshot(), which
switches the commit root for root 258 when it calls switch_commit_roots(),
so now the COWed version of leaf A, lets call it leaf A', is accessible
from the commit root of tree 258. At the end of qgroup_account_snapshot(),
we call record_root_in_trans() with 258 as its argument, which results
in btrfs_init_reloc_root() being called, which in turn calls
relocation.c:create_reloc_root() in order to create a relocation tree
associated to root 258, which results in assigning the value of 3403
(which is the current transaction id minus 1 = 3404 - 1) to the
last_snapshot field of root 258. When creating the relocation tree root
at ctree.c:btrfs_copy_root() we add a shared reference for leaf A',
corresponding to the relocation tree's root, when we call btrfs_inc_ref()
against the COWed root (a copy of the commit root from tree 258), which
is at level 1. So at this point leaf A' has 2 references, one normal
reference corresponding to root 258 and one shared reference corresponding
to the root of the relocation tree.
Transaction 3404 finishes its commit and transaction 3405 is started by
relocation when calling merge_reloc_root() for the relocation tree
associated to root 258. In the meanwhile leaf A' is COWed again, in
response to some filesystem operation, when we are still at transaction
3405. However when we COW leaf A', at ctree.c:update_ref_for_cow(), we
call btrfs_block_can_be_shared() in order to figure out if other trees
refer to the leaf and if any such trees exists, add a full back reference
to leaf A' - but btrfs_block_can_be_shared() incorrectly returns false
because the following condition is false:
btrfs_header_generation(buf) <= btrfs_root_last_snapshot(&root->root_item)
which evaluates to 3404 <= 3403. So after leaf A' is COWed, it stays with
only one reference, corresponding to the shared reference we created when
we called btrfs_copy_root() to create the relocation tree's root and
btrfs_inc_ref() ends up not being called for leaf A' nor we end up setting
the flag BTRFS_BLOCK_FLAG_FULL_BACKREF in leaf A'. This results in not
adding shared references for the extents from block group X that leaf A'
refers to with its file extent items.
Later, after merging the relocation root we do a call to to
btrfs_drop_snapshot() in order to delete the relocation tree. This ends
up calling do_walk_down() when path->slots[1] points to leaf A', which
results in calling btrfs_lookup_extent_info() to get the number of
references for leaf A', which is 1 at this time (only the shared reference
exists) and this value is stored at wc->refs[0]. After this walk_up_proc()
is called when wc->level is 0 and path->nodes[0] corresponds to leaf A'.
Because the current level is 0 and wc->refs[0] is 1, it does call
btrfs_dec_ref() against leaf A', which results in removing the single
references that the extents from block group X have which are associated
to root 258 - the expectation was to have each of these extents with 2
references - one reference for root 258 and one shared reference related
to the root of the relocation tree, and so we would drop only the shared
reference (because leaf A' was supposed to have the flag
BTRFS_BLOCK_FLAG_FULL_BACKREF set).
This leaves the filesystem in an inconsistent state as we now have file
extent items in a subvolume tree that point to extents from block group X
without references in the extent tree. So later on when we try to decrement
the references for these extents, for example due to a file unlink operation,
truncate operation or overwriting ranges of a file, we fail because the
expected references do not exist in the extent tree.
This leads to warnings and transaction aborts like the following:
[ 588.965795] ------------[ cut here ]------------
[ 588.965815] WARNING: CPU: 2 PID: 2479 at fs/btrfs/extent-tree.c:1625 lookup_inline_extent_backref+0x432/0x5b0 [btrfs]
[ 588.965816] Modules linked in: af_packet iscsi_ibft iscsi_boot_sysfs xfs libcrc32c ppdev acpi_cpufreq button tpm_tis e1000 i2c_piix4 pcspkr parport_pc
parport tpm qemu_fw_cfg joydev btrfs xor raid6_pq sr_mod cdrom ata_generic virtio_scsi ata_piix virtio_pci bochs_drm virtio_ring drm_kms_helper syscopyarea
sysfillrect sysimgblt fb_sys_fops virtio ttm serio_raw drm floppy sg
[ 588.965831] CPU: 2 PID: 2479 Comm: kworker/u8:7 Not tainted 4.7.3-3-default-fdm+ #1
[ 588.965832] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 588.965844] Workqueue: btrfs-extent-refs btrfs_extent_refs_helper [btrfs]
[ 588.965845] 0000000000000000 ffff8802263bfa28 ffffffff813af542 0000000000000000
[ 588.965847] 0000000000000000 ffff8802263bfa68 ffffffff81081e8b 0000065900000000
