summaryrefslogtreecommitdiffstats
path: root/fs/nilfs2/page.c (follow)
Commit message (Collapse)AuthorAgeFilesLines
* nilfs2: fix issue with race condition of competition between segments for ↵Vyacheslav Dubeyko2013-09-301-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dirty blocks Many NILFS2 users were reported about strange file system corruption (for example): NILFS: bad btree node (blocknr=185027): level = 0, flags = 0x0, nchildren = 768 NILFS error (device sda4): nilfs_bmap_last_key: broken bmap (inode number=11540) But such error messages are consequence of file system's issue that takes place more earlier. Fortunately, Jerome Poulin <jeromepoulin@gmail.com> and Anton Eliasson <devel@antoneliasson.se> were reported about another issue not so recently. These reports describe the issue with segctor thread's crash: BUG: unable to handle kernel paging request at 0000000000004c83 IP: nilfs_end_page_io+0x12/0xd0 [nilfs2] Call Trace: nilfs_segctor_do_construct+0xf25/0x1b20 [nilfs2] nilfs_segctor_construct+0x17b/0x290 [nilfs2] nilfs_segctor_thread+0x122/0x3b0 [nilfs2] kthread+0xc0/0xd0 ret_from_fork+0x7c/0xb0 These two issues have one reason. This reason can raise third issue too. Third issue results in hanging of segctor thread with eating of 100% CPU. REPRODUCING PATH: One of the possible way or the issue reproducing was described by Jermoe me Poulin <jeromepoulin@gmail.com>: 1. init S to get to single user mode. 2. sysrq+E to make sure only my shell is running 3. start network-manager to get my wifi connection up 4. login as root and launch "screen" 5. cd /boot/log/nilfs which is a ext3 mount point and can log when NILFS dies. 6. lscp | xz -9e > lscp.txt.xz 7. mount my snapshot using mount -o cp=3360839,ro /dev/vgUbuntu/root /mnt/nilfs 8. start a screen to dump /proc/kmsg to text file since rsyslog is killed 9. start a screen and launch strace -f -o find-cat.log -t find /mnt/nilfs -type f -exec cat {} > /dev/null \; 10. start a screen and launch strace -f -o apt-get.log -t apt-get update 11. launch the last command again as it did not crash the first time 12. apt-get crashes 13. ps aux > ps-aux-crashed.log 13. sysrq+W 14. sysrq+E wait for everything to terminate 15. sysrq+SUSB Simplified way of the issue reproducing is starting kernel compilation task and "apt-get update" in parallel. REPRODUCIBILITY: The issue is reproduced not stable [60% - 80%]. It is very important to have proper environment for the issue reproducing. The critical conditions for successful reproducing: (1) It should have big modified file by mmap() way. (2) This file should have the count of dirty blocks are greater that several segments in size (for example, two or three) from time to time during processing. (3) It should be intensive background activity of files modification in another thread. INVESTIGATION: First of all, it is possible to see that the reason of crash is not valid page address: NILFS [nilfs_segctor_complete_write]:2100 bh->b_count 0, bh->b_blocknr 13895680, bh->b_size 13897727, bh->b_page 0000000000001a82 NILFS [nilfs_segctor_complete_write]:2101 segbuf->sb_segnum 6783 Moreover, value of b_page (0x1a82) is 6786. This value looks like segment number. And b_blocknr with b_size values look like block numbers. So, buffer_head's pointer points on not proper address value. Detailed investigation of the issue is discovered such picture: [-----------------------------SEGMENT 6783-------------------------------] NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect NILFS [nilfs_segctor_do_construct]:2336 nilfs_segctor_assign NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111149024, segbuf->sb_segnum 6783 [-----------------------------SEGMENT 6784-------------------------------] NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect NILFS [nilfs_lookup_dirty_data_buffers]:782 bh->b_count 1, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824 NILFS [nilfs_lookup_dirty_data_buffers]:783 bh->b_assoc_buffers.next ffff8802174a6798, bh->b_assoc_buffers.prev ffff880221cffee8 NILFS [nilfs_segctor_do_construct]:2336 nilfs_segctor_assign NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write NILFS [nilfs_segbuf_submit_bh]:575 bh->b_count 1, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824 NILFS [nilfs_segbuf_submit_bh]:576 segbuf->sb_segnum 6784 NILFS [nilfs_segbuf_submit_bh]:577 bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880218bcdf50 NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111150080, segbuf->sb_segnum 6784, segbuf->sb_nbio 0 [----------] ditto NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111164416, segbuf->sb_segnum 6784, segbuf->sb_nbio 15 [-----------------------------SEGMENT 6785-------------------------------] NILFS [nilfs_segctor_do_construct]:2310 nilfs_segctor_begin_construction NILFS [nilfs_segctor_do_construct]:2321 nilfs_segctor_collect NILFS [nilfs_lookup_dirty_data_buffers]:782 bh->b_count 2, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824 NILFS [nilfs_lookup_dirty_data_buffers]:783 bh->b_assoc_buffers.next ffff880219277e80, bh->b_assoc_buffers.prev ffff880221cffc88 NILFS [nilfs_segctor_do_construct]:2367 nilfs_segctor_update_segusage NILFS [nilfs_segctor_do_construct]:2371 nilfs_segctor_prepare_write NILFS [nilfs_segctor_do_construct]:2376 nilfs_add_checksums_on_logs NILFS [nilfs_segctor_do_construct]:2381 nilfs_segctor_write NILFS [nilfs_segbuf_submit_bh]:575 bh->b_count 2, bh->b_page ffffea000709b000, page->index 0, i_ino 1033103, i_size 25165824 NILFS [nilfs_segbuf_submit_bh]:576 segbuf->sb_segnum 6785 NILFS [nilfs_segbuf_submit_bh]:577 bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880222cc7ee8 NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111165440, segbuf->sb_segnum 6785, segbuf->sb_nbio 0 [----------] ditto NILFS [nilfs_segbuf_submit_bio]:464 bio->bi_sector 111177728, segbuf->sb_segnum 6785, segbuf->sb_nbio 12 NILFS [nilfs_segctor_do_construct]:2399 nilfs_segctor_wait NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6783 NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6784 NILFS [nilfs_segbuf_wait]:676 segbuf->sb_segnum 6785 NILFS [nilfs_segctor_complete_write]:2100 bh->b_count 0, bh->b_blocknr 13895680, bh->b_size 13897727, bh->b_page 0000000000001a82 BUG: unable to handle kernel paging request at 0000000000001a82 IP: [<ffffffffa024d0f2>] nilfs_end_page_io+0x12/0xd0 [nilfs2] Usually, for every segment we collect dirty files in list. Then, dirty blocks are gathered for every dirty file, prepared for write and submitted by means of nilfs_segbuf_submit_bh() call. Finally, it takes place complete write phase after calling nilfs_end_bio_write() on the block layer. Buffers/pages are marked as not dirty on final phase and processed files removed from the list of dirty files. It is possible to see that we had three prepare_write and submit_bio phases before segbuf_wait and complete_write phase. Moreover, segments compete between each other for dirty blocks because on every iteration of segments processing dirty buffer_heads are added in several lists of payload_buffers: [SEGMENT 6784]: bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880218bcdf50 [SEGMENT 6785]: bh->b_assoc_buffers.next ffff880218a0d5f8, bh->b_assoc_buffers.prev ffff880222cc7ee8 The next pointer is the same but prev pointer has changed. It means that buffer_head has next pointer from one list but prev pointer from another. Such modification can be made several times. And, finally, it can be resulted in various issues: (1) segctor hanging, (2) segctor crashing, (3) file system metadata corruption. FIX: This patch adds: (1) setting of BH_Async_Write flag in nilfs_segctor_prepare_write() for every proccessed dirty block; (2) checking of BH_Async_Write flag in nilfs_lookup_dirty_data_buffers() and nilfs_lookup_dirty_node_buffers(); (3) clearing of BH_Async_Write flag in nilfs_segctor_complete_write(), nilfs_abort_logs(), nilfs_forget_buffer(), nilfs_clear_dirty_page(). Reported-by: Jerome Poulin <jeromepoulin@gmail.com> Reported-by: Anton Eliasson <devel@antoneliasson.se> Cc: Paul Fertser <fercerpav@gmail.com> Cc: ARAI Shun-ichi <hermes@ceres.dti.ne.jp> Cc: Piotr Szymaniak <szarpaj@grubelek.pl> Cc: Juan Barry Manuel Canham <Linux@riotingpacifist.net> Cc: Zahid Chowdhury <zahid.chowdhury@starsolutions.com> Cc: Elmer Zhang <freeboy6716@gmail.com> Cc: Kenneth Langga <klangga@gmail.com> Signed-off-by: Vyacheslav Dubeyko <slava@dubeyko.com> Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* nilfs2: fix using of PageLocked() in nilfs_clear_dirty_page()Vyacheslav Dubeyko2013-05-011-1/+1
| | | | | | | | | Change test_bit(PG_locked, &page->flags) to PageLocked(). Signed-off-by: Vyacheslav Dubeyko <slava@dubeyko.com> Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* nilfs2: fix issue with flush kernel thread after remount in RO mode because ↵Vyacheslav Dubeyko2013-05-011-18/+52
