| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Credit where credit is due: this idea comes from Christoph Lameter with
a lot of valuable input from Serge Hallyn. This patch is heavily based
on Christoph's patch.
===== The status quo =====
On Linux, there are a number of capabilities defined by the kernel. To
perform various privileged tasks, processes can wield capabilities that
they hold.
Each task has four capability masks: effective (pE), permitted (pP),
inheritable (pI), and a bounding set (X). When the kernel checks for a
capability, it checks pE. The other capability masks serve to modify
what capabilities can be in pE.
Any task can remove capabilities from pE, pP, or pI at any time. If a
task has a capability in pP, it can add that capability to pE and/or pI.
If a task has CAP_SETPCAP, then it can add any capability to pI, and it
can remove capabilities from X.
Tasks are not the only things that can have capabilities; files can also
have capabilities. A file can have no capabilty information at all [1].
If a file has capability information, then it has a permitted mask (fP)
and an inheritable mask (fI) as well as a single effective bit (fE) [2].
File capabilities modify the capabilities of tasks that execve(2) them.
A task that successfully calls execve has its capabilities modified for
the file ultimately being excecuted (i.e. the binary itself if that
binary is ELF or for the interpreter if the binary is a script.) [3] In
the capability evolution rules, for each mask Z, pZ represents the old
value and pZ' represents the new value. The rules are:
pP' = (X & fP) | (pI & fI)
pI' = pI
pE' = (fE ? pP' : 0)
X is unchanged
For setuid binaries, fP, fI, and fE are modified by a moderately
complicated set of rules that emulate POSIX behavior. Similarly, if
euid == 0 or ruid == 0, then fP, fI, and fE are modified differently
(primary, fP and fI usually end up being the full set). For nonroot
users executing binaries with neither setuid nor file caps, fI and fP
are empty and fE is false.
As an extra complication, if you execute a process as nonroot and fE is
set, then the "secure exec" rules are in effect: AT_SECURE gets set,
LD_PRELOAD doesn't work, etc.
This is rather messy. We've learned that making any changes is
dangerous, though: if a new kernel version allows an unprivileged
program to change its security state in a way that persists cross
execution of a setuid program or a program with file caps, this
persistent state is surprisingly likely to allow setuid or file-capped
programs to be exploited for privilege escalation.
===== The problem =====
Capability inheritance is basically useless.
If you aren't root and you execute an ordinary binary, fI is zero, so
your capabilities have no effect whatsoever on pP'. This means that you
can't usefully execute a helper process or a shell command with elevated
capabilities if you aren't root.
On current kernels, you can sort of work around this by setting fI to
the full set for most or all non-setuid executable files. This causes
pP' = pI for nonroot, and inheritance works. No one does this because
it's a PITA and it isn't even supported on most filesystems.
If you try this, you'll discover that every nonroot program ends up with
secure exec rules, breaking many things.
This is a problem that has bitten many people who have tried to use
capabilities for anything useful.
===== The proposed change =====
This patch adds a fifth capability mask called the ambient mask (pA).
pA does what most people expect pI to do.
pA obeys the invariant that no bit can ever be set in pA if it is not
set in both pP and pI. Dropping a bit from pP or pI drops that bit from
pA. This ensures that existing programs that try to drop capabilities
still do so, with a complication. Because capability inheritance is so
broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and
then calling execve effectively drops capabilities. Therefore,
setresuid from root to nonroot conditionally clears pA unless
SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can
re-add bits to pA afterwards.
The capability evolution rules are changed:
pA' = (file caps or setuid or setgid ? 0 : pA)
pP' = (X & fP) | (pI & fI) | pA'
pI' = pI
pE' = (fE ? pP' : pA')
X is unchanged
If you are nonroot but you have a capability, you can add it to pA. If
you do so, your children get that capability in pA, pP, and pE. For
example, you can set pA = CAP_NET_BIND_SERVICE, and your children can
automatically bind low-numbered ports. Hallelujah!
Unprivileged users can create user namespaces, map themselves to a
nonzero uid, and create both privileged (relative to their namespace)
and unprivileged process trees. This is currently more or less
impossible. Hallelujah!
You cannot use pA to try to subvert a setuid, setgid, or file-capped
program: if you execute any such program, pA gets cleared and the
resulting evolution rules are unchanged by this patch.
Users with nonzero pA are unlikely to unintentionally leak that
capability. If they run programs that try to drop privileges, dropping
privileges will still work.
It's worth noting that the degree of paranoia in this patch could
possibly be reduced without causing serious problems. Specifically, if
we allowed pA to persist across executing non-pA-aware setuid binaries
and across setresuid, then, naively, the only capabilities that could
leak as a result would be the capabilities in pA, and any attacker
*already* has those capabilities. This would make me nervous, though --
setuid binaries that tried to privilege-separate might fail to do so,
and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have
unexpected side effects. (Whether these unexpected side effects would
be exploitable is an open question.) I've therefore taken the more
paranoid route. We can revisit this later.
An alternative would be to require PR_SET_NO_NEW_PRIVS before setting
ambient capabilities. I think that this would be annoying and would
make granting otherwise unprivileged users minor ambient capabilities
(CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than
it is with this patch.
===== Footnotes =====
[1] Files that are missing the "security.capability" xattr or that have
unrecognized values for that xattr end up with has_cap set to false.