[ 588.965848] ffff8801db2af000 000000012bbe2000 0000000000000000 ffff880215703b48
[ 588.965849] Call Trace:
[ 588.965852] [<ffffffff813af542>] dump_stack+0x63/0x81
[ 588.965854] [<ffffffff81081e8b>] __warn+0xcb/0xf0
[ 588.965855] [<ffffffff81081f7d>] warn_slowpath_null+0x1d/0x20
[ 588.965863] [<ffffffffa0175042>] lookup_inline_extent_backref+0x432/0x5b0 [btrfs]
[ 588.965865] [<ffffffff81143220>] ? trace_clock_local+0x10/0x30
[ 588.965867] [<ffffffff8114c5df>] ? rb_reserve_next_event+0x6f/0x460
[ 588.965875] [<ffffffffa0175215>] insert_inline_extent_backref+0x55/0xd0 [btrfs]
[ 588.965882] [<ffffffffa017531f>] __btrfs_inc_extent_ref.isra.55+0x8f/0x240 [btrfs]
[ 588.965890] [<ffffffffa017acea>] __btrfs_run_delayed_refs+0x74a/0x1260 [btrfs]
[ 588.965892] [<ffffffff810cb046>] ? cpuacct_charge+0x86/0xa0
[ 588.965900] [<ffffffffa017e74f>] btrfs_run_delayed_refs+0x9f/0x2c0 [btrfs]
[ 588.965908] [<ffffffffa017ea04>] delayed_ref_async_start+0x94/0xb0 [btrfs]
[ 588.965918] [<ffffffffa01c799a>] btrfs_scrubparity_helper+0xca/0x350 [btrfs]
[ 588.965928] [<ffffffffa01c7c5e>] btrfs_extent_refs_helper+0xe/0x10 [btrfs]
[ 588.965930] [<ffffffff8109b323>] process_one_work+0x1f3/0x4e0
[ 588.965931] [<ffffffff8109b658>] worker_thread+0x48/0x4e0
[ 588.965932] [<ffffffff8109b610>] ? process_one_work+0x4e0/0x4e0
[ 588.965934] [<ffffffff810a1659>] kthread+0xc9/0xe0
[ 588.965936] [<ffffffff816f2f1f>] ret_from_fork+0x1f/0x40
[ 588.965937] [<ffffffff810a1590>] ? kthread_worker_fn+0x170/0x170
[ 588.965938] ---[ end trace 34e5232c933a1749 ]---
[ 588.966187] ------------[ cut here ]------------
[ 588.966196] WARNING: CPU: 2 PID: 2479 at fs/btrfs/extent-tree.c:2966 btrfs_run_delayed_refs+0x28c/0x2c0 [btrfs]
[ 588.966196] BTRFS: Transaction aborted (error -5)
[ 588.966197] Modules linked in: af_packet iscsi_ibft iscsi_boot_sysfs xfs libcrc32c ppdev acpi_cpufreq button tpm_tis e1000 i2c_piix4 pcspkr parport_pc
parport tpm qemu_fw_cfg joydev btrfs xor raid6_pq sr_mod cdrom ata_generic virtio_scsi ata_piix virtio_pci bochs_drm virtio_ring drm_kms_helper syscopyarea
sysfillrect sysimgblt fb_sys_fops virtio ttm serio_raw drm floppy sg
[ 588.966206] CPU: 2 PID: 2479 Comm: kworker/u8:7 Tainted: G W 4.7.3-3-default-fdm+ #1
[ 588.966207] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 588.966217] Workqueue: btrfs-extent-refs btrfs_extent_refs_helper [btrfs]
[ 588.966217] 0000000000000000 ffff8802263bfc98 ffffffff813af542 ffff8802263bfce8
[ 588.966219] 0000000000000000 ffff8802263bfcd8 ffffffff81081e8b 00000b96345ee000
[ 588.966220] ffffffffa021ae1c ffff880215703b48 00000000000005fe ffff8802345ee000
[ 588.966221] Call Trace:
[ 588.966223] [<ffffffff813af542>] dump_stack+0x63/0x81
[ 588.966224] [<ffffffff81081e8b>] __warn+0xcb/0xf0
[ 588.966225] [<ffffffff81081eff>] warn_slowpath_fmt+0x4f/0x60
[ 588.966233] [<ffffffffa017e93c>] btrfs_run_delayed_refs+0x28c/0x2c0 [btrfs]
[ 588.966241] [<ffffffffa017ea04>] delayed_ref_async_start+0x94/0xb0 [btrfs]
[ 588.966250] [<ffffffffa01c799a>] btrfs_scrubparity_helper+0xca/0x350 [btrfs]
[ 588.966259] [<ffffffffa01c7c5e>] btrfs_extent_refs_helper+0xe/0x10 [btrfs]
[ 588.966260] [<ffffffff8109b323>] process_one_work+0x1f3/0x4e0
[ 588.966261] [<ffffffff8109b658>] worker_thread+0x48/0x4e0
[ 588.966263] [<ffffffff8109b610>] ? process_one_work+0x4e0/0x4e0
[ 588.966264] [<ffffffff810a1659>] kthread+0xc9/0xe0
[ 588.966265] [<ffffffff816f2f1f>] ret_from_fork+0x1f/0x40
[ 588.966267] [<ffffffff810a1590>] ? kthread_worker_fn+0x170/0x170
[ 588.966268] ---[ end trace 34e5232c933a174a ]---
[ 588.966269] BTRFS: error (device sda2) in btrfs_run_delayed_refs:2966: errno=-5 IO failure
[ 588.966270] BTRFS info (device sda2): forced readonly
This was happening often on openSUSE and SLE systems using btrfs as the
root filesystem (with its default layout where multiple subvolumes are
used) where balance happens in the background triggered by a cron job and
snapshots are automatically created before/after package installations,
upgrades and removals. The issue could be triggered simply by running the
following loop on the first system boot post installation:
while true; do
zypper -n in nfs-kernel-server
zypper -n rm nfs-kernel-server
done
(If we were fast enough and made that loop before the cron job triggered
a balance operation and the balance finished)
So fix by setting the last_snapshot field of the root to the value of the
generation of its commit root. Like this btrfs_block_can_be_shared()
behaves correctly for the case where the relocation root is created during
a transaction commit and for the case where it's created before a
transaction commit.