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | of driver's internal error or metadata corruption The NILFS2 driver remounts itself in RO mode in the case of discovering metadata corruption (for example, discovering a broken bmap). But usually, this takes place when there have been file system operations before remounting in RO mode. Thereby, NILFS2 driver can be in RO mode with presence of dirty pages in modified inodes' address spaces. It results in flush kernel thread's infinite trying to flush dirty pages in RO mode. As a result, it is possible to see such side effects as: (1) flush kernel thread occupies 50% - 99% of CPU time; (2) system can't be shutdowned without manual power switch off. SYMPTOMS: (1) System log contains error message: "Remounting filesystem read-only". (2) The flush kernel thread occupies 50% - 99% of CPU time. (3) The system can't be shutdowned without manual power switch off. REPRODUCTION PATH: (1) Create volume group with name "unencrypted" by means of vgcreate utility. (2) Run script (prepared by Anthony Doggett <Anthony2486@interfaces.org.uk>): ----------------[BEGIN SCRIPT]-------------------- #!/bin/bash VG=unencrypted #apt-get install nilfs-tools darcs lvcreate --size 2G --name ntest $VG mkfs.nilfs2 -b 1024 -B 8192 /dev/mapper/$VG-ntest mkdir /var/tmp/n mkdir /var/tmp/n/ntest mount /dev/mapper/$VG-ntest /var/tmp/n/ntest mkdir /var/tmp/n/ntest/thedir cd /var/tmp/n/ntest/thedir sleep 2 date darcs init sleep 2 dmesg|tail -n 5 date darcs whatsnew || true date sleep 2 dmesg|tail -n 5 ----------------[END SCRIPT]-------------------- (3) Try to shutdown the system. REPRODUCIBILITY: 100% FIX: This patch implements checking mount state of NILFS2 driver in nilfs_writepage(), nilfs_writepages() and nilfs_mdt_write_page() methods. If it is detected the RO mount state then all dirty pages are simply discarded with warning messages is written in system log. [akpm@linux-foundation.org: fix printk warning] Signed-off-by: Vyacheslav Dubeyko <slava@dubeyko.com> Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Anthony Doggett <Anthony2486@interfaces.org.uk> Cc: ARAI Shun-ichi <hermes@ceres.dti.ne.jp> Cc: Piotr Szymaniak <szarpaj@grubelek.pl> Cc: Zahid Chowdhury <zahid.chowdhury@starsolutions.com> Cc: Elmer Zhang <freeboy6716@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: redefine address_space.assoc_mappingRafael Aquini2012-12-121-1/+1
| | | | | | | | | | | | | | | | | | | | | | Overhaul struct address_space.assoc_mapping renaming it to address_space.private_data and its type is redefined to void*. By this approach we consistently name the .private_* elements from struct address_space as well as allow extended usage for address_space association with other data structures through ->private_data. Also, all users of old ->assoc_mapping element are converted to reflect its new name and type change (->private_data). Signed-off-by: Rafael Aquini <aquini@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andi Kleen <andi@firstfloor.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* nilfs2: remove the second argument of k[un]map_atomic()Cong Wang2012-03-201-4/+4
| | | | | Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Cong Wang <amwang@redhat.com>
* nilfs2: use mark_buffer_dirty to mark btnode or meta data dirtyRyusuke Konishi2011-05-101-13/+0
| | | | | | | | This replaces nilfs_mdt_mark_buffer_dirty and nilfs_btnode_mark_dirty macros with mark_buffer_dirty and gets rid of nilfs_mark_buffer_dirty, an own mark buffer dirty function. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
* nilfs2: always set back pointer to host inode in mapping->hostRyusuke Konishi2011-05-101-8/+5
| | | | | | | | | | In the current nilfs, page cache for btree nodes and meta data files do not set a valid back pointer to the host inode in mapping->host. This will change it so that every address space in nilfs uses mapping->host to hold its host inode. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
* nilfs2: get rid of private page allocatorRyusuke Konishi2011-05-101-52/+1