The code that does that appears to be complicated for no good reason.
[2] The libcap capability mask parsers and formatters are dangerously
misleading and the documentation is flat-out wrong. fE is *not* a mask;
it's a single bit. This has probably confused every single person who
has tried to use file capabilities.
[3] Linux very confusingly processes both the script and the interpreter
if applicable, for reasons that elude me. The results from thinking
about a script's file capabilities and/or setuid bits are mostly
discarded.
Preliminary userspace code is here, but it needs updating:
https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2
Here is a test program that can be used to verify the functionality
(from Christoph):
/*
* Test program for the ambient capabilities. This program spawns a shell
* that allows running processes with a defined set of capabilities.
*
* (C) 2015 Christoph Lameter <cl@linux.com>
* Released under: GPL v3 or later.
*
*
* Compile using:
*
* gcc -o ambient_test ambient_test.o -lcap-ng
*
* This program must have the following capabilities to run properly:
* Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE
*
* A command to equip the binary with the right caps is:
*
* setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test
*
*
* To get a shell with additional caps that can be inherited by other processes:
*
* ./ambient_test /bin/bash
*
*
* Verifying that it works:
*
* From the bash spawed by ambient_test run
*
* cat /proc/$$/status
*
* and have a look at the capabilities.
*/
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <cap-ng.h>
#include <sys/prctl.h>
#include <linux/capability.h>
/*
* Definitions from the kernel header files. These are going to be removed
* when the /usr/include files have these defined.
*/
#define PR_CAP_AMBIENT 47
#define PR_CAP_AMBIENT_IS_SET 1
#define PR_CAP_AMBIENT_RAISE 2
#define PR_CAP_AMBIENT_LOWER 3
#define PR_CAP_AMBIENT_CLEAR_ALL 4
static void set_ambient_cap(int cap)
{
int rc;
capng_get_caps_process();
rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap);
if (rc) {
printf("Cannot add inheritable cap\n");
exit(2);
}
capng_apply(CAPNG_SELECT_CAPS);
/* Note the two 0s at the end. Kernel checks for these */
if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) {
perror("Cannot set cap");
exit(1);
}
}
int main(int argc, char **argv)
{
int rc;
set_ambient_cap(CAP_NET_RAW);
set_ambient_cap(CAP_NET_ADMIN);
set_ambient_cap(CAP_SYS_NICE);
printf("Ambient_test forking shell\n");
if (execv(argv[1], argv + 1))
perror("Cannot exec");
return 0;
}
Signed-off-by: Christoph Lameter <cl@linux.com> # Original author
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Aaron Jones <aaronmdjones@gmail.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Andrew G. Morgan <morgan@kernel.org>
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: Austin S Hemmelgarn <ahferroin7@gmail.com>
Cc: Markku Savela <msa@moth.iki.fi>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: James Morris <james.l.morris@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull user namespace updates from Eric Biederman:
"This finishes up the changes to ensure proc and sysfs do not start
implementing executable files, as the there are application today that
are only secure because such files do not exist.
It akso fixes a long standing misfeature of /proc/<pid>/mountinfo that
did not show the proper source for files bind mounted from
/proc/<pid>/ns/*.
It also straightens out the handling of clone flags related to user
namespaces, fixing an unnecessary failure of unshare(CLONE_NEWUSER)
when files such as /proc/<pid>/environ are read while <pid> is calling
unshare. This winds up fixing a minor bug in unshare flag handling
that dates back to the first version of unshare in the kernel.
Finally, this fixes a minor regression caused by the introduction of
sysfs_create_mount_point, which broke someone's in house application,
by restoring the size of /sys/fs/cgroup to 0 bytes. Apparently that
application uses the directory size to determine if a tmpfs is mounted
on /sys/fs/cgroup.
The bind mount escape fixes are present in Al Viros for-next branch.
and I expect them to come from there. The bind mount escape is the
last of the user namespace related security bugs that I am aware of"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
fs: Set the size of empty dirs to 0.
userns,pidns: Force thread group sharing, not signal handler sharing.
unshare: Unsharing a thread does not require unsharing a vm
nsfs: Add a show_path method to fix mountinfo
mnt: fs_fully_visible enforce noexec and nosuid if !SB_I_NOEXEC
vfs: Commit to never having exectuables on proc and sysfs.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Today proc and sysfs do not contain any executable files. Several
applications today mount proc or sysfs without noexec and nosuid and
then depend on there being no exectuables files on proc or sysfs.
Having any executable files show on proc or sysfs would cause
a user space visible regression, and most likely security problems.
Therefore commit to never allowing executables on proc and sysfs by
adding a new flag to mark them as filesystems without executables and
enforce that flag.
Test the flag where MNT_NOEXEC is tested today, so that the only user
visible effect will be that exectuables will be treated as if the
execute bit is cleared.
The filesystems proc and sysfs do not currently incoporate any
executable files so this does not result in any user visible effects.
This makes it unnecessary to vet changes to proc and sysfs tightly for
adding exectuable files or changes to chattr that would modify
existing files, as no matter what the individual file say they will
not be treated as exectuable files by the vfs.