Fixes: 6426c7ad697d (btrfs: qgroup: Fix qgroup accounting when creating snapshot)
Cc: stable@vger.kernel.org # 4.7+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
|
| | |\ \
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.9
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This is exposing an existing deadlock between fsync and AIO. Until we
have the deadlock fixed, I'm pulling this one out.
This reverts commit a23eaa875f0f1d89eb866b8c9860e78273ff5daf.
Signed-off-by: Chris Mason <clm@fb.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
btrfs_transaction_abort() has a WARN() to help us nail down whatever
problem lead to the abort. But most of the time, we're aborting for EIO,
and the warning just adds noise.
Signed-off-by: Chris Mason <clm@fb.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The helpers are trivial and we don't use them consistently.
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Now we only use the root parameter to print the root objectid in
a tracepoint. We can use the root parameter from the transaction
handle for that. It's also used to join the transaction with
async commits, so we remove the comment that it's just for checking.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
btrfs_write_and_wait_marked_extents and btrfs_sync_log both call
btrfs_wait_marked_extents, which provides a core loop and then handles
errors differently based on whether it's it's a log root or not.
This means that btrfs_write_and_wait_marked_extents needs to take a root
because btrfs_wait_marked_extents requires one, even though it's only
used to determine whether the root is a log root. The log root code
won't ever call into the transaction commit code using a log root, so we
can factor out the core loop and provide the error handling appropriate
to each waiter in new routines. This allows us to eventually remove
the root argument from btrfs_commit_transaction, and as a result,
btrfs_end_transaction.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
There are loads of functions in btrfs that accept a root parameter
but only use it to obtain an fs_info pointer. Let's convert those to
just accept an fs_info pointer directly.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
With the exception of the one case where btrfs_wait_cache_io is called
without a block group, it's called with the same arguments. The root
argument is only used in the special case, so let's factor out the core
and simplify the call in the normal case to require a trans, block group,
and path.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The extent-tree tracepoints all operate on the extent root, regardless of
which root is passed in. Let's just use the extent root objectid instead.
If it turns out that nobody is depending on the format of this tracepoint,
we can drop the root printing entirely.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This results in btrfs_assert_delayed_root_empty and
btrfs_destroy_delayed_inode taking an fs_info instead of a root.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
In routines where someptr->fs_info is referenced multiple times, we
introduce a convenience variable. This makes the code considerably
more readable.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
We track the node sizes per-root, but they never vary from the values
in the superblock. This patch messes with the 80-column style a bit,
but subsequent patches to factor out root->fs_info into a convenience
variable fix it up again.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The io_ctl->root member was only being used to access root->fs_info.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The root is never used. We substitute extent_root in for the
reada_find_extent call, since it's only ever used to obtain the node
size. This call site will be changed to use fs_info in a later patch.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The root member is never used except for obtaining an fs_info pointer.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Even though a separate root is passed in, we're still operating on the
extent root. Let's use that for the trace point.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
btrfs_init_new_device only uses the root passed in via the ioctl to
start the transaction. Nothing else that happens is related to whatever
root the user used to initiate the ioctl. We can drop the root requirement
and just use fs_info->dev_root instead.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
There are many functions that are always called with the same root
argument. Rather than passing the same root every time, we can
pass an fs_info pointer instead and have the function get the root
pointer itself.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
There are 11 functions that accept a root parameter and immediately
overwrite it. We can pass those an fs_info pointer instead.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This issue was found when I tried to delete a heavily reflinked file,
when deleting such files, other transaction operation will not have a
chance to make progress, for example, start_transaction() will blocked
in wait_current_trans(root) for long time, sometimes it even triggers
soft lockups, and the time taken to delete such heavily reflinked file
is also very large, often hundreds of seconds. Using perf top, it reports
that:
PerfTop: 7416 irqs/sec kernel:99.8% exact: 0.0% [4000Hz cpu-clock], (all, 4 CPUs)
---------------------------------------------------------------------------------------
84.37% [btrfs] [k] __btrfs_run_delayed_refs.constprop.80
11.02% [kernel] [k] delay_tsc
0.79% [kernel] [k] _raw_spin_unlock_irq
0.78% [kernel] [k] _raw_spin_unlock_irqrestore
0.45% [kernel] [k] do_raw_spin_lock
0.18% [kernel] [k] __slab_alloc
It seems __btrfs_run_delayed_refs() took most cpu time, after some debug
work, I found it's select_delayed_ref() causing this issue, for a delayed
head, in our case, it'll be full of BTRFS_DROP_DELAYED_REF nodes, but
select_delayed_ref() will firstly try to iterate node list to find
BTRFS_ADD_DELAYED_REF nodes, obviously it's a disaster in this case, and
waste much time.