| | | | | | | | | | | | | | | | Previously, nilfs was cloning pages for mmapped region to freeze their data and ensure consistency of checksum during writeback cycles. A private page allocator was used for this page cloning. But, we no longer need to do that since clear_page_dirty_for_io function sets up pte so that vm_ops->page_mkwrite function is called right before the mmapped pages are modified and nilfs_page_mkwrite function can safely wait for the pages to be written back to disk. So, this stops making a copy of mmapped pages during writeback, and eliminates the private page allocation and deallocation functions from nilfs. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
* fs: export empty_aopsJens Axboe2011-04-051-2/+0
| | | | | | | | | | | | With the ->sync_page() hook gone, we have a few users that add their own static address_space_operations without any functions defined. fs/inode.c already has an empty_aops that it uses for init purposes. Lets export that and use it in the places where an otherwise empty aops was defined. Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
* nilfs2: fix oops due to a bad aops initializationRyusuke Konishi2011-03-301-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Nilfs in 2.6.39-rc1 hit the following oops: BUG: unable to handle kernel NULL pointer dereference at 0000000000000048 IP: [<ffffffff810ac235>] try_to_release_page+0x2a/0x3d PGD 234cb6067 PUD 234c72067 PMD 0 Oops: 0000 [#1] SMP <snip> Process truncate (pid: 10995, threadinfo ffff8802353c2000, task ffff880234cfa000) Stack: ffff8802333c77b8 ffffffff810b64b0 0000000000003802 ffffffffa0052cca 0000000000000000 ffff8802353c3b58 0000000000000000 ffff8802353c3b58 0000000000000001 0000000000000000 ffffea0007b92308 ffffea0007b92308 Call Trace: [<ffffffff810b64b0>] ? invalidate_inode_pages2_range+0x15f/0x273 [<ffffffffa0052cca>] ? nilfs_palloc_get_block+0x2d/0xaf [nilfs2] [<ffffffff810589e7>] ? bit_waitqueue+0x14/0xa1 [<ffffffff81058ab1>] ? wake_up_bit+0x10/0x20 [<ffffffffa00433fd>] ? nilfs_forget_buffer+0x66/0x7a [nilfs2] [<ffffffffa00467b8>] ? nilfs_btree_concat_left+0x5c/0x77 [nilfs2] [<ffffffffa00471fc>] ? nilfs_btree_delete+0x395/0x3cf [nilfs2] [<ffffffffa00449a3>] ? nilfs_bmap_do_delete+0x6e/0x79 [nilfs2] [<ffffffffa0045845>] ? nilfs_btree_last_key+0x14b/0x15e [nilfs2] [<ffffffffa00449dd>] ? nilfs_bmap_truncate+0x2f/0x83 [nilfs2] [<ffffffffa0044ab2>] ? nilfs_bmap_last_key+0x35/0x62 [nilfs2] [<ffffffffa003e99b>] ? nilfs_truncate_bmap+0x6b/0xc7 [nilfs2] [<ffffffffa003ee4a>] ? nilfs_truncate+0x79/0xe4 [nilfs2] [<ffffffff810b6c00>] ? vmtruncate+0x33/0x3b [<ffffffffa003e8f1>] ? nilfs_setattr+0x4d/0x8c [nilfs2] [<ffffffff81026106>] ? do_page_fault+0x31b/0x356 [<ffffffff810f9d61>] ? notify_change+0x17d/0x262 [<ffffffff810e5046>] ? do_truncate+0x65/0x80 [<ffffffff810e52af>] ? sys_ftruncate+0xf1/0xf6 [<ffffffff8132c012>] ? system_call_fastpath+0x16/0x1b Code: c3 48 83 ec 08 48 8b 17 48 8b 47 18 80 e2 01 75 04 0f 0b eb fe 48 8b 17 80 e6 20 74 05 31 c0 41 59 c3 48 85 c0 74 11 48 8b 40 58 8b 40 48 48 85 c0 74 04 41 58 ff e0 59 e9 b1 b5 05 00 41 54 RIP [<ffffffff810ac235>] try_to_release_page+0x2a/0x3d RSP <ffff8802353c3b08> CR2: 0000000000000048 This oops was brought in by the change "block: remove per-queue plugging" (commit: 7eaceaccab5f40bb). It initializes mapping->a_ops with a NULL pointer for some pages in nilfs (e.g. btree node pages), but mm code doesn't NULL pointer checks against mapping->a_ops. (the check is done for each callback function) This corrects the aops initialization and fixes the oops. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Acked-by: Jens Axboe <jaxboe@fusionio.com>
* Merge branch 'for-2.6.39/stack-plug' into for-2.6.39/coreJens Axboe2011-03-101-3/+2
|\ | | | | | | | | | | | | | | | | | | | | | | | | Conflicts: block/blk-core.c block/blk-flush.c drivers/md/raid1.c drivers/md/raid10.c drivers/md/raid5.c fs/nilfs2/btnode.c fs/nilfs2/mdt.c Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
| * block: remove per-queue pluggingJens Axboe2011-03-101-3/+2
| | | | | | | | | | | | | | | | Code has been converted over to the new explicit on-stack plugging, and delay users have been converted to use the new API for that. So lets kill off the old plugging along with aops->sync_page(). Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
* | mm: prevent concurrent unmap_mapping_range() on the same inodeMiklos Szeredi2011-02-241-13/+0