Not having to vet changes to closely is important as without this we
are only one proc_create call (or another goof up in the
implementation of notify_change) from having problematic executables
on proc. Those mistakes are all too easy to make and would create
a situation where there are security issues or the assumptions of
some program having to be broken (and cause userspace regressions).
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
"Two families of fixes:
- Fix an FPU context related boot crash on newer x86 hardware with
larger context sizes than what most people test. To fix this
without ugly kludges or extensive reverts we had to touch core task
allocator, to allow x86 to determine the task size dynamically, at
boot time.
I've tested it on a number of x86 platforms, and I cross-built it
to a handful of architectures:
(warns) (warns)
testing x86-64: -git: pass ( 0), -tip: pass ( 0)
testing x86-32: -git: pass ( 0), -tip: pass ( 0)
testing arm: -git: pass ( 1359), -tip: pass ( 1359)
testing cris: -git: pass ( 1031), -tip: pass ( 1031)
testing m32r: -git: pass ( 1135), -tip: pass ( 1135)
testing m68k: -git: pass ( 1471), -tip: pass ( 1471)
testing mips: -git: pass ( 1162), -tip: pass ( 1162)
testing mn10300: -git: pass ( 1058), -tip: pass ( 1058)
testing parisc: -git: pass ( 1846), -tip: pass ( 1846)
testing sparc: -git: pass ( 1185), -tip: pass ( 1185)
... so I hope the cross-arch impact 'none', as intended.
(by Dave Hansen)
- Fix various NMI handling related bugs unearthed by the big asm code
rewrite and generally make the NMI code more robust and more
maintainable while at it. These changes are a bit late in the
cycle, I hope they are still acceptable.
(by Andy Lutomirski)"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu, sched: Introduce CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT and use it on x86
x86/fpu, sched: Dynamically allocate 'struct fpu'
x86/entry/64, x86/nmi/64: Add CONFIG_DEBUG_ENTRY NMI testing code
x86/nmi/64: Make the "NMI executing" variable more consistent
x86/nmi/64: Minor asm simplification
x86/nmi/64: Use DF to avoid userspace RSP confusing nested NMI detection
x86/nmi/64: Reorder nested NMI checks
x86/nmi/64: Improve nested NMI comments
x86/nmi/64: Switch stacks on userspace NMI entry
x86/nmi/64: Remove asm code that saves CR2
x86/nmi: Enable nested do_nmi() handling for 64-bit kernels
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
on x86
Don't burden architectures without dynamic task_struct sizing
with the overhead of dynamic sizing.
Also optimize the x86 code a bit by caching task_struct_size.
Acked-and-Tested-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1437128892-9831-3-git-send-email-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The FPU rewrite removed the dynamic allocations of 'struct fpu'.
But, this potentially wastes massive amounts of memory (2k per
task on systems that do not have AVX-512 for instance).
Instead of having a separate slab, this patch just appends the
space that we need to the 'task_struct' which we dynamically
allocate already. This saves from doing an extra slab
allocation at fork().
The only real downside here is that we have to stick everything
and the end of the task_struct. But, I think the
BUILD_BUG_ON()s I stuck in there should keep that from being too
fragile.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1437128892-9831-2-git-send-email-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
/proc/*/cmdline code checks if it should look at ENVP area by checking
last byte of ARGV area:
rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
if (rv <= 0)
goto out_free_page;
If ARGV is somehow made empty (by doing execve(..., NULL, ...) or
manually setting ->arg_start and ->arg_end to equal values), the decision
will be based on byte which doesn't even belong to ARGV/ENVP.
So, quickly check if ARGV area is empty and report 0 to match previous
behaviour.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|/
|
|
|
|
|
|
|
|
|
|
| |
The purpose of the option was documented in
Documentation/filesystems/proc.txt but the help text was missing.
Add small help text that also points to the documentation.
Signed-off-by: Iago López Galeiras <iago@endocode.com>
Reviewed-by: Jean Delvare <jdelvare@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull more vfs updates from Al Viro:
"Assorted VFS fixes and related cleanups (IMO the most interesting in
that part are f_path-related things and Eric's descriptor-related
stuff). UFS regression fixes (it got broken last cycle). 9P fixes.
fs-cache series, DAX patches, Jan's file_remove_suid() work"
[ I'd say this is much more than "fixes and related cleanups". The
file_table locking rule change by Eric Dumazet is a rather big and
fundamental update even if the patch isn't huge. - Linus ]
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (49 commits)
9p: cope with bogus responses from server in p9_client_{read,write}
p9_client_write(): avoid double p9_free_req()
9p: forgetting to cancel request on interrupted zero-copy RPC
dax: bdev_direct_access() may sleep
block: Add support for DAX reads/writes to block devices
dax: Use copy_from_iter_nocache
dax: Add block size note to documentation
fs/file.c: __fget() and dup2() atomicity rules
fs/file.c: don't acquire files->file_lock in fd_install()
fs:super:get_anon_bdev: fix race condition could cause dev exceed its upper limitation
vfs: avoid creation of inode number 0 in get_next_ino
namei: make set_root_rcu() return void
make simple_positive() public
ufs: use dir_pages instead of ufs_dir_pages()
pagemap.h: move dir_pages() over there
remove the pointless include of lglock.h
fs: cleanup slight list_entry abuse
xfs: Correctly lock inode when removing suid and file capabilities
fs: Call security_ops->inode_killpriv on truncate
fs: Provide function telling whether file_remove_privs() will do anything
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Turn
seq_path(..., &file->f_path, ...);
into
seq_file_path(..., file, ...);
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
"Debug info and other statistics fixes and related enhancements"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/numa: Fix numa balancing stats in /proc/pid/sched
sched/numa: Show numa_group ID in /proc/sched_debug task listings
sched/debug: Move print_cfs_rq() declaration to kernel/sched/sched.h
sched/stat: Expose /proc/pid/schedstat if CONFIG_SCHED_INFO=y
sched/stat: Simplify the sched_info accounting dependency
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Expand /proc/pid/schedstat output:
- enable it on CONFIG_TASK_DELAY_ACCT=y && !CONFIG_SCHEDSTATS kernels.