To fix this issue, we introduce a new ref_add_list in struct btrfs_delayed_ref_head,
then in select_delayed_ref(), if this list is not empty, we can directly use
nodes in this list. With this patch, it just took about 10~15 seconds to
delte the same file. Now using perf top, it reports that:
PerfTop: 2734 irqs/sec kernel:99.5% exact: 0.0% [4000Hz cpu-clock], (all, 4 CPUs)
----------------------------------------------------------------------------------------
20.74% [kernel] [k] _raw_spin_unlock_irqrestore
16.33% [kernel] [k] __slab_alloc
5.41% [kernel] [k] lock_acquired
4.42% [kernel] [k] lock_acquire
4.05% [kernel] [k] lock_release
3.37% [kernel] [k] _raw_spin_unlock_irq
For normal files, this patch also gives help, at least we do not need to
iterate whole list to found BTRFS_ADD_DELAYED_REF nodes.
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Commit 62b99540a1d91e464 (btrfs: relocation: Fix leaking qgroups numbers
on data extents) only fixes the problem partly.
The previous fix is to trace all new data extents at transaction commit
time when balance finishes.
However balance is not done in a large transaction, every path
replacement can happen in its own transaction.
This makes the fix useless if transaction commits during relocation.
For example:
relocate_block_group()
|-merge_reloc_roots()
| |- merge_reloc_root()
| |- btrfs_start_transaction() <- Trans X
| |- replace_path() <- Cause leak
| |- btrfs_end_transaction_throttle() <- Trans X commits here
| | Leak not fixed
| |
| |- btrfs_start_transaction() <- Trans Y
| |- replace_path() <- Cause leak
| |- btrfs_end_transaction_throttle() <- Trans Y ends
| but not committed
|-btrfs_join_transaction() <- Still trans Y
|-qgroup_fix() <- Only fixes data leak
| in trans Y
|-btrfs_commit_transaction() <- Trans Y commits
In that case, qgroup fixup can only fix data leak in trans Y, data leak
in trans X is out of fix.
So the correct fix should happen in the same transaction of
replace_path().
This patch fixes it by tracing both subtrees of tree block swap, so it
can fix the problem and ensure all leaking and fix are in the same
transaction, so no leak again.
Reported-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Move account_shared_subtree() to qgroup.c and rename it to
btrfs_qgroup_trace_subtree().
Do the same thing for account_leaf_items() and rename it to
btrfs_qgroup_trace_leaf_items().
Since all these functions are only for qgroup, move them to qgroup.c and
export them is more appropriate.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Rename btrfs_qgroup_insert_dirty_extent(_nolock) to
btrfs_qgroup_trace_extent(_nolock), according to the new
reserve/trace/account naming schema.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Add explaination how btrfs qgroups work.
Qgroup is split into 3 main phrases:
1) Reserve
To ensure qgroup doesn't exceed its limit
2) Trace
To info qgroup to trace which extent
3) Account
Calculate qgroup number change for each traced extent.
This should save quite some time for new developers.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
And remove the bogus check for a NULL return value from kmap, which
can't happen. While we're at it: I don't think that kmapping up to 256
will work without deadlocks on highmem machines, a better idea would
be to use vm_map_ram to map all of them into a single virtual address
range. Incidentally that would also simplify the code a lot.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Rework the loop a little bit to use the generic bio_for_each_segment_all
helper for iterating over the bio.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Use the bvec offset and len members to prepare for multipage bvecs.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Instead of using bi_vcnt to calculate it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|