summaryrefslogtreecommitdiffstats
path: root/include/asm-sparc/spinlock.h (follow)
Commit message (Collapse)AuthorAgeFilesLines
* sparc, sparc64: use arch/sparc/includeSam Ravnborg2008-07-271-8/+0
| | | | | | | | | | | | | | | | | | | | | The majority of this patch was created by the following script: *** ASM=arch/sparc/include/asm mkdir -p $ASM git mv include/asm-sparc64/ftrace.h $ASM git rm include/asm-sparc64/* git mv include/asm-sparc/* $ASM sed -ie 's/asm-sparc64/asm/g' $ASM/* sed -ie 's/asm-sparc/asm/g' $ASM/* *** The rest was an update of the top-level Makefile to use sparc for header files when sparc64 is being build. And a small fixlet to pick up the correct unistd.h from sparc64 code. Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
* sparc: join the remaining header filesSam Ravnborg2008-07-181-192/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With this commit all sparc64 header files are moved to asm-sparc. The remaining files (71 files) were too different to be trivially merged so divide them up in a _32.h and a _64.h file which are both included from the file with no bit size. The following script were used: cd include FILES=`wc -l asm-sparc64/*h | grep -v '^ 1' | cut -b 20-` for FILE in ${FILES}; do echo $FILE: BASE=`echo $FILE | cut -d '.' -f 1` FN32=${BASE}_32.h FN64=${BASE}_64.h GUARD=___ASM_SPARC_`echo $BASE | tr '-' '_' | tr [:lower:] [:upper:]`_H git mv asm-sparc/$FILE asm-sparc/$FN32 git mv asm-sparc64/$FILE asm-sparc/$FN64 echo git mv done printf "#ifndef %s\n" $GUARD > asm-sparc/$FILE printf "#define %s\n" $GUARD >> asm-sparc/$FILE printf "#if defined(__sparc__) && defined(__arch64__)\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN64 >> asm-sparc/$FILE printf "#else\n" >> asm-sparc/$FILE printf "#include <asm-sparc/%s>\n" $FN32 >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE printf "#endif\n" >> asm-sparc/$FILE git add asm-sparc/$FILE echo new file done printf "#include <asm-sparc/%s>\n" $FILE > asm-sparc64/$FILE git add asm-sparc64/$FILE echo sparc64 file done done The guard contains three '_' to avoid conflict with existing guards. In additing the two Kbuild files are emptied to avoid breaking headers_* targets. We will reintroduce the exported header files when the necessary kbuild changes are merged. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* [PATCH] sparc32 rwlock fixAl Viro2006-10-081-1/+27
| | | | | | | | | | | | | | | | | read_trylock() is broken on sparc32 (doesn't build and didn't work right, actually). Proposed fix: - make "writer holds lock" distinguishable from "reader tries to grab lock" - have __raw_read_trylock() try to acquire the mutex (in LSB of lock), terminating spin if we see that there's writer holding it. Then do the rest as we do in read_lock(). Thanks to Ingo for discussion... Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [PATCH] Directed yield: cpu_relax variants for spinlocks and rw-locksMartin Schwidefsky2006-10-011-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | On systems running with virtual cpus there is optimization potential in regard to spinlocks and rw-locks. If the virtual cpu that has taken a lock is known to a cpu that wants to acquire the same lock it is beneficial to yield the timeslice of the virtual cpu in favour of the cpu that has the lock (directed yield). With CONFIG_PREEMPT="n" this can be implemented by the architecture without common code changes. Powerpc already does this. With CONFIG_PREEMPT="y" the lock loops are coded with _raw_spin_trylock, _raw_read_trylock and _raw_write_trylock in kernel/spinlock.c. If the lock could not be taken cpu_relax is called. A directed yield is not possible because cpu_relax doesn't know anything about the lock. To be able to yield the lock in favour of the current lock holder variants of cpu_relax for spinlocks and rw-locks are needed. The new _raw_spin_relax, _raw_read_relax and _raw_write_relax primitives differ from cpu_relax insofar that they have an argument: a pointer to the lock structure. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* [SPARC]: Add missing rw can_lock macrosBob Breuer2006-06-201-0/+3
| | | | | | | | Fix a link failure by adding the missing can_lock macros for the rw locks. Signed-off-by: Bob Breuer <breuerr@mc.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* [SPARC]: Try to start getting SMP back into shape.Bob Breuer2006-03-241-3/+22
| | | | | | | | | | | | | | | | | Todo items: - IRQ_INPROGRESS flag - use sparc64 irq buckets, or generic irq_desc? - sun4d - re-indent large chunks of sun4m_smp.c - some places assume sequential cpu numbering (i.e. 0,1 instead of 0,2) Last I checked (with 2.6.14), random programs segfault with dual HyperSPARC. And with SuperSPARC II's, it seems stable but will eventually die from a write lock error (wrong lock owner or something). I haven't tried the HyperSPARC + highmem combination recently, so that may still be a problem. Signed-off-by: David S. Miller <davem@davemloft.net>