- dump all zeroes on kernels that are booted with the 'nodelayacct'
option, which boot option disables delay accounting on
CONFIG_TASK_DELAY_ACCT=y kernels.
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: a.p.zijlstra@chello.nl
Cc: ricklind@us.ibm.com
Link: http://lkml.kernel.org/r/5ccbef17d4bc841084ea6e6421d4e4a23b7b806f.1435654789.git.naveen.n.rao@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull user namespace updates from Eric Biederman:
"Long ago and far away when user namespaces where young it was realized
that allowing fresh mounts of proc and sysfs with only user namespace
permissions could violate the basic rule that only root gets to decide
if proc or sysfs should be mounted at all.
Some hacks were put in place to reduce the worst of the damage could
be done, and the common sense rule was adopted that fresh mounts of
proc and sysfs should allow no more than bind mounts of proc and
sysfs. Unfortunately that rule has not been fully enforced.
There are two kinds of gaps in that enforcement. Only filesystems
mounted on empty directories of proc and sysfs should be ignored but
the test for empty directories was insufficient. So in my tree
directories on proc, sysctl and sysfs that will always be empty are
created specially. Every other technique is imperfect as an ordinary
directory can have entries added even after a readdir returns and
shows that the directory is empty. Special creation of directories
for mount points makes the code in the kernel a smidge clearer about
it's purpose. I asked container developers from the various container
projects to help test this and no holes were found in the set of mount
points on proc and sysfs that are created specially.
This set of changes also starts enforcing the mount flags of fresh
mounts of proc and sysfs are consistent with the existing mount of
proc and sysfs. I expected this to be the boring part of the work but
unfortunately unprivileged userspace winds up mounting fresh copies of
proc and sysfs with noexec and nosuid clear when root set those flags
on the previous mount of proc and sysfs. So for now only the atime,
read-only and nodev attributes which userspace happens to keep
consistent are enforced. Dealing with the noexec and nosuid
attributes remains for another time.
This set of changes also addresses an issue with how open file
descriptors from /proc/<pid>/ns/* are displayed. Recently readlink of
/proc/<pid>/fd has been triggering a WARN_ON that has not been
meaningful since it was added (as all of the code in the kernel was
converted) and is not now actively wrong.
There is also a short list of issues that have not been fixed yet that
I will mention briefly.
It is possible to rename a directory from below to above a bind mount.
At which point any directory pointers below the renamed directory can
be walked up to the root directory of the filesystem. With user
namespaces enabled a bind mount of the bind mount can be created
allowing the user to pick a directory whose children they can rename
to outside of the bind mount. This is challenging to fix and doubly
so because all obvious solutions must touch code that is in the
performance part of pathname resolution.
As mentioned above there is also a question of how to ensure that
developers by accident or with purpose do not introduce exectuable
files on sysfs and proc and in doing so introduce security regressions
in the current userspace that will not be immediately obvious and as
such are likely to require breaking userspace in painful ways once
they are recognized"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
vfs: Remove incorrect debugging WARN in prepend_path
mnt: Update fs_fully_visible to test for permanently empty directories
sysfs: Create mountpoints with sysfs_create_mount_point
sysfs: Add support for permanently empty directories to serve as mount points.
kernfs: Add support for always empty directories.
proc: Allow creating permanently empty directories that serve as mount points
sysctl: Allow creating permanently empty directories that serve as mountpoints.
fs: Add helper functions for permanently empty directories.
vfs: Ignore unlocked mounts in fs_fully_visible
mnt: Modify fs_fully_visible to deal with locked ro nodev and atime
mnt: Refactor the logic for mounting sysfs and proc in a user namespace
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Add a new function proc_create_mount_point that when used to creates a
directory that can not be added to.
Add a new function is_empty_pde to test if a function is a mount
point.
Update the code to use make_empty_dir_inode when reporting
a permanently empty directory to the vfs.
Update the code to not allow adding to permanently empty directories.
Update /proc/openprom and /proc/fs/nfsd to be permanently empty directories.
Cc: stable@vger.kernel.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Add a magic sysctl table sysctl_mount_point that when used to
create a directory forces that directory to be permanently empty.
Update the code to use make_empty_dir_inode when accessing permanently
empty directories.
Update the code to not allow adding to permanently empty directories.
Update /proc/sys/fs/binfmt_misc to be a permanently empty directory.
Cc: stable@vger.kernel.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Fresh mounts of proc and sysfs are a very special case that works very
much like a bind mount. Unfortunately the current structure can not
preserve the MNT_LOCK... mount flags. Therefore refactor the logic
into a form that can be modified to preserve those lock bits.
