| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
| |
Replace unclear (struct dentry *) to (struct file *) typecast with ERR_CAST() macro.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
sbi->s_mutex isn't needed for isofs at all so we can just remove it. Generally,
since isofs is always mounted read-only, filesystem structure cannot change
under us. So buffer_head contents stays constant after it's filled in. That
leaves us with possible changes of global data structures. Superblock changes
only during filesystem mount (even remount does not change it), inodes are only
filled in during reading from disk. So there are no changes of these structures
to bother about.
Arguments why sbi->s_mutex can be removed at each place:
isofs_readdir: Accesses sb, inode, filp, local variables => s_mutex not needed
isofs_lookup: Protected by directory's i_mutex. Accesses sb, inode, dentry,
local variables => s_mutex not needed
rock_ridge_symlink_readpage: Protected by page lock. Accesses sb, inode,
local variables => s_mutex not needed.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
| |
We don't generate IN_DELETE_SELF on victim of overwriting rename() if
it happens to be a directory. Trivially fixed by doing to ->i_nlink
what we do ->pino_nlink a couple of lines later in jffs2_rename().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
| |
On ramfs and other simple_rename() users IN_DELETE_SELF is not generated
for victim of overwriting rename() if it's is a directory. Works on
most of the local filesystems and really trivial to fix...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
| |
->d_parent is never NULL...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
| |
Fix silly characters in a comment in AFS code (some weird characters replaced
the word 'flag' some point way back).
Reported-by: viro@ZenIV.linux.org.uk
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
| |
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
| |
d_splice_alias() will DTRT when given NULL or ERR_PTR
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
| |
they'll never be passed to ->lookup()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
| |
->d_parent is locked and stable there...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
| |
both callers there have dentry->d_parent stabilized by the fact that
their caller had obtained dentry from lookup_one_len() and had not
dropped ->i_mutex on parent since then.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Btrfs needs to be able to control how filemap_write_and_wait_range() is called
in fsync to make it less of a painful operation, so push down taking i_mutex and
the calling of filemap_write_and_wait() down into the ->fsync() handlers. Some
file systems can drop taking the i_mutex altogether it seems, like ext3 and
ocfs2. For correctness sake I just pushed everything down in all cases to make
sure that we keep the current behavior the same for everybody, and then each
individual fs maintainer can make up their mind about what to do from there.
Thanks,
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
| |
This converts everybody to handle SEEK_HOLE/SEEK_DATA properly. In some cases
we just return -EINVAL, in others we do the normal generic thing, and in others
we're simply making sure that the properly due-dilligence is done. For example
in NFS/CIFS we need to make sure the file size is update properly for the
SEEK_HOLE and SEEK_DATA case, but since it calls the generic llseek stuff itself
that is all we have to do. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
| |
Since Ext4 has its own lseek we need to make sure it handles
SEEK_HOLE/SEEK_DATA. For now just do the same thing that is done in the generic
case, somebody else can come along and make it do fancy things later. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
| |
In order to handle SEEK_HOLE/SEEK_DATA we need to implement our own llseek.
Basically for the normal SEEK_*'s we will just defer to the generic helper, and
for SEEK_HOLE/SEEK_DATA we will use our fiemap helper to figure out the nearest
hole or data. Currently this helper doesn't check for delalloc bytes for
prealloc space, so for now treat prealloc as data until that is fixed. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This just gets us ready to support the SEEK_HOLE and SEEK_DATA flags. Turns out
using fiemap in things like cp cause more problems than it solves, so lets try
and give userspace an interface that doesn't suck. We need to match solaris
here, and the definitions are
*o* If /whence/ is SEEK_HOLE, the offset of the start of the
next hole greater than or equal to the supplied offset
is returned. The definition of a hole is provided near
the end of the DESCRIPTION.
*o* If /whence/ is SEEK_DATA, the file pointer is set to the
start of the next non-hole file region greater than or
equal to the supplied offset.
So in the generic case the entire file is data and there is a virtual hole at
the end. That means we will just return i_size for SEEK_HOLE and will return
the same offset for SEEK_DATA. This is how Solaris does it so we have to do it
the same way.
Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
| |
Change the default reiserfs mount option to barrier=flush. Based on a patch
from Jeff Mahoney in the SuSE tree.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch turns on barriers by default for ext3. mount -o barrier=0
will turn them off. Based on a patch from Chris Mason in the SuSE tree.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Eric Sandeen <sandeen@redhat.com>
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Jeff Mahoney <jeffm@suse.com>
Acked-by: Ted Ts'o <tytso@mit.edu>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
| |
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
| |
we can find superblock easier, TYVM...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
| |
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Moving the event counter into the dynamically allocated 'struc seq_file'
allows poll() support without the need to allocate its own tracking
structure.
All current users are switched over to use the new counter.
Requested-by: Andrew Morton akpm@linux-foundation.org
Acked-by: NeilBrown <neilb@suse.de>
Tested-by: Lucas De Marchi lucas.demarchi@profusion.mobi
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For filesystems that delay their end_io processing we should keep our
i_dio_count until the the processing is done. Enable this by moving
the inode_dio_done call to the end_io handler if one exist. Note that
the actual move to the workqueue for ext4 and XFS is not done in
this patch yet, but left to the filesystem maintainers. At least
for XFS it's not needed yet either as XFS has an internal equivalent
to i_dio_count.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Simple filesystems always pass inode->i_sb_bdev as the block device
argument, and never need a end_io handler. Let's simply things for
them and for my grepping activity by dropping these arguments. The
only thing not falling into that scheme is ext4, which passes and
end_io handler without needing special flags (yet), but given how
messy the direct I/O code there is use of __blockdev_direct_IO
in one instead of two out of three cases isn't going to make a large
difference anyway.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Maintain i_dio_count for all filesystems, not just those using DIO_LOCKING.
This these filesystems to also protect truncate against direct I/O requests
by using common code. Right now the only non-DIO_LOCKING filesystem that
appears to do so is XFS, which uses an opencoded variant of the i_dio_count
scheme.
Behaviour doesn't change for filesystems never calling inode_dio_wait.
For ext4 behaviour changes when using the dioread_nonlock option, which
previously was missing any protection between truncate and direct I/O reads.
For ocfs2 that handcrafted i_dio_count manipulations are replaced with
the common code now enable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
| |
Let filesystems handle waiting for direct I/O requests themselves instead
of doing it beforehand. This means filesystem-specific locks to prevent
new dio referenes from appearing can be held. This is important to allow
generalizing i_dio_count to non-DIO_LOCKING filesystems.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
i_alloc_sem is a rather special rw_semaphore. It's the last one that may
be released by a non-owner, and it's write side is always mirrored by
real exclusion. It's intended use it to wait for all pending direct I/O
requests to finish before starting a truncate.
Replace it with a hand-grown construct:
- exclusion for truncates is already guaranteed by i_mutex, so it can
simply fall way
- the reader side is replaced by an i_dio_count member in struct inode
that counts the number of pending direct I/O requests. Truncate can't
proceed as long as it's non-zero
- when i_dio_count reaches non-zero we wake up a pending truncate using
wake_up_bit on a new bit in i_flags
- new references to i_dio_count can't appear while we are waiting for
it to read zero because the direct I/O count always needs i_mutex
(or an equivalent like XFS's i_iolock) for starting a new operation.
This scheme is much simpler, and saves the space of a spinlock_t and a
struct list_head in struct inode (typically 160 bits on a non-debug 64-bit
system).
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
| |
Reject zero sized reads as soon as we know our I/O length, and don't
borther with locks or allocations that might have to be cleaned up
otherwise.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rewrite ext4_page_mkwrite() to use __block_page_mkwrite() helper. This
removes the need of using i_alloc_sem to avoid races with truncate which
seems to be the wrong locking order according to lock ordering documented in
mm/rmap.c. Also calling ext4_da_write_begin() as used by the old code seems to
be problematic because we can decide to flush delay-allocated blocks which
will acquire s_umount semaphore - again creating unpleasant lock dependency
if not directly a deadlock.
Also add a check for frozen filesystem so that we don't busyloop in page fault
when the filesystem is frozen.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
| |
Add a new rw_semaphore to protect bmap against truncate. Previous
i_alloc_sem was abused for this, but it's going away in this series.
Note that we can't simply use i_mutex, given that the swapon code
calls ->bmap under it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
| |
The flags parameter went away in
d749519b444db985e40b897f73ce1898b11f997e
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Convert the inode reclaim shrinker to use the new per-sb shrinker
operations. This allows much bigger reclaim batches to be used, and
allows the XFS inode cache to be shrunk in proportion with the VFS
dentry and inode caches. This avoids the problem of the VFS caches
being shrunk significantly before the XFS inode cache is shrunk
resulting in imbalances in the caches during reclaim.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that the per-sb shrinker is responsible for shrinking 2 or more
caches, increase the batch size to keep econmies of scale for
shrinking each cache. Increase the shrinker batch size to 1024
objects.
