| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Faster kernel compiles by way of fewer unnecessary includes.
[akpm@linux-foundation.org: fix fallout]
[akpm@linux-foundation.org: fix build]
Signed-off-by: Kent Overstreet <koverstreet@google.com>
Cc: Zach Brown <zab@redhat.com>
Cc: Felipe Balbi <balbi@ti.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Asai Thambi S P <asamymuthupa@micron.com>
Cc: Selvan Mani <smani@micron.com>
Cc: Sam Bradshaw <sbradshaw@micron.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Reviewed-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix a corruption that can happen when we have (two or more) outstanding
aio's to an overlapping unaligned region. Ext4
(e9e3bcecf44c04b9e6b505fd8e2eb9cea58fb94d) and xfs recently had to fix
similar issues.
In our case what happens is that we can have an outstanding aio on a region
and if a write comes in with some bytes overlapping the original aio we may
decide to read that region into a page before continuing (typically because
of buffered-io fallback). Since we have no ordering guarantees with the
aio, we can read stale or bad data into the page and then write it back out.
If the i/o is page and block aligned, then we avoid this issue as there
won't be any need to read data from disk.
I took the same approach as Eric in the ext4 patch and introduced some
serialization of unaligned async direct i/o. I don't expect this to have an
effect on the most common cases of AIO. Unaligned aio will be slower
though, but that's far more acceptable than data corruption.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Signed-off-by: Joel Becker <jlbec@evilplan.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Track negative dentries by recording the generation number of the parent
directory in d_fsdata. The generation number for the parent directory is
recorded in the inode_info, which increments every time the lock on the
directory is dropped.
If the generation number of the parent directory and the negative dentry
matches, there is no need to perform the revalidate, else a revalidate
is forced. This improves performance in situations where nodes look for
the same non-existent file multiple times.
Thanks Mark for explaining the DLM sequence.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.de>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Thanks for the comments. I have incorportated them all.
CONFIG_OCFS2_FS_STATS is enabled and CONFIG_DEBUG_LOCK_ALLOC is disabled.
Statistics now look like -
ocfs2_write_ctxt: 2144 - 2136 = 8
ocfs2_inode_info: 1960 - 1848 = 112
ocfs2_journal: 168 - 160 = 8
ocfs2_lock_res: 336 - 304 = 32
ocfs2_refcount_tree: 512 - 472 = 40
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.de>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
|
|
|
|
|
|
| |
... and let iput_final() do the actual eviction or retention
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
| |
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/jlbec/ocfs2
* 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec/ocfs2: (47 commits)
ocfs2: Silence a gcc warning.
ocfs2: Don't retry xattr set in case value extension fails.
ocfs2:dlm: avoid dlm->ast_lock lockres->spinlock dependency break
ocfs2: Reset xattr value size after xa_cleanup_value_truncate().
fs/ocfs2/dlm: Use kstrdup
fs/ocfs2/dlm: Drop memory allocation cast
Ocfs2: Optimize punching-hole code.
Ocfs2: Make ocfs2_find_cpos_for_left_leaf() public.
Ocfs2: Fix hole punching to correctly do CoW during cluster zeroing.
Ocfs2: Optimize ocfs2 truncate to use ocfs2_remove_btree_range() instead.
ocfs2: Block signals for mkdir/link/symlink/O_CREAT.
ocfs2: Wrap signal blocking in void functions.
ocfs2/dlm: Increase o2dlm lockres hash size
ocfs2: Make ocfs2_extend_trans() really extend.
ocfs2/trivial: Code cleanup for allocation reservation.
ocfs2: make ocfs2_adjust_resv_from_alloc simple.
ocfs2: Make nointr a default mount option
ocfs2/dlm: Make o2dlm domain join/leave messages KERN_NOTICE
o2net: log socket state changes
ocfs2: print node # when tcp fails
...
|
| |
| |
| |
| |
| |
| |
| | |
Add a per-inode reservations structure and pass it through to the
reservations code.
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently in the error path of ocfs2_symlink and ocfs2_mknod, we just call
iput with the inode we failed with, but the inode wipe code will complain
because we don't add the inode to orphan dir. One solution would be to lock
the orphan dir during the entire transaction, but that's too heavy for a
rare error path. Instead, we add a flag, OCFS2_INODE_SKIP_ORPHAN_DIR which
tells the inode wipe code that it won't find this inode in the orphan dir.
[ Merge fixes and comment style cleanups -Mark ]
Signed-off-by: Li Dongyang <lidongyang@novell.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
|
|
|
|
|
|
|
| |
We can get to the inode from the caching information. Other parent
types don't need it.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Similar ip_last_trans, ip_created_trans tracks the creation of a journal
managed inode. This specifically tracks what transaction created the
inode. This is so the code can know if the inode has ever been written
to disk.
This behavior is desirable for any journal managed object. We move it
to struct ocfs2_caching_info as ci_created_trans so that any object
using ocfs2_caching_info can rely on this behavior.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
We have the read side of metadata caching isolated to struct
ocfs2_caching_info, now we need the write side. This means the journal
functions. The journal only does a couple of things with struct inode.