Add a new filesystem flag FS_USERNS_VISIBLE that requires some mount
of the filesystem be fully visible in the current mount namespace,
before the filesystem may be mounted.
Move the logic for calling fs_fully_visible from proc and sysfs into
fs/namespace.c where it has greater access to mount namespace state.
Cc: stable@vger.kernel.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Commit 818411616baf ("fs, proc: introduce /proc/<pid>/task/<tid>/children
entry") introduced the children entry for checkpoint restore and the
file is only available on kernels configured with CONFIG_EXPERT and
CONFIG_CHECKPOINT_RESTORE.
This is available in most distributions (Fedora, Debian, Ubuntu, CoreOS)
because they usually enable CONFIG_EXPERT and CONFIG_CHECKPOINT_RESTORE.
But Arch does not enable CONFIG_EXPERT or CONFIG_CHECKPOINT_RESTORE.
However, the children proc file is useful outside of checkpoint restore.
I would like to use it in rkt. The rkt process exec() another program
it does not control, and that other program will fork()+exec() a child
process. I would like to find the pid of the child process from an
external tool without iterating in /proc over all processes to find
which one has a parent pid equal to rkt.
This commit introduces CONFIG_PROC_CHILDREN and makes
CONFIG_CHECKPOINT_RESTORE select it. This allows enabling
/proc/<pid>/task/<tid>/children without needing to enable
CONFIG_CHECKPOINT_RESTORE and CONFIG_EXPERT.
Alban tested that /proc/<pid>/task/<tid>/children is present when the
kernel is configured with CONFIG_PROC_CHILDREN=y but without
CONFIG_CHECKPOINT_RESTORE
Signed-off-by: Iago López Galeiras <iago@endocode.com>
Tested-by: Alban Crequy <alban@endocode.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Serge Hallyn <serge.hallyn@canonical.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Djalal Harouni <djalal@endocode.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
/proc/$PID/cmdline truncates output at PAGE_SIZE. It is easy to see with
$ cat /proc/self/cmdline $(seq 1037) 2>/dev/null
However, command line size was never limited to PAGE_SIZE but to 128 KB
and relatively recently limitation was removed altogether.
People noticed and ask questions:
http://stackoverflow.com/questions/199130/how-do-i-increase-the-proc-pid-cmdline-4096-byte-limit
seq file interface is not OK, because it kmalloc's for whole output and
open + read(, 1) + sleep will pin arbitrary amounts of kernel memory. To
not do that, limit must be imposed which is incompatible with arbitrary
sized command lines.
I apologize for hairy code, but this it direct consequence of command line
layout in memory and hacks to support things like "init [3]".
The loops are "unrolled" otherwise it is either macros which hide control
flow or functions with 7-8 arguments with equal line count.
There should be real setproctitle(2) or something.
[akpm@linux-foundation.org: fix a billion min() warnings]
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Tested-by: Jarod Wilson <jarod@redhat.com>
Acked-by: Jarod Wilson <jarod@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |/
|/|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Allowing watchdog threads to be parked means that we now have the
opportunity of actually seeing persistent parked threads in the output
of /proc/<pid>/stat and /proc/<pid>/status. The existing code reported
such threads as "Running", which is kind-of true if you think of the
case where we park them as part of taking cpus offline. But if we allow
parking them indefinitely, "Running" is pretty misleading, so we report
them as "Sleeping" instead.
We could simply report them with a new string, "Parked", but it feels
like it's a bit risky for userspace to see unexpected new values; the
output is already documented in Documentation/filesystems/proc.txt, and
it seems like a mistake to change that lightly.
The scheduler does report parked tasks with a "P" in debugging output
from sched_show_task() or dump_cpu_task(), but that's a different API.
Similarly, the trace_ctxwake_* routines report a "P" for parked tasks,
but again, different API.
This change seemed slightly cleaner than updating the task_state_array
to have additional rows. TASK_DEAD should be subsumed by the exit_state
bits; TASK_WAKEKILL is just a modifier; and TASK_WAKING can very
reasonably be reported as "Running" (as it is now). Only TASK_PARKED
shows up with unreasonable output here.
Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| | |
only one instance looks at that argument at all; that sole
exception wants inode rather than dentry.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| | |
its only use is getting passed to nd_jump_link(), which can obtain
it from current->nameidata
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
a) instead of storing the symlink body (via nd_set_link()) and returning
an opaque pointer later passed to ->put_link(), ->follow_link() _stores_
that opaque pointer (into void * passed by address by caller) and returns
the symlink body. Returning ERR_PTR() on error, NULL on jump (procfs magic
symlinks) and pointer to symlink body for normal symlinks. Stored pointer
is ignored in all cases except the last one.
Storing NULL for opaque pointer (or not storing it at all) means no call
of ->put_link().
b) the body used to be passed to ->put_link() implicitly (via nameidata).