To allow for a large increase in batch size, add a conditional
reschedule to prune_icache_sb() so that we don't hold the LRU spin
lock for too long. This mirrors the behaviour of the
__shrink_dcache_sb(), and allows us to increase the batch size
without needing to worry about problems caused by long lock hold
times.
To ensure that filesystems using the per-sb shrinker callouts don't
cause problems, document that the object freeing method must
reschedule appropriately inside loops.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now we have a per-superblock shrinker implementation, we can add a
filesystem specific callout to it to allow filesystem internal
caches to be shrunk by the superblock shrinker.
Rather than perpetuate the multipurpose shrinker callback API (i.e.
nr_to_scan == 0 meaning "tell me how many objects freeable in the
cache), two operations will be added. The first will return the
number of objects that are freeable, the second is the actual
shrinker call.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
| |
Now that we have per-sb shrinkers with a lifecycle that is a subset
of the superblock lifecycle and can reliably detect a filesystem
being unmounted, there is not longer any race condition for the
iprune_sem to protect against. Hence we can remove it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With context based shrinkers, we can implement a per-superblock
shrinker that shrinks the caches attached to the superblock. We
currently have global shrinkers for the inode and dentry caches that
split up into per-superblock operations via a coarse proportioning
method that does not batch very well. The global shrinkers also
have a dependency - dentries pin inodes - so we have to be very
careful about how we register the global shrinkers so that the
implicit call order is always correct.
With a per-sb shrinker callout, we can encode this dependency
directly into the per-sb shrinker, hence avoiding the need for
strictly ordering shrinker registrations. We also have no need for
any proportioning code for the shrinker subsystem already provides
this functionality across all shrinkers. Allowing the shrinker to
operate on a single superblock at a time means that we do less
superblock list traversals and locking and reclaim should batch more
effectively. This should result in less CPU overhead for reclaim and
potentially faster reclaim of items from each filesystem.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The per-sb shrinker has the same requirement as the writeback
threads of ensuring that the superblock is usable and pinned for the
time it takes to run the work. Both need to take a passive reference
to the sb, take a read lock on the s_umount lock and then only
continue if an unmount is not in progress.
pin_sb_for_writeback() does this exactly, so move it to fs/super.c
and rename it to grab_super_passive() and exporting it via
fs/internal.h for all the VFS code to be able to use.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
| |
With the inode LRUs moving to per-sb structures, there is no longer
a need for a global inode_lru_lock. The locking can be made more
fine-grained by moving to a per-sb LRU lock, isolating the LRU
operations of different filesytsems completely from each other.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The inode unused list is currently a global LRU. This does not match
the other global filesystem cache - the dentry cache - which uses
per-superblock LRU lists. Hence we have related filesystem object
types using different LRU reclaimation schemes.
To enable a per-superblock filesystem cache shrinker, both of these
caches need to have per-sb unused object LRU lists. Hence this patch
converts the global inode LRU to per-sb LRUs.
The patch only does rudimentary per-sb propotioning in the shrinker
infrastructure, as this gets removed when the per-sb shrinker
callouts are introduced later on.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
| |
Before we split up the inode_lru_lock, the unused inode counter
needs to be made independent of the global inode_lru_lock. Convert
it to per-cpu counters to do this.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
| |
... and simplify the living hell out of callers
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
| |
d_splice_alias(NULL, dentry) is equivalent to d_add(dentry, NULL), NULL
so no need for that if (inode) ... in there (or ERR_PTR(0), for that
matter)
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
| |
just rewind it to the beginning before vfs_readdir() and be
done with that...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
| |
never is...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
| |
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
| |
it never is...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
New helper (non-exported, fs/internal.h-only): __d_alloc(sb, name).
Allocates dentry, sets its ->d_sb to given superblock and sets
->d_op accordingly. Old d_alloc(NULL, name) callers are converted
to that (all of them know what superblock they want). d_alloc()
itself is left only for parent != NULl case; uses __d_alloc(),
inserts result into the list of parent's children.
Note that now ->d_sb is assign-once and never NULL *and*
->d_parent is never NULL either.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
| |
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
| |
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
|
|
| |
folded into the only caller (kern_path_create())
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|