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Michael Leun reported that running parallel opens on a fuse filesystem can trigger a "kernel BUG at mm/truncate.c:475" Gurudas Pai reported the same bug on NFS. The reason is, unmap_mapping_range() is not prepared for more than one concurrent invocation per inode. For example: thread1: going through a big range, stops in the middle of a vma and stores the restart address in vm_truncate_count. thread2: comes in with a small (e.g. single page) unmap request on the same vma, somewhere before restart_address, finds that the vma was already unmapped up to the restart address and happily returns without doing anything. Another scenario would be two big unmap requests, both having to restart the unmapping and each one setting vm_truncate_count to its own value. This could go on forever without any of them being able to finish. Truncate and hole punching already serialize with i_mutex. Other callers of unmap_mapping_range() do not, and it's difficult to get i_mutex protection for all callers. In particular ->d_revalidate(), which calls invalidate_inode_pages2_range() in fuse, may be called with or without i_mutex. This patch adds a new mutex to 'struct address_space' to prevent running multiple concurrent unmap_mapping_range() on the same mapping. [ We'll hopefully get rid of all this with the upcoming mm preemptibility series by Peter Zijlstra, the "mm: Remove i_mmap_mutex lockbreak" patch in particular. But that is for 2.6.39 ] Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Reported-by: Michael Leun <lkml20101129@newton.leun.net> Reported-by: Gurudas Pai <gurudas.pai@oracle.com> Tested-by: Gurudas Pai <gurudas.pai@oracle.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* nilfs2: fix a checkpatch error in page.cRyusuke Konishi2011-01-101-1/+1
| | | | | | | | | | Will correct the following checkpatch error: ERROR: trailing whitespace #494: FILE: page.c:494: + $ Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
* nilfs2: fiemap supportRyusuke Konishi2011-01-101-0/+84
| | | | | | | | | | | | | | This adds fiemap to nilfs. Two new functions, nilfs_fiemap and nilfs_find_uncommitted_extent are added. nilfs_fiemap() implements the fiemap inode operation, and nilfs_find_uncommitted_extent() helps to get a range of data blocks whose physical location has not been determined. nilfs_fiemap() collects extent information by looping through nilfs_bmap_lookup_contig and nilfs_find_uncommitted_extent routines. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
* nilfs2: get rid of GCDAT inodeRyusuke Konishi2010-10-231-26/+2
| | | | | | | This applies prepared rollback function and redirect function of metadata file to DAT file, and eliminates GCDAT inode. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
* nilfs2: add routines to redirect access to buffers of DAT fileRyusuke Konishi2010-10-231-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | During garbage collection (GC), DAT file, which converts virtual block number to real block number, may return disk block number that is not yet written to the device. To avoid access to unwritten blocks, the current implementation stores changes to the caches of GCDAT during GC and atomically commit the changes into the DAT file after they are written to the device. This patch, instead, adds a function that makes a copy of specified buffer and stores it in nilfs_shadow_map, and a function to get the backup copy as needed (nilfs_mdt_freeze_buffer and nilfs_mdt_get_frozen_buffer respectively). Before DAT changes block number in an entry block, it makes a copy and redirect access to the buffer so that address conversion function (i.e. nilfs_dat_translate) refers to the old address saved in the copy. This patch gives requisites for such redirection. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
* nilfs2: add routines to roll back state of DAT fileRyusuke Konishi2010-10-231-0/+25
| | | | | | | | | | | | | | | | | | | | | | | This adds optional function to metadata files which makes a copy of bmap, page caches, and b-tree node cache, and rolls back to the copy as needed. This enhancement is intended to displace gcdat inode that provides a similar function in a different way. In this patch, nilfs_shadow_map structure is added to store a copy of the foregoing states. nilfs_mdt_setup_shadow_map relates this structure to a metadata file. And, nilfs_mdt_save_to_shadow_map() and nilfs_mdt_restore_from_shadow_map() provides save and restore functions respectively. Finally, nilfs_mdt_clear_shadow_map() clears states of nilfs_shadow_map. The copy of b-tree node cache and page cache is made by duplicating only dirty pages into corresponding caches in nilfs_shadow_map. Their restoration is done by clearing dirty pages from original caches and by copying dirty pages back from nilfs_shadow_map. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