Now only the opaque pointer is. In the cases when we used the symlink body
to free stuff, ->follow_link() now should store it as opaque pointer in addition
to returning it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull fourth vfs update from Al Viro:
"d_inode() annotations from David Howells (sat in for-next since before
the beginning of merge window) + four assorted fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
RCU pathwalk breakage when running into a symlink overmounting something
fix I_DIO_WAKEUP definition
direct-io: only inc/dec inode->i_dio_count for file systems
fs/9p: fix readdir()
VFS: assorted d_backing_inode() annotations
VFS: fs/inode.c helpers: d_inode() annotations
VFS: fs/cachefiles: d_backing_inode() annotations
VFS: fs library helpers: d_inode() annotations
VFS: assorted weird filesystems: d_inode() annotations
VFS: normal filesystems (and lustre): d_inode() annotations
VFS: security/: d_inode() annotations
VFS: security/: d_backing_inode() annotations
VFS: net/: d_inode() annotations
VFS: net/unix: d_backing_inode() annotations
VFS: kernel/: d_inode() annotations
VFS: audit: d_backing_inode() annotations
VFS: Fix up some ->d_inode accesses in the chelsio driver
VFS: Cachefiles should perform fs modifications on the top layer only
VFS: AF_UNIX sockets should call mknod on the top layer only
|
| |
| |
| |
| |
| |
| |
| | |
that's the bulk of filesystem drivers dealing with inodes of their own
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Let's show locks which are associated with a file descriptor in
its fdinfo file.
Currently we don't have a reliable way to determine who holds a lock. We
can find some information in /proc/locks, but PID which is reported there
can be wrong. For example, a process takes a lock, then forks a child and
dies. In this case /proc/locks contains the parent pid, which can be
reused by another process.
$ cat /proc/locks
...
6: FLOCK ADVISORY WRITE 324 00:13:13431 0 EOF
...
$ ps -C rpcbind
PID TTY TIME CMD
332 ? 00:00:00 rpcbind
$ cat /proc/332/fdinfo/4
pos: 0
flags: 0100000
mnt_id: 22
lock: 1: FLOCK ADVISORY WRITE 324 00:13:13431 0 EOF
$ ls -l /proc/332/fd/4
lr-x------ 1 root root 64 Mar 5 14:43 /proc/332/fd/4 -> /run/rpcbind.lock
$ ls -l /proc/324/fd/
total 0
lrwx------ 1 root root 64 Feb 27 14:50 0 -> /dev/pts/0
lrwx------ 1 root root 64 Feb 27 14:50 1 -> /dev/pts/0
lrwx------ 1 root root 64 Feb 27 14:49 2 -> /dev/pts/0
You can see that the process with the 324 pid doesn't hold the lock.
This information is required for proper dumping and restoring file
locks.
Signed-off-by: Andrey Vagin <avagin@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Acked-by: Jeff Layton <jlayton@poochiereds.net>
Acked-by: "J. Bruce Fields" <bfields@fieldses.org>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The seq_printf return value, because it's frequently misused,
will eventually be converted to void.
See: commit 1f33c41c03da ("seq_file: Rename seq_overflow() to
seq_has_overflowed() and make public")
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The current semantics of string_escape_mem are inadequate for one of its
current users, vsnprintf(). If that is to honour its contract, it must
know how much space would be needed for the entire escaped buffer, and
string_escape_mem provides no way of obtaining that (short of allocating a
large enough buffer (~4 times input string) to let it play with, and
that's definitely a big no-no inside vsnprintf).
So change the semantics for string_escape_mem to be more snprintf-like:
Return the size of the output that would be generated if the destination
buffer was big enough, but of course still only write to the part of dst
it is allowed to, and (contrary to snprintf) don't do '\0'-termination.
It is then up to the caller to detect whether output was truncated and to
append a '\0' if desired. Also, we must output partial escape sequences,
otherwise a call such as snprintf(buf, 3, "%1pE", "\123") would cause
printf to write a \0 to buf[2] but leaving buf[0] and buf[1] with whatever
they previously contained.
This also fixes a bug in the escaped_string() helper function, which used
to unconditionally pass a length of "end-buf" to string_escape_mem();
since the latter doesn't check osz for being insanely large, it would
happily write to dst. For example, kasprintf(GFP_KERNEL, "something and
then %pE", ...); is an easy way to trigger an oops.
In test-string_helpers.c, the -ENOMEM test is replaced with testing for
getting the expected return value even if the buffer is too small. We
also ensure that nothing is written (by relying on a NULL pointer deref)
if the output size is 0 by passing NULL - this has to work for
kasprintf("%pE") to work.
In net/sunrpc/cache.c, I think qword_add still has the same semantics.
Someone should definitely double-check this.
In fs/proc/array.c, I made the minimum possible change, but longer-term it
should stop poking around in seq_file internals.
[andriy.shevchenko@linux.intel.com: simplify qword_add]
[andriy.shevchenko@linux.intel.com: add missed curly braces]
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If some issues occurred inside a container guest, host user could not know
which process is in trouble just by guest pid: the users of container
guest only knew the pid inside containers. This will bring obstacle for
trouble shooting.
This patch adds four fields: NStgid, NSpid, NSpgid and NSsid:
a) In init_pid_ns, nothing changed;
b) In one pidns, will tell the pid inside containers:
NStgid: 21776 5 1
NSpid: 21776 5 1
NSpgid: 21776 5 1
NSsid: 21729 1 0
** Process id is 21776 in level 0, 5 in level 1, 1 in level 2.
c) If pidns is nested, it depends on which pidns are you in.
