summaryrefslogtreecommitdiffstats
path: root/include/asm-avr32/cacheflush.h (follow)
Commit message (Collapse)AuthorAgeFilesLines
* [AVR32] Fix copy_to_user_page() breakageHaavard Skinnemoen2007-12-071-9/+10
| | | | | | | | | | | | The current implementation of copy_to_user_page() gives "vaddr" to the cache instruction when trying to sync the icache with the dcache. If vaddr does not exist in the TLB, the CPU will silently abort the operation, which may result in the caches staying out of sync. To fix this, pass the "dst" parameter to flush_icache_range() instead -- we know this is valid because we just wrote to it. Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
* [PATCH] Optimize D-cache alias handling on forkRalf Baechle2006-12-131-0/+1
| | | | | | | | | | | Virtually index, physically tagged cache architectures can get away without cache flushing when forking. This patch adds a new cache flushing function flush_cache_dup_mm(struct mm_struct *) which for the moment I've implemented to do the same thing on all architectures except on MIPS where it's a no-op. Signed-off-by: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] avr32 architectureHaavard Skinnemoen2006-09-261-0/+129
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000 CPU and the AT32STK1000 development board. AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. The AVR32 architecture is not binary compatible with earlier 8-bit AVR architectures. The AVR32 architecture, including the instruction set, is described by the AVR32 Architecture Manual, available from http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It features a 7-stage pipeline, 16KB instruction and data caches and a full Memory Management Unit. It also comes with a large set of integrated peripherals, many of which are shared with the AT91 ARM-based controllers from Atmel. Full data sheet is available from http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf while the CPU core implementation including caches and MMU is documented by the AVR32 AP Technical Reference, available from http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf Information about the AT32STK1000 development board can be found at http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918 including a BSP CD image with an earlier version of this patch, development tools (binaries and source/patches) and a root filesystem image suitable for booting from SD card. Alternatively, there's a preliminary "getting started" guide available at http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links to the sources and patches you will need in order to set up a cross-compiling environment for avr32-linux. This patch, as well as the other patches included with the BSP and the toolchain patches, is actively supported by Atmel Corporation. [dmccr@us.ibm.com: Fix more pxx_page macro locations] [bunk@stusta.de: fix `make defconfig'] Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Dave McCracken <dmccr@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>