* nilfs2: introduce check flag to btree node bufferRyusuke Konishi2010-07-231-1/+4
| | | | | | | | nilfs_btree_get_block() now may return untested buffer due to read-ahead. This adds a new flag for buffer heads so that the btree code can check whether the buffer is already verified or not. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
* include cleanup: Update gfp.h and slab.h includes to prepare for breaking ↵Tejun Heo2010-03-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
* nilfs2: fix various typos in commentsRyusuke Konishi2010-03-141-2/+2
| | | | | | This fixes various typos I found in comments of nilfs2. Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
* nilfs2: ensure to clear dirty state when deleting metadata file blockRyusuke Konishi2009-05-101-1/+2
| | | | | | | | | | | | | | | | | | This would fix the following failure during GC: nilfs_cpfile_delete_checkpoints: cannot delete block NILFS: GC failed during preparation: cannot delete checkpoints: err=-2 The problem was caused by a break in state consistency between page cache and btree; the above block was removed from the btree but the page buffering the block was remaining in the page cache in dirty state. This resolves the inconsistency by ensuring to clear dirty state of the page buffering the deleted block. Reported-by: David Arendt <admin@prnet.org> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
* nilfs2: replace BUG_ON and BUG calls triggerable from ioctlRyusuke Konishi2009-04-071-6/+4
| | | | | | | | | | | | | | | Pekka Enberg advised me: > It would be nice if BUG(), BUG_ON(), and panic() calls would be > converted to proper error handling using WARN_ON() calls. The BUG() > call in nilfs_cpfile_delete_checkpoints(), for example, looks to be > triggerable from user-space via the ioctl() system call. This will follow the comment and keep them to a minimum. Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* nilfs2: buffer and page operationsRyusuke Konishi2009-04-071-0/+542
This adds common routines for buffer/page operations used in B-tree node caches, meta data files, or segment constructor (log writer). NILFS uses copy functions for buffers and pages due to the following reasons: 1) Relocation required for COW Since NILFS changes address of on-disk blocks, moving buffers in page cache is needed for the buffers which are not addressed by a file offset. If buffer size is smaller than page size, this involves partial copy of pages. 2) Freezing mmapped pages NILFS calculates checksums for each log to ensure its validity. If page data changes after the checksum calculation, this validity check will not work correctly. To avoid this failure for mmaped pages, NILFS freezes their data by copying. 3) Copy-on-write for DAT pages NILFS makes clones of DAT page caches in a copy-on-write manner during GC processes, and this ensures atomicity and consistency of the DAT in the transient state. In addition, NILFS uses two obsolete functions, nilfs_mark_buffer_dirty() and nilfs_clear_page_dirty() respectively. * nilfs_mark_buffer_dirty() was required to avoid NULL pointer dereference faults: Since the page cache of B-tree node pages or data page cache of pseudo inodes does not have a valid mapping->host, calling mark_buffer_dirty() for their buffers causes the fault; it calls __mark_inode_dirty(NULL) through __set_page_dirty(). * nilfs_clear_page_dirty() was needed in the two cases: 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears page dirty flags when it copies back pages from the cloned cache (gcdat->{i_mapping,i_btnode_cache}) to its original cache (dat->{i_mapping,i_btnode_cache}). 2) Some B-tree operations like insertion or deletion may dispose buffers in dirty state, and this needs to cancel the dirty state of their pages. clear_page_dirty_for_io() caused faults because it does not clear the dirty tag on the page cache. Signed-off-by: Seiji Kihara <kihara.seiji@lab.ntt.co.jp> Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>