This change moves the ip_last_trans field onto struct
ocfs2_caching_info as ci_last_trans. This field tells the journal
whether a pending journal flush is required.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
|
|
|
|
|
|
|
|
|
| |
We are really passing the inode into the ocfs2_read/write_blocks()
functions to get at the metadata cache. This commit passes the cache
directly into the metadata block functions, divorcing them from the
inode.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
|
|
|
|
|
|
|
|
|
| |
We don't really want to cart around too many new fields on the
ocfs2_caching_info structure. So let's wrap all our access of the
parent object in a set of operations. One pointer on caching_info, and
more flexibility to boot.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
We want to use the ocfs2_caching_info structure in places that are not
inodes. To do that, it can no longer rely on referencing the inode
directly.
This patch moves the flags to ocfs2_caching_info->ci_flags, stores
pointers to the parent's locks on the ocfs2_caching_info, and renames
the constants and flags to reflect its independant state.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For nfs exporting, ocfs2_get_dentry() returns the dentry for fh.
ocfs2_get_dentry() may read from disk when the inode is not in memory,
without any cross cluster lock. this leads to the file system loading a
stale inode.
This patch fixes above problem.
Solution is that in case of inode is not in memory, we get the cluster
lock(PR) of alloc inode where the inode in question is allocated from (this
causes node on which deletion is done sync the alloc inode) before reading
out the inode itsself. then we check the bitmap in the group (the inode in
question allcated from) to see if the bit is clear. if it's clear then it's
stale. if the bit is set, we then check generation as the existing code
does.
We have to read out the inode in question from disk first to know its alloc
slot and allot bit. And if its not stale we read it out using ocfs2_iget().
The second read should then be from cache.
And also we have to add a per superblock nfs_sync_lock to cover the lock for
alloc inode and that for inode in question. this is because ocfs2_get_dentry()
and ocfs2_delete_inode() lock on them in reverse order. nfs_sync_lock is locked
in EX mode in ocfs2_get_dentry() and in PR mode in ocfs2_delete_inode(). so
that mutliple ocfs2_delete_inode() can run concurrently in normal case.
[mfasheh@suse.com: build warning fixes and comment cleanups]
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Acked-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In ocfs2, the inode block search looks for the "emptiest" inode
group to allocate from. So if an inode alloc file has many equally
(or almost equally) empty groups, new inodes will tend to get
spread out amongst them, which in turn can put them all over the
disk. This is undesirable because directory operations on conceptually
"nearby" inodes force a large number of seeks.
So we add ip_last_used_group in core directory inodes which records
the last used allocation group. Another field named ip_last_used_slot
is also added in case inode stealing happens. When claiming new inode,
we passed in directory's inode so that the allocation can use this
information.
For more details, please see
http://oss.oracle.com/osswiki/OCFS2/DesignDocs/InodeAllocationStrategy.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For each quota type each node has local quota file. In this file it stores
changes users have made to disk usage via this node. Once in a while this
information is synced to global file (and thus with other nodes) so that
limits enforcement at least aproximately works.
Global quota files contain all the information about usage and limits. It's
mostly handled by the generic VFS code (which implements a trie of structures
inside a quota file). We only have to provide functions to convert structures
from on-disk format to in-memory one. We also have to provide wrappers for
various quota functions starting transactions and acquiring necessary cluster
locks before the actual IO is really started.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The ocfs2 code currently reads inodes off disk with a simple
ocfs2_read_block() call. Each place that does this has a different set
of sanity checks it performs. Some check only the signature. A couple
validate the block number (the block read vs di->i_blkno). A couple
others check for VALID_FL. Only one place validates i_fs_generation. A
couple check nothing. Even when an error is found, they don't all do
the same thing.
We wrap inode reading into ocfs2_read_inode_block(). This will validate
all the above fields, going readonly if they are invalid (they never
should be). ocfs2_read_inode_block_full() is provided for the places
that want to pass read_block flags. Every caller is passing a struct
inode with a valid ip_blkno, so we don't need a separate blkno argument
either.
We will remove the validation checks from the rest of the code in a
later commit, as they are no longer necessary.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
|
|
|
|
|
|
|
|
| |
dir.c is the only place using ocfs2_bread(), so let's make it static to
that file.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ocfs2 wants JBD2 for many reasons, not the least of which is that JBD is
limiting our maximum filesystem size.
It's a pretty trivial change. Most functions are just renamed. The
only functional change is moving to Jan's inode-based ordered data mode.
It's better, too.
Because JBD2 reads and writes JBD journals, this is compatible with any
existing filesystem. It can even interact with JBD-based ocfs2 as long
as the journal is formated for JBD.
We provide a compatibility option so that paranoid people can still use
JBD for the time being. This will go away shortly.
[ Moved call of ocfs2_begin_ordered_truncate() from ocfs2_delete_inode() to
ocfs2_truncate_for_delete(). --Mark ]
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
|
|
|
|
|
|
|
|
|
|
| |
This patch implements storing extended attributes both in inode or a single
external block. We only store EA's in-inode when blocksize > 512 or that
inode block has free space for it. When an EA's value is larger than 80
bytes, we will store the value via b-tree outside inode or block.
Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
|
|
|
|
|
|
|
|
|
| |
Create separate lockdep lock classes for system file's i_mutexes. They are
used to guard allocations and similar things and thus rank differently
than i_mutex of a regular file or directory.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
|
|
|
|
|
|
| |
Call this the "inode_lock" now, since it covers both data and meta data.
This patch makes no functional changes.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The meta lock now covers both meta data and data, so this just removes the
now-redundant data lock.
Combining locks saves us a round of lock mastery per inode and one less lock
to ping between nodes during read/write.
We don't lose much - since meta locks were always held before a data lock
(and at the same level) ordered writeout mode (the default) ensured that
flushing for the meta data lock also pushed out data anyways.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add the disk, network and memory structures needed to support data in inode.
Struct ocfs2_inline_data is defined and embedded in ocfs2_dinode for storing
inline data.
A new inode field, i_dyn_features, is added to facilitate tracking of
dynamic inode state. Since it will be used often, we want to mirror it on
ocfs2_inode_info, and transfer it via the meta data lvb.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Reviewed-by: Joel Becker <joel.becker@oracle.com>
|
|
|
|
|
|
|
|
|
| |
Propagate flags such as S_APPEND, S_IMMUTABLE, etc. from i_flags into
ocfs2-specific ip_attr. Hence, when someone sets these flags via a different
interface than ioctl, they are stored correctly.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The extent map code was ripped out earlier because of an inability to deal
with holes. This patch adds back a simpler caching scheme requiring far less
code.
Our old extent map caching was designed back when meta data block caching in
Ocfs2 didn't work very well, resulting in many disk reads. These days our
metadata caching is much better, resulting in no un-necessary disk reads. As
a result, extent caching doesn't have to be as fancy, nor does it have to
cache as many extents. Keeping the last 3 extents seen should be sufficient
to give us a small performance boost on some streaming workloads.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
|
|
|
|
|
|
|
| |
Older file systems which didn't support holes did a dumb calculation of
i_blocks based on i_size. This is no longer accurate, so fix things up to
take actual allocation into account.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
| |
The code in extent_map.c is not prepared to deal with a subtree being
rotated between lookups. This can happen when filling holes in sparse files.
Instead of a lengthy patch to update the code (which would likely lose the
benefit of caching subtree roots), we remove most of the algorithms and
implement a simple path based lookup. A less ambitious extent caching scheme
will be added in a later patch.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
|
|
|
|
|
|
|
|
|
| |
Remove node messaging code that becomes unused with the delete inode vote
removal.
[Removed even more cruft which I spotted during review --Mark]
Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Ocfs2 currently does cluster-wide node messaging to check the open state of
an inode during delete. This patch removes that mechanism in favor of an
inode cluster lock which is taken at shared read when an inode is first read
and dropped in clear_inode(). This allows a deleting node to test the
liveness of an inode by attempting to take an exclusive lock.
Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Replace all uses of kmem_cache_t with struct kmem_cache.
The patch was generated using the following script:
#!/bin/sh
#
# Replace one string by another in all the kernel sources.
#
set -e
for file in `find * -name "*.c" -o -name "*.h"|xargs grep -l $1`; do
quilt add $file
sed -e "1,\$s/$1/$2/g" $file >/tmp/$$
mv /tmp/$$ $file
quilt refresh
done
The script was run like this
sh replace kmem_cache_t "struct kmem_cache"
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
| |
This is mostly a search and replace as ocfs2_journal_handle is now no more
than a container for a handle_t pointer.
ocfs2_commit_trans() becomes very straight forward, and we remove some out
of date comments / code.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
|
|
|
|
|
|
|
| |
We can also delete the unused infrastructure which was once in place to
support this functionality. ocfs2_inode_private loses ip_handle and
ip_handle_list. ocfs2_journal_handle loses handle_list.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
OCFS2 puts inode meta data in the "lock value block" provided by the DLM.
Typically, i_generation is encoded in the lock name so that a deleted inode
on and a new one in the same block don't share the same lvb.
Unfortunately, that scheme means that the read in ocfs2_read_locked_inode()
is potentially thrown away as soon as the meta data lock is taken - we
cannot encode the lock name without first knowing i_generation, which
requires a disk read.
This patch encodes i_generation in the inode meta data lvb, and removes the
value from the inode meta data lock name. This way, the read can be covered
by a lock, and at the same time we can distinguish between an up to date and
a stale LVB.
This will help cold-cache stat(2) performance in particular.
Since this patch changes the protocol version, we take the opportunity to do
a minor re-organization of two of the LVB fields.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
|
|
|
|
|
|
|
|
| |
Support immutable, and other attributes.
Some renaming and other minor fixes done by myself.
Signed-off-by: Herbert Poetzl <herbert@13thfloor.at>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
|
|
|
|
|
|
|
|
|
| |
Same as with already do with the file operations: keep them in .rodata and
prevents people from doing runtime patching.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Steven French <sfrench@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
| |
ip_io_sem is now ip_io_mutex.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
|
The OCFS2 file system module.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Signed-off-by: Kurt Hackel <kurt.hackel@oracle.com>
|