NStgid: 5 1
NSpid: 5 1
NSpgid: 5 1
NSsid: 1 0
** Views from level 1
[akpm@linux-foundation.org: add CONFIG_PID_NS ifdef]
Signed-off-by: Chen Hanxiao <chenhanxiao@cn.fujitsu.com>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Tested-by: Serge Hallyn <serge.hallyn@canonical.com>
Tested-by: Nathan Scott <nathans@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As pointed by recent post[1] on exploiting DRAM physical imperfection,
/proc/PID/pagemap exposes sensitive information which can be used to do
attacks.
This disallows anybody without CAP_SYS_ADMIN to read the pagemap.
[1] http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
[ Eventually we might want to do anything more finegrained, but for now
this is the simple model. - Linus ]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Mark Seaborn <mseaborn@chromium.org>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
| |
use_pde()/unuse_pde() in ->follow_link()/->put_link() resp.
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull misc VFS updates from Al Viro:
"This cycle a lot of stuff sits on topical branches, so I'll be sending
more or less one pull request per branch.
This is the first pile; more to follow in a few. In this one are
several misc commits from early in the cycle (before I went for
separate branches), plus the rework of mntput/dput ordering on umount,
switching to use of fs_pin instead of convoluted games in
namespace_unlock()"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
switch the IO-triggering parts of umount to fs_pin
new fs_pin killing logics
allow attaching fs_pin to a group not associated with some superblock
get rid of the second argument of acct_kill()
take count and rcu_head out of fs_pin
dcache: let the dentry count go down to zero without taking d_lock
pull bumping refcount into ->kill()
kill pin_put()
mode_t whack-a-mole: chelsio
file->f_path.dentry is pinned down for as long as the file is open...
get rid of lustre_dump_dentry()
gut proc_register() a bit
kill d_validate()
ncpfs: get rid of d_validate() nonsense
selinuxfs: don't open-code d_genocide()
|
| |
| |
| |
| |
| |
| |
| | |
There are only 3 callers and quite a bit of that thing is executed
exactly in one of those. Just lift it there...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When updating PT_NOTE header size (ie. p_memsz), an overflow issue
happens with the following bogus note entry:
n_namesz = 0xFFFFFFFF
n_descsz = 0x0
n_type = 0x0
This kind of note entry should be dropped during updating p_memsz. But
because n_namesz is 32bit, after (n_namesz + 3) & (~3), it's overflow to
0x0, the note entry size looks sane and reserved.
When userspace (eg. crash utility) is trying to access such bogus note,
it could lead to an unexpected behavior (eg. crash utility segment fault
because it's reading bogus address).
The source of bogus note hasn't been identified yet. At least we could
drop the bogus note so user space wouldn't be surprised.
Signed-off-by: WANG Chao <chaowang@redhat.com>
Cc: Dave Anderson <anderson@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Randy Wright <rwright@hp.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Rashika Kheria <rashika.kheria@gmail.com>
Cc: Greg Pearson <greg.pearson@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
printk and friends can now format bitmaps using '%*pb[l]'. cpumask
and nodemask also provide cpumask_pr_args() and nodemask_pr_args()
respectively which can be used to generate the two printf arguments
necessary to format the specified cpu/nodemask.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Instead of custom approach let's use string_escape_str() to escape a given
string (task_name in this case).
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The output of /proc/$pid/numa_maps is in terms of number of pages like
anon=22 or dirty=54. Here's some output:
7f4680000000 default file=/hugetlb/bigfile anon=50 dirty=50 N0=50
7f7659600000 default file=/anon_hugepage\040(deleted) anon=50 dirty=50 N0=50
7fff8d425000 default stack anon=50 dirty=50 N0=50
Looks like we have a stack and a couple of anonymous hugetlbfs
areas page which both use the same amount of memory. They don't.
The 'bigfile' uses 1GB pages and takes up ~50GB of space. The
anon_hugepage uses 2MB pages and takes up ~100MB of space while the stack
uses normal 4k pages. You can go over to smaps to figure out what the
page size _really_ is with KernelPageSize or MMUPageSize. But, I think
this is a pretty nasty and counterintuitive interface as it stands.
This patch introduces 'kernelpagesize_kB' line element to
/proc/<pid>/numa_maps report file in order to help identifying the size of
pages that are backing memory areas mapped by a given task. This is
specially useful to help differentiating between HUGE and GIGANTIC page
backed VMAs.
This patch is based on Dave Hansen's proposal and reviewer's follow-ups
taken from the following dicussion threads:
* https://lkml.org/lkml/2011/9/21/454
* https://lkml.org/lkml/2014/12/20/66
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Use the PDE() helper to get proc_dir_entry instead of coding it directly.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Acked-by: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
(peak RSS)
Peak resident size of a process can be reset back to the process's
current rss value by writing "5" to /proc/pid/clear_refs. The driving
use-case for this would be getting the peak RSS value, which can be
retrieved from the VmHWM field in /proc/pid/status, per benchmark
iteration or test scenario.
[akpm@linux-foundation.org: clarify behaviour in documentation]
Signed-off-by: Petr Cermak <petrcermak@chromium.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Primiano Tucci <primiano@chromium.org>
Cc: Petr Cermak <petrcermak@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Currently pagewalker splits all THP pages on any clear_refs request. It's
not necessary. We can handle this on PMD level.
One side effect is that soft dirty will potentially see more dirty memory,
since we will mark whole THP page dirty at once.
Sanity checked with CRIU test suite. More testing is required.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
walk_page_range() silently skips vma having VM_PFNMAP set, which leads to
undesirable behaviour at client end (who called walk_page_range). For
example for pagemap_read(), when no callbacks are called against VM_PFNMAP
vma, pagemap_read() may prepare pagemap data for next virtual address
range at wrong index. That could confuse and/or break userspace
applications.
This patch avoid this misbehavior caused by vma(VM_PFNMAP) like follows:
- for pagemap_read() which has its own ->pte_hole(), call the ->pte_hole()
over vma(VM_PFNMAP),
- for clear_refs and queue_pages which have their own ->tests_walk,
just return 1 and skip vma(VM_PFNMAP). This is no problem because
these are not interested in hole regions,
- for other callers, just skip the vma(VM_PFNMAP) as a default behavior.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Shiraz Hashim <shashim@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
pagewalk.c can handle vma in itself, so we don't have to pass vma via
walk->private. And show_numa_map() walks pages on vma basis, so using
walk_page_vma() is preferable.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Just doing s/gather_hugetbl_stats/gather_hugetlb_stats/g, this makes code
grep-friendly.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Page table walker has the information of the current vma in mm_walk, so we
don't have to call find_vma() in each pagemap_(pte|hugetlb)_range() call
any longer. Currently pagemap_pte_range() does vma loop itself, so this
patch reduces many lines of code.
NULL-vma check is omitted because we assume that we never run these
callbacks on any address outside vma. And even if it were broken, NULL
pointer dereference would be detected, so we can get enough information
for debugging.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
clear_refs_write() has some prechecks to determine if we really walk over
a given vma. Now we have a test_walk() callback to filter vmas, so let's
utilize it.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
pagewalk.c can handle vma in itself, so we don't have to pass vma via
walk->private. And show_smap() walks pages on vma basis, so using
walk_page_vma() is preferable.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Lockless access to pte in pagemap_pte_range() might race with page
migration and trigger BUG_ON(!PageLocked()) in migration_entry_to_page():
CPU A (pagemap) CPU B (migration)
lock_page()
try_to_unmap(page, TTU_MIGRATION...)
make_migration_entry()
set_pte_at()
<read *pte>
pte_to_pagemap_entry()
remove_migration_ptes()
unlock_page()
if(is_migration_entry())
migration_entry_to_page()
BUG_ON(!PageLocked(page))
Also lockless read might be non-atomic if pte is larger than wordsize.
Other pte walkers (smaps, numa_maps, clear_refs) already lock ptes.
Fixes: 052fb0d635df ("proc: report file/anon bit in /proc/pid/pagemap")
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reported-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org> [3.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Dave noticed that unprivileged process can allocate significant amount of
memory -- >500 MiB on x86_64 -- and stay unnoticed by oom-killer and
memory cgroup. The trick is to allocate a lot of PMD page tables. Linux
kernel doesn't account PMD tables to the process, only PTE.
The use-cases below use few tricks to allocate a lot of PMD page tables
while keeping VmRSS and VmPTE low. oom_score for the process will be 0.
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#define PUD_SIZE (1UL << 30)
#define PMD_SIZE (1UL << 21)
#define NR_PUD 130000
int main(void)
{
char *addr = NULL;
unsigned long i;
prctl(PR_SET_THP_DISABLE);
for (i = 0; i < NR_PUD ; i++) {
addr = mmap(addr + PUD_SIZE, PUD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
if (addr == MAP_FAILED) {
perror("mmap");
break;
}
*addr = 'x';
munmap(addr, PMD_SIZE);
mmap(addr, PMD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, -1, 0);
if (addr == MAP_FAILED)
perror("re-mmap"), exit(1);
}
printf("PID %d consumed %lu KiB in PMD page tables\n",
getpid(), i * 4096 >> 10);
return pause();
}
The patch addresses the issue by account PMD tables to the process the
same way we account PTE.
The main place where PMD tables is accounted is __pmd_alloc() and
free_pmd_range(). But there're few corner cases:
- HugeTLB can share PMD page tables. The patch handles by accounting
the table to all processes who share it.
- x86 PAE pre-allocates few PMD tables on fork.
- Architectures with FIRST_USER_ADDRESS > 0. We need to adjust sanity
check on exit(2).
Accounting only happens on configuration where PMD page table's level is
present (PMD is not folded). As with nr_ptes we use per-mm counter. The
counter value is used to calculate baseline for badness score by
oom-killer.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: David Rientjes <rientjes@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Add KPF_ZERO_PAGE flag for zero_page, so that userspace processes can
detect zero_page in /proc/kpageflags, and then do memory analysis more
accurately.
Signed-off-by: Yalin Wang <yalin.wang@sonymobile.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|/
|
|
|
|
|
|
|
| |
We have to handle non-linear mappings for /proc/PID/{smaps,clear_refs}
which is unused now. Let's drop it.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq core fix from Thomas Gleixner:
"A single fix plugging a long standing race between proc/stat and
proc/interrupts access and freeing of interrupt descriptors"
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
genirq: Prevent proc race against freeing of irq descriptors
|