* [SPARC]: "extern inline" doesn't make much sense.Adrian Bunk2005-10-041-5/+5
| | | | | Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: David S. Miller <davem@davemloft.net>
* [PATCH] spinlock consolidationIngo Molnar2005-09-101-119/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch (written by me and also containing many suggestions of Arjan van de Ven) does a major cleanup of the spinlock code. It does the following things: - consolidates and enhances the spinlock/rwlock debugging code - simplifies the asm/spinlock.h files - encapsulates the raw spinlock type and moves generic spinlock features (such as ->break_lock) into the generic code. - cleans up the spinlock code hierarchy to get rid of the spaghetti. Most notably there's now only a single variant of the debugging code, located in lib/spinlock_debug.c. (previously we had one SMP debugging variant per architecture, plus a separate generic one for UP builds) Also, i've enhanced the rwlock debugging facility, it will now track write-owners. There is new spinlock-owner/CPU-tracking on SMP builds too. All locks have lockup detection now, which will work for both soft and hard spin/rwlock lockups. The arch-level include files now only contain the minimally necessary subset of the spinlock code - all the rest that can be generalized now lives in the generic headers: include/asm-i386/spinlock_types.h | 16 include/asm-x86_64/spinlock_types.h | 16 I have also split up the various spinlock variants into separate files, making it easier to see which does what. The new layout is: SMP | UP ----------------------------|----------------------------------- asm/spinlock_types_smp.h | linux/spinlock_types_up.h linux/spinlock_types.h | linux/spinlock_types.h asm/spinlock_smp.h | linux/spinlock_up.h linux/spinlock_api_smp.h | linux/spinlock_api_up.h linux/spinlock.h | linux/spinlock.h /* * here's the role of the various spinlock/rwlock related include files: * * on SMP builds: * * asm/spinlock_types.h: contains the raw_spinlock_t/raw_rwlock_t and the * initializers * * linux/spinlock_types.h: * defines the generic type and initializers * * asm/spinlock.h: contains the __raw_spin_*()/etc. lowlevel * implementations, mostly inline assembly code * * (also included on UP-debug builds:) * * linux/spinlock_api_smp.h: * contains the prototypes for the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. * * on UP builds: * * linux/spinlock_type_up.h: * contains the generic, simplified UP spinlock type. * (which is an empty structure on non-debug builds) * * linux/spinlock_types.h: * defines the generic type and initializers * * linux/spinlock_up.h: * contains the __raw_spin_*()/etc. version of UP * builds. (which are NOPs on non-debug, non-preempt * builds) * * (included on UP-non-debug builds:) * * linux/spinlock_api_up.h: * builds the _spin_*() APIs. * * linux/spinlock.h: builds the final spin_*() APIs. */ All SMP and UP architectures are converted by this patch. arm, i386, ia64, ppc, ppc64, s390/s390x, x64 was build-tested via crosscompilers. m32r, mips, sh, sparc, have not been tested yet, but should be mostly fine. From: Grant Grundler <grundler@parisc-linux.org> Booted and lightly tested on a500-44 (64-bit, SMP kernel, dual CPU). Builds 32-bit SMP kernel (not booted or tested). I did not try to build non-SMP kernels. That should be trivial to fix up later if necessary. I converted bit ops atomic_hash lock to raw_spinlock_t. Doing so avoids some ugly nesting of linux/*.h and asm/*.h files. Those particular locks are well tested and contained entirely inside arch specific code. I do NOT expect any new issues to arise with them. If someone does ever need to use debug/metrics with them, then they will need to unravel this hairball between spinlocks, atomic ops, and bit ops that exist only because parisc has exactly one atomic instruction: LDCW (load and clear word). From: "Luck, Tony" <tony.luck@intel.com> ia64 fix Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjanv@infradead.org> Signed-off-by: Grant Grundler <grundler@parisc-linux.org> Cc: Matthew Wilcox <willy@debian.org> Signed-off-by: Hirokazu Takata <takata@linux-m32r.org> Signed-off-by: Mikael Pettersson <mikpe@csd.uu.se> Signed-off-by: Benoit Boissinot <benoit.boissinot@ens-lyon.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
* Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds2005-04-171-0/